metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nonacarbon­yl(μ2-methane­thiol­ato)(μ3-tri­methyl­silylacetyl­ene)triruthenium

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemsitry, University of Bath, Claverton Down, Bath BA2 7AY, England, and bCCLRC Daresbury Laboratory, Warrington WA4 4AD, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk

(Received 13 September 2006; accepted 20 September 2006; online 8 November 2006)

The structure of the title compound, [Ru3(μ2CH3S){μ3-C2Si(CH3)3}(CO)9], contains an open triangle of Ru atoms. The open edge is bridged on one side by a μ2-S(CH3) unit, and the other side of the triangle is capped by a [C≡CSi(CH3)3] group, with the acetyl­enic bond perpendicular to the open Ru⋯Ru edge.

Comment

The homogeneous desulfurization of thio­phene with transition metal compounds has provided an important model for the catalytic heterogeneous dehydro­sulfurization of thio­phenic components of crude oil (Rauschfuss, 1991[Rauschfuss, T. B. (1991). Prog. Inorg. Chem. 39, 259-306.]). Increased catalytic activity has been observed, particularly toward thio­phenes, when late transition metals (group 8) are employed (Angelici, 1997[Angelici, R. J. (1997). Polyhedron, 16, 3073-3078.]).

In the context of catalysis, we have been investigating the reactivity of ruthenium carbonyl clusters with thiol derivatives. The reaction of Ru3(CO)12 with the asymmetric acetyl­ene derivative Me3SC≡CSiMe3 under reflux in hexane afforded [Ru3(CO)9(μ2-H3CS)(μ3-C2Si(CH3)3], (I)[link], in which the ruthenium cluster has inserted into a C—S bond. This type of reaction has been observed previously (Arce et al., 1994[Arce, A., Arrojo, P., De Sanctis, Y., Marquez, M. & Deeming, A. J. (1994). J. Organomet. Chem. 479, 159-164.]).

[Scheme 1]

The cluster consists of an open ruthenium triangle (Fig. 1[link]), with the `non bonding' edge having an Ru⋯Ru distance of 3.360 (1) Å. This edge is bridged symmetrically by a μ2-S(CH3) group, and the other side of the metal triangle is capped by a (C≡CSiMe3) group in which one acetyl­enic C atom σ-bonds to Ru2 while the acetyl­enic triple bond is π-bound to Ru1 and Ru3, adopting a bonding mode perpendicular to the long Ru1⋯Ru3 edge. The nine carbonyl ligands are terminal and essentially linear, three being bound to each Ru centre. Overall, the cluster has an electron count of 50, consistent with the observed open triangular metal framework.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme (50% probability displacement ellipsoids).

Experimental

Powdered Ru3(CO)12 (0.102 g, 0.16 mmol) and Me3SC≡CSiMe3 (0.085 g, 0.75 mmol) were dissolved in hexane (20 ml) and the mixture refluxed for 3 h, after which a second portion of Me3SC≡CSiMe3 [0.090 g, 0.79 mmol, in hexane (5 ml)] was added. The mixture was further refluxed for 1 h and subsequently cooled. Upon solvent removal, the crude product was purified by preparative thin layer chromatography using hexane as an eluent. The title compound was obtained from the yellow band with the highest Rf value after that of Ru3(CO)12. The product was recrystallized from a 1:1 mixture of CH2Cl2/hexane to give yellow block crystals.

Crystal data
  • [Ru3(CH3S)(C5H9Si)(CO)9]

  • Mr = 699.61

  • Triclinic, [P \overline 1]

  • a = 9.0510 (1) Å

  • b = 9.6680 (1) Å

  • c = 14.5830 (2) Å

  • α = 76.319 (1)°

  • β = 88.116 (1)°

  • γ = 64.933 (10)°

  • V = 1119.81 (10) Å3

  • Z = 2

  • Dx = 2.075 Mg m−3

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.4 × 0.35 × 0.35 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.393, Tmax = 0.466

  • 25218 measured reflections

  • 7649 independent reflections

  • 7024 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 32.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.06

  • 7649 reflections

  • 263 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0244P)2 + 0.728P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.16 e Å−3

  • Δρmin = −1.05 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0125 (5)

The methyl H atoms were constrained as riding atoms with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The highest residual electron-density peak is 1.81 Å from O8 and the deepest hole is 0.69 Å from Ru2.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Nonacarbonyl(µ2-methanethiolato)(µ3-trimethylsilylacetylene)triruthenium top
Crystal data top
[Ru3(CH3S)(C5H9Si)(CO)9]Z = 2
Mr = 699.61F(000) = 672
Triclinic, P1Dx = 2.075 Mg m3
a = 9.0510 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6680 (1) ÅCell parameters from 16094 reflections
c = 14.5830 (2) Åθ = 2.9–32.0°
α = 76.319 (1)°µ = 2.19 mm1
β = 88.116 (1)°T = 150 K
γ = 64.933 (10)°Block, yellow
V = 1119.81 (10) Å30.4 × 0.35 × 0.35 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7649 independent reflections
Radiation source: fine-focus sealed tube7024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 32.0°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1313
Tmin = 0.393, Tmax = 0.466k = 1314
25218 measured reflectionsl = 1821
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0244P)2 + 0.728P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max < 0.001
wR(F2) = 0.060Δρmax = 1.16 e Å3
S = 1.06Δρmin = 1.05 e Å3
7649 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
263 parametersExtinction coefficient: 0.0125 (5)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.141581 (16)0.205411 (16)0.227713 (10)0.01705 (4)
Ru20.159195 (16)0.453982 (16)0.290179 (10)0.01715 (4)
Ru30.448076 (16)0.317260 (16)0.199009 (10)0.01684 (4)
S10.25288 (5)0.31333 (5)0.09168 (3)0.01993 (9)
C10.1589 (3)0.0279 (2)0.18020 (17)0.0293 (4)
O10.1615 (2)0.0723 (2)0.15244 (17)0.0508 (5)
C20.0595 (2)0.1353 (3)0.34375 (15)0.0276 (4)
O20.0129 (2)0.0942 (3)0.41279 (13)0.0482 (5)
C30.0712 (2)0.3528 (2)0.17291 (14)0.0231 (4)
O30.19797 (18)0.4410 (2)0.13891 (12)0.0337 (3)
C40.0089 (2)0.4664 (2)0.37529 (14)0.0242 (4)
O40.1040 (2)0.4682 (2)0.42852 (12)0.0357 (4)
C50.0312 (2)0.6309 (2)0.18696 (16)0.0266 (4)
O50.0381 (2)0.7301 (2)0.12321 (14)0.0446 (4)
C60.2378 (3)0.5724 (3)0.34570 (16)0.0303 (4)
O60.2833 (3)0.6430 (3)0.37957 (17)0.0549 (5)
C70.4168 (2)0.5173 (2)0.12179 (14)0.0250 (4)
O70.3990 (2)0.63528 (19)0.07424 (13)0.0396 (4)
C80.5770 (2)0.3371 (2)0.29268 (14)0.0241 (4)
O80.6535 (2)0.3509 (2)0.34671 (12)0.0375 (4)
C90.6388 (2)0.1860 (2)0.14350 (15)0.0256 (4)
O90.7511 (2)0.1104 (2)0.11253 (13)0.0401 (4)
C100.3184 (2)0.2342 (2)0.31745 (12)0.0175 (3)
C110.4126 (2)0.1028 (2)0.29716 (13)0.0191 (3)
Si10.56728 (6)0.10449 (6)0.34213 (4)0.02014 (10)
C120.4938 (3)0.1902 (2)0.45160 (15)0.0297 (4)
H12A0.390.19160.43620.045*
H12B0.47760.12610.49730.045*
H12C0.57510.2980.47910.045*
C130.5906 (3)0.2166 (3)0.25057 (15)0.0301 (4)
H13A0.62950.16910.19370.045*
H13B0.48460.21330.23460.045*
H13C0.66980.32630.27530.045*
C140.7655 (3)0.1011 (3)0.37012 (18)0.0315 (4)
H14A0.80320.05550.3120.047*
H14B0.84730.20880.39720.047*
H14C0.750.03720.41580.047*
C150.3635 (3)0.1569 (3)0.03268 (15)0.0291 (4)
H15A0.41010.19760.0230.044*
H15B0.28820.11860.01290.044*
H15C0.45170.07010.07640.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01543 (7)0.01754 (7)0.01896 (7)0.00819 (5)0.00003 (5)0.00350 (5)
Ru20.01528 (7)0.01648 (7)0.01918 (7)0.00573 (5)0.00145 (5)0.00554 (5)
Ru30.01455 (7)0.01741 (7)0.01837 (7)0.00731 (5)0.00219 (5)0.00329 (5)
S10.01897 (19)0.0221 (2)0.01693 (19)0.00742 (16)0.00085 (15)0.00414 (16)
C10.0244 (9)0.0260 (9)0.0399 (11)0.0116 (8)0.0015 (8)0.0101 (9)
O10.0462 (11)0.0392 (10)0.0787 (15)0.0200 (9)0.0014 (10)0.0313 (10)
C20.0233 (9)0.0300 (10)0.0288 (10)0.0148 (8)0.0014 (7)0.0007 (8)
O20.0468 (11)0.0593 (12)0.0359 (9)0.0307 (10)0.0059 (8)0.0081 (9)
C30.0189 (8)0.0283 (9)0.0235 (9)0.0128 (7)0.0019 (6)0.0039 (7)
O30.0192 (7)0.0381 (8)0.0364 (8)0.0102 (6)0.0032 (6)0.0009 (7)
C40.0207 (8)0.0258 (9)0.0255 (9)0.0077 (7)0.0019 (7)0.0095 (7)
O40.0290 (8)0.0464 (9)0.0348 (8)0.0164 (7)0.0126 (6)0.0162 (7)
C50.0220 (9)0.0210 (8)0.0333 (10)0.0071 (7)0.0009 (7)0.0040 (8)
O50.0387 (9)0.0337 (9)0.0475 (11)0.0109 (7)0.0130 (8)0.0083 (8)
C60.0296 (10)0.0312 (10)0.0357 (11)0.0158 (9)0.0053 (8)0.0137 (9)
O60.0630 (13)0.0619 (13)0.0666 (14)0.0417 (11)0.0061 (11)0.0354 (11)
C70.0245 (9)0.0243 (9)0.0263 (9)0.0115 (7)0.0053 (7)0.0049 (7)
O70.0458 (10)0.0270 (8)0.0415 (9)0.0175 (7)0.0066 (8)0.0030 (7)
C80.0210 (8)0.0273 (9)0.0261 (9)0.0135 (7)0.0032 (7)0.0046 (7)
O80.0346 (8)0.0512 (10)0.0356 (9)0.0262 (8)0.0031 (7)0.0110 (8)
C90.0205 (8)0.0265 (9)0.0275 (9)0.0091 (7)0.0034 (7)0.0047 (8)
O90.0277 (8)0.0397 (9)0.0416 (9)0.0041 (7)0.0112 (7)0.0109 (8)
C100.0158 (7)0.0193 (8)0.0173 (7)0.0086 (6)0.0005 (6)0.0023 (6)
C110.0182 (7)0.0191 (8)0.0196 (8)0.0088 (6)0.0004 (6)0.0021 (6)
Si10.0199 (2)0.0164 (2)0.0215 (2)0.00547 (18)0.00286 (18)0.00376 (18)
C120.0411 (12)0.0239 (9)0.0232 (9)0.0155 (9)0.0030 (8)0.0004 (8)
C130.0287 (10)0.0260 (10)0.0289 (10)0.0022 (8)0.0029 (8)0.0123 (8)
C140.0220 (9)0.0253 (9)0.0429 (12)0.0066 (8)0.0088 (8)0.0058 (9)
C150.0292 (10)0.0347 (11)0.0242 (9)0.0104 (8)0.0043 (7)0.0154 (8)
Geometric parameters (Å, º) top
Ru1—C11.944 (2)C5—O51.133 (3)
Ru1—C21.917 (2)C6—O61.136 (3)
Ru1—C31.9014 (19)C7—O71.134 (2)
Ru1—C102.2451 (17)C8—O81.132 (2)
Ru1—C112.3775 (18)C9—O91.126 (3)
Ru1—S12.4122 (5)C10—C111.293 (2)
Ru1—Ru22.8285 (2)C11—Si11.8619 (18)
Ru2—C41.914 (2)Si1—C121.857 (2)
Ru2—C51.937 (2)Si1—C131.864 (2)
Ru2—C61.908 (2)Si1—C141.869 (2)
Ru2—C101.9474 (18)C12—H12A0.98
Ru2—Ru32.8329 (2)C12—H12B0.98
Ru3—C71.902 (2)C12—H12C0.98
Ru3—C81.919 (2)C13—H13A0.98
Ru3—C91.946 (2)C13—H13B0.98
Ru3—C102.2390 (17)C13—H13C0.98
Ru3—C112.3628 (18)C14—H14A0.98
Ru3—S12.4165 (5)C14—H14B0.98
S1—C151.818 (2)C14—H14C0.98
C1—O11.126 (3)C15—H15A0.98
C2—O21.129 (3)C15—H15B0.98
C3—O31.139 (2)C15—H15C0.98
C4—O41.137 (2)
C3—Ru1—C292.71 (8)S1—Ru3—Ru280.780 (11)
C3—Ru1—C198.86 (9)C15—S1—Ru1107.75 (8)
C2—Ru1—C192.78 (10)C15—S1—Ru3107.46 (7)
C3—Ru1—C10129.73 (7)Ru1—S1—Ru388.197 (15)
C2—Ru1—C1086.71 (8)O1—C1—Ru1176.9 (2)
C1—Ru1—C10131.40 (8)O2—C2—Ru1179.0 (2)
C3—Ru1—C11160.31 (7)O3—C3—Ru1179.09 (18)
C2—Ru1—C1193.47 (7)O4—C4—Ru2177.03 (19)
C1—Ru1—C1199.49 (8)O5—C5—Ru2176.2 (2)
C10—Ru1—C1132.34 (6)O6—C6—Ru2179.2 (2)
C3—Ru1—S188.47 (6)O7—C7—Ru3178.62 (19)
C2—Ru1—S1172.95 (7)O8—C8—Ru3178.75 (19)
C1—Ru1—S193.91 (7)O9—C9—Ru3178.6 (2)
C10—Ru1—S187.19 (5)C11—C10—Ru2155.62 (15)
C11—Ru1—S183.23 (4)C11—C10—Ru379.02 (11)
C3—Ru1—Ru286.63 (6)Ru2—C10—Ru384.87 (6)
C2—Ru1—Ru292.18 (7)C11—C10—Ru179.47 (11)
C1—Ru1—Ru2172.42 (6)Ru2—C10—Ru184.54 (6)
C10—Ru1—Ru243.26 (4)Ru3—C10—Ru197.07 (7)
C11—Ru1—Ru274.48 (4)C10—C11—Si1146.86 (15)
S1—Ru1—Ru280.943 (12)C10—C11—Ru368.47 (11)
C6—Ru2—C494.63 (9)Si1—C11—Ru3128.62 (9)
C6—Ru2—C594.29 (9)C10—C11—Ru168.19 (11)
C4—Ru2—C598.92 (9)Si1—C11—Ru1130.61 (9)
C6—Ru2—C10110.12 (8)Ru3—C11—Ru190.29 (6)
C4—Ru2—C10106.94 (8)C12—Si1—C11107.21 (9)
C5—Ru2—C10142.30 (8)C12—Si1—C13111.17 (10)
C6—Ru2—Ru1162.17 (7)C11—Si1—C13109.82 (9)
C4—Ru2—Ru193.48 (6)C12—Si1—C14110.06 (11)
C5—Ru2—Ru1100.11 (6)C11—Si1—C14108.08 (9)
C10—Ru2—Ru152.20 (5)C13—Si1—C14110.40 (11)
C6—Ru2—Ru394.61 (7)Si1—C12—H12A109.5
C4—Ru2—Ru3158.83 (6)Si1—C12—H12B109.5
C5—Ru2—Ru399.34 (6)H12A—C12—H12B109.5
C10—Ru2—Ru351.92 (5)Si1—C12—H12C109.5
Ru1—Ru2—Ru372.818 (5)H12A—C12—H12C109.5
C7—Ru3—C890.71 (9)H12B—C12—H12C109.5
C7—Ru3—C998.61 (8)Si1—C13—H13A109.5
C8—Ru3—C993.40 (9)Si1—C13—H13B109.5
C7—Ru3—C10134.79 (7)H13A—C13—H13B109.5
C8—Ru3—C1087.66 (7)Si1—C13—H13C109.5
C9—Ru3—C10126.60 (8)H13A—C13—H13C109.5
C7—Ru3—C11165.05 (7)H13B—C13—H13C109.5
C8—Ru3—C1195.49 (7)Si1—C14—H14A109.5
C9—Ru3—C1194.59 (7)Si1—C14—H14B109.5
C10—Ru3—C1132.51 (6)H14A—C14—H14B109.5
C7—Ru3—S188.51 (6)Si1—C14—H14C109.5
C8—Ru3—S1171.98 (6)H14A—C14—H14C109.5
C9—Ru3—S194.61 (6)H14B—C14—H14C109.5
C10—Ru3—S187.23 (4)S1—C15—H15A109.5
C11—Ru3—S183.45 (4)S1—C15—H15B109.5
C7—Ru3—Ru291.72 (6)H15A—C15—H15B109.5
C8—Ru3—Ru291.27 (6)S1—C15—H15C109.5
C9—Ru3—Ru2168.60 (6)H15A—C15—H15C109.5
C10—Ru3—Ru243.21 (4)H15B—C15—H15C109.5
C11—Ru3—Ru274.60 (4)
C3—Ru1—Ru2—C6176.4 (2)C5—Ru2—C10—Ru150.20 (14)
C2—Ru1—Ru2—C691.0 (2)Ru3—Ru2—C10—Ru197.63 (6)
C10—Ru1—Ru2—C68.1 (2)C7—Ru3—C10—C11167.28 (12)
C11—Ru1—Ru2—C62.0 (2)C8—Ru3—C10—C11104.04 (12)
S1—Ru1—Ru2—C687.4 (2)C9—Ru3—C10—C1111.53 (15)
C3—Ru1—Ru2—C466.65 (8)S1—Ru3—C10—C1182.15 (11)
C2—Ru1—Ru2—C425.94 (9)Ru2—Ru3—C10—C11161.61 (14)
C10—Ru1—Ru2—C4108.80 (9)C7—Ru3—C10—Ru25.67 (13)
C11—Ru1—Ru2—C4118.94 (7)C8—Ru3—C10—Ru294.35 (8)
S1—Ru1—Ru2—C4155.63 (6)C9—Ru3—C10—Ru2173.15 (8)
C3—Ru1—Ru2—C533.06 (8)C11—Ru3—C10—Ru2161.61 (14)
C2—Ru1—Ru2—C5125.64 (9)S1—Ru3—C10—Ru279.47 (5)
C10—Ru1—Ru2—C5151.49 (9)C7—Ru3—C10—Ru189.50 (11)
C11—Ru1—Ru2—C5141.36 (8)C8—Ru3—C10—Ru1178.18 (8)
S1—Ru1—Ru2—C555.92 (6)C9—Ru3—C10—Ru189.32 (10)
C3—Ru1—Ru2—C10175.45 (9)C11—Ru3—C10—Ru177.78 (11)
C2—Ru1—Ru2—C1082.86 (9)S1—Ru3—C10—Ru14.36 (5)
C11—Ru1—Ru2—C1010.14 (8)Ru2—Ru3—C10—Ru183.83 (6)
S1—Ru1—Ru2—C1095.57 (6)C3—Ru1—C10—C11167.43 (12)
C3—Ru1—Ru2—Ru3129.80 (6)C2—Ru1—C10—C11101.79 (13)
C2—Ru1—Ru2—Ru3137.62 (6)C1—Ru1—C10—C1110.98 (16)
C10—Ru1—Ru2—Ru354.75 (6)S1—Ru1—C10—C1181.76 (11)
C11—Ru1—Ru2—Ru344.61 (4)Ru2—Ru1—C10—C11161.51 (14)
S1—Ru1—Ru2—Ru340.817 (11)C3—Ru1—C10—Ru25.91 (11)
C6—Ru2—Ru3—C763.94 (10)C2—Ru1—C10—Ru296.70 (8)
C4—Ru2—Ru3—C7179.54 (17)C1—Ru1—C10—Ru2172.49 (9)
C5—Ru2—Ru3—C731.18 (9)C11—Ru1—C10—Ru2161.51 (14)
C10—Ru2—Ru3—C7175.98 (9)S1—Ru1—C10—Ru279.75 (5)
Ru1—Ru2—Ru3—C7128.96 (6)C3—Ru1—C10—Ru390.04 (10)
C6—Ru2—Ru3—C826.81 (9)C2—Ru1—C10—Ru3179.18 (8)
C4—Ru2—Ru3—C888.79 (17)C1—Ru1—C10—Ru388.37 (11)
C5—Ru2—Ru3—C8121.94 (9)C11—Ru1—C10—Ru377.39 (11)
C10—Ru2—Ru3—C885.22 (9)S1—Ru1—C10—Ru34.37 (5)
Ru1—Ru2—Ru3—C8140.28 (6)Ru2—Ru1—C10—Ru384.12 (7)
C6—Ru2—Ru3—C9141.0 (3)Ru2—C10—C11—Si1178.09 (18)
C4—Ru2—Ru3—C925.4 (4)Ru3—C10—C11—Si1128.5 (3)
C5—Ru2—Ru3—C9123.8 (3)Ru1—C10—C11—Si1132.0 (3)
C10—Ru2—Ru3—C929.0 (3)Ru2—C10—C11—Ru349.5 (3)
Ru1—Ru2—Ru3—C926.1 (3)Ru1—C10—C11—Ru399.42 (5)
C6—Ru2—Ru3—C10112.04 (10)Ru2—C10—C11—Ru149.9 (3)
C4—Ru2—Ru3—C103.56 (17)Ru3—C10—C11—Ru199.42 (5)
C5—Ru2—Ru3—C10152.84 (9)C7—Ru3—C11—C1037.3 (3)
Ru1—Ru2—Ru3—C1055.06 (6)C8—Ru3—C11—C1076.86 (12)
C6—Ru2—Ru3—C11122.16 (8)C9—Ru3—C11—C10170.73 (12)
C4—Ru2—Ru3—C116.56 (17)S1—Ru3—C11—C1095.15 (11)
C5—Ru2—Ru3—C11142.71 (8)Ru2—Ru3—C11—C1012.94 (10)
C10—Ru2—Ru3—C1110.13 (8)C7—Ru3—C11—Si1175.9 (3)
Ru1—Ru2—Ru3—C1144.93 (4)C8—Ru3—C11—Si169.96 (12)
C6—Ru2—Ru3—S1152.15 (7)C9—Ru3—C11—Si123.91 (13)
C4—Ru2—Ru3—S192.25 (16)C10—Ru3—C11—Si1146.82 (19)
C5—Ru2—Ru3—S157.03 (6)S1—Ru3—C11—Si1118.03 (11)
C10—Ru2—Ru3—S195.81 (6)Ru2—Ru3—C11—Si1159.77 (12)
Ru1—Ru2—Ru3—S140.754 (12)C7—Ru3—C11—Ru129.1 (3)
C3—Ru1—S1—C15118.31 (10)C8—Ru3—C11—Ru1143.20 (7)
C1—Ru1—S1—C1519.54 (10)C9—Ru3—C11—Ru1122.93 (7)
C10—Ru1—S1—C15111.78 (9)C10—Ru3—C11—Ru166.34 (10)
C11—Ru1—S1—C1579.57 (9)S1—Ru3—C11—Ru128.81 (4)
Ru2—Ru1—S1—C15154.86 (7)Ru2—Ru3—C11—Ru153.39 (4)
C3—Ru1—S1—Ru3133.92 (6)C3—Ru1—C11—C1029.8 (3)
C1—Ru1—S1—Ru3127.30 (6)C2—Ru1—C11—C1078.27 (13)
C10—Ru1—S1—Ru34.02 (5)C1—Ru1—C11—C10171.67 (12)
C11—Ru1—S1—Ru328.19 (4)S1—Ru1—C11—C1095.48 (11)
Ru2—Ru1—S1—Ru347.094 (10)Ru2—Ru1—C11—C1013.03 (10)
C7—Ru3—S1—C15112.94 (10)C3—Ru1—C11—Si1177.46 (17)
C9—Ru3—S1—C1514.42 (10)C2—Ru1—C11—Si169.40 (13)
C10—Ru3—S1—C15112.08 (9)C1—Ru1—C11—Si124.01 (14)
C11—Ru3—S1—C1579.68 (9)C10—Ru1—C11—Si1147.66 (19)
Ru2—Ru3—S1—C15155.08 (8)S1—Ru1—C11—Si1116.86 (12)
C7—Ru3—S1—Ru1139.01 (6)Ru2—Ru1—C11—Si1160.70 (12)
C9—Ru3—S1—Ru1122.48 (6)C3—Ru1—C11—Ru336.8 (2)
C10—Ru3—S1—Ru14.03 (5)C2—Ru1—C11—Ru3144.86 (8)
C11—Ru3—S1—Ru128.37 (4)C1—Ru1—C11—Ru3121.73 (8)
Ru2—Ru3—S1—Ru147.024 (10)C10—Ru1—C11—Ru366.60 (10)
C6—Ru2—C10—C11128.3 (3)S1—Ru1—C11—Ru328.88 (4)
C4—Ru2—C10—C11130.1 (3)Ru2—Ru1—C11—Ru353.56 (4)
C5—Ru2—C10—C111.2 (4)C10—C11—Si1—C1244.6 (3)
Ru1—Ru2—C10—C1149.0 (3)Ru3—C11—Si1—C12156.01 (11)
Ru3—Ru2—C10—C1148.6 (3)Ru1—C11—Si1—C1270.09 (14)
C6—Ru2—C10—Ru379.73 (9)C10—C11—Si1—C13165.5 (3)
C4—Ru2—C10—Ru3178.66 (7)Ru3—C11—Si1—C1383.09 (13)
C5—Ru2—C10—Ru347.43 (14)Ru1—C11—Si1—C1350.81 (15)
Ru1—Ru2—C10—Ru397.63 (6)C10—C11—Si1—C1474.0 (3)
C6—Ru2—C10—Ru1177.36 (8)Ru3—C11—Si1—C1437.40 (15)
C4—Ru2—C10—Ru181.03 (8)Ru1—C11—Si1—C14171.30 (12)
 

Acknowledgements

We are grateful to the EPSRC for funding and to the Cambridge Crystallographic Data Centre for a studentship to HAS.

References

First citationAngelici, R. J. (1997). Polyhedron, 16, 3073–3078.  CrossRef CAS Web of Science Google Scholar
First citationArce, A., Arrojo, P., De Sanctis, Y., Marquez, M. & Deeming, A. J. (1994). J. Organomet. Chem. 479, 159–164.  CrossRef CAS Web of Science Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRauschfuss, T. B. (1991). Prog. Inorg. Chem. 39, 259–306.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds