organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Nitro­benz­yl)benzene-1,2-di­amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Hull, Hull HU6 7RX, England
*Correspondence e-mail: s.j.archibald@hull.ac.uk

(Received 8 November 2006; accepted 21 November 2006; online 30 November 2006)

In the crystal structure of the title compound, C13H13N3O2, one-dimensional chains of hydrogen-bonded dimers are linked by ππ stacking inter­actions.

Comment

The title compound, (I)[link], has been prepared as part of a synthetic route towards N-substituted benzimidazoles. The crystal structure is characterized by hydrogen-bonded dimers (N1—H14⋯O1i and N2—H16⋯O2i; Table 2[link]), locking the secondary amine group, containing atom N1, into a chiral form. The dimer comprises both enanti­omeric forms of the mol­ecule. The hydrogen bonding is combined with ππ stacking, resulting in one-dimensional chains running parallel to the b axis. The ππ stacking occurs between the benzene rings (mean plane–plane distance = 3.29 Å) of the nitro­benzyl groups of dimers in adjacent unit cells.

[Scheme 1]

Table 1[link] lists geometric parameters that are of inter­est. The C11—N3 and C7—N1 bonds are substanti­ally longer than the C1—N1 and C2—N2 bonds. The shorter bond distances are typical of aniline C—N bonds. The C1—N1—C7 angle of 119.3 (1)° is similar to that of previously reported related structures showing hydrogen bonding of the secondary amine. A nitro­benzyl-substituted aniline (Iwasaki et al., 1988[Iwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085-1090.]) and a nitro­benzyl-substituted 2-iodo­aniline (Glidewell et al., 2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]) have bond angles of 118.9 and 121.4°, respectively. The latter has a long range N—H⋯I inter­action and ππ stacking inter­actions, while the former has an N—H⋯O inter­action, similar to that of (I)[link]. The hydrogen-bonding array in the structure of Iwasaki et al. also affords a hydrogen-bonded dimer, each dimer having two N—H⋯O bonds. However, this dimer does not show alignment of the π systems. It appears that the four hydrogen bonds in the dimeric unit of (I)[link] align the π systems to allow the stacking inter­action to extend throughout the structure.

The N1—C7 bond is twisted by only 9.2 (2)° from the plane of the diamino­benzene ring, a smaller angle than that observed in the two related structures of Iwasaki et al. (approximately 24°) and Glidewell et al. (approximately 15°). Although the amine groups of these structures are involved in hydrogen bonding, the additional hydrogen bonds in our structure constrain the orientation of the dimeric unit. A larger torsion angle of −64.4 (2)° is observed for N1—C7—C8—C13 in this structure than the equivalent atoms in the structures of Iwasaki et al. (1988[Iwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085-1090.]) and Glidewell et al. (2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]), where the twist is around 37°.

[Figure 1]
Figure 1
The molecular structure of (I)[link], showing the atom labelling and 50% probability ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The hydrogen-bonded (dashed lines) dimer and ππ stacking between dimeric units.
[Figure 3]
Figure 3
The packing, viewed along the b axis.

Experimental

The title compound was prepared by a modification of a previously published procedure (Schering, 1966[Schering, A. G. (1966). Patent BE 667333; Chem. Abstr. 65, 7183-7184.]). A solution of 4-nitro­benzyl bromide (5.00 g, 0.023 mol) in methanol (300 ml) was added dropwise to a stirred solution of 1,2-phenyl­enediamine (12.50 g, 0.12 mol) in methanol (400 ml), and the solution was stirred at room temperature for 6 h. The solvent was removed under reduced pressure and the resulting red solid was dissolved in hot ethanol. Upon cooling, the orange precipitate was collected by filtration. Purification by flash chromatography (Silica-gel 60, dichloro­methane) yielded an orange–brown solid (yield 3.56 g, 60%). X-ray quality crystals of approximate size 1.5 × 0.5 × 0.5 mm were grown by evaporation of a solution in dichloromethane/diethyl ether (70:30) and cut to an appropriate size for data collection.

Crystal data
  • C13H13N3O2

  • Mr = 243.26

  • Monoclinic, P 21 /c

  • a = 10.503 (2) Å

  • b = 6.7427 (9) Å

  • c = 16.452 (3) Å

  • β = 94.032 (15)°

  • V = 1162.2 (3) Å3

  • Z = 4

  • Dx = 1.390 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (2) K

  • Block, clear brown

  • 0.50 × 0.46 × 0.44 mm

Data collection
  • Stoe IPDS-II image-plate diffractometer

  • ω scans

  • Absorption correction: none

  • 19826 measured reflections

  • 4980 independent reflections

  • 2648 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 34.8°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.194

  • S = 1.03

  • 4980 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.1093P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.065 (8)

Table 1
Selected geometric parameters (Å, °)

C1—N1 1.3961 (18)
C2—N2 1.3998 (19)
C7—N1 1.4570 (19)
C11—N3 1.4678 (18)
N3—O2 1.2242 (18)
N3—O1 1.2268 (17)
C1—N1—C7 119.22 (11)
N1—C7—C8—C13 −64.36 (17)
C6—C1—N1—C7 −9.2 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H14⋯O1i 0.92 (2) 2.43 (2) 3.3005 (18) 158.3 (15)
N2—H16⋯O2i 0.91 (2) 2.62 (2) 3.4277 (19) 148.0 (18)
Symmetry code: (i) -x+1, -y+2, -z.

Although all the H atoms were discernible in a difference Fourier map, those bonded to C were placed in calculated positions and refined using a riding model. The C—H distances were constrained to 0.95 and 0.99 Å for aryl and methyl­ene C atoms, respectively, with Uiso(H) = 1.2Ueq of the carrier atom. H atoms of the amine groups were freely refined [final range of N—H = 0.91 (2)–0.92 (2) Å].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1999).

N-(4-Nitrobenzyl)benzene-1,2-diamine top
Crystal data top
C13H13N3O2F(000) = 512
Mr = 243.26Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 166 reflections
a = 10.503 (2) Åθ = 4.0–30.2°
b = 6.7427 (9) ŵ = 0.10 mm1
c = 16.452 (3) ÅT = 150 K
β = 94.032 (15)°Block, clear brown
V = 1162.2 (3) Å30.50 × 0.46 × 0.44 mm
Z = 4
Data collection top
Stoe IPDS-II image-plate
diffractometer
2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 34.8°, θmin = 2.5°
ω scans, 111 frames at 2° intervals, exposure time 1 minuteh = 1616
19826 measured reflectionsk = 108
4980 independent reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.1093P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4980 reflectionsΔρmax = 0.39 e Å3
176 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
40 constraintsExtinction coefficient: 0.065 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18885 (13)0.8146 (2)0.28361 (8)0.0302 (3)
C20.12405 (13)0.9926 (2)0.29923 (8)0.0315 (3)
C30.04788 (14)1.0000 (2)0.36524 (9)0.0372 (3)
H30.00391.11910.37620.045*
C40.03528 (15)0.8356 (3)0.41534 (9)0.0400 (4)
H40.01620.84340.46050.048*
C50.09761 (15)0.6615 (3)0.39931 (9)0.0387 (3)
H50.08840.54880.43300.046*
C60.17421 (14)0.6508 (2)0.33352 (8)0.0342 (3)
H60.21680.53040.32270.041*
C70.34034 (15)0.6369 (2)0.20229 (8)0.0345 (3)
H7A0.28560.51900.19130.041*
H7B0.39750.61030.25150.041*
C80.41860 (14)0.6762 (2)0.13054 (8)0.0312 (3)
C90.55079 (14)0.6911 (2)0.14095 (8)0.0333 (3)
H90.59250.67380.19360.040*
C100.62238 (14)0.7311 (2)0.07518 (8)0.0332 (3)
H100.71280.74020.08190.040*
C110.55830 (14)0.7574 (2)0.00059 (8)0.0308 (3)
C120.42726 (14)0.7436 (2)0.01328 (8)0.0321 (3)
H120.38610.76160.06610.038*
C130.35743 (14)0.7027 (2)0.05303 (8)0.0327 (3)
H130.26710.69250.04580.039*
N10.26129 (12)0.80980 (19)0.21567 (7)0.0325 (3)
H140.3008 (18)0.929 (3)0.2064 (10)0.037 (4)*
N20.14345 (13)1.1597 (2)0.25113 (8)0.0355 (3)
H160.147 (2)1.127 (3)0.1976 (12)0.045 (5)*
H150.0876 (19)1.262 (4)0.2564 (12)0.044 (5)*
N30.63296 (13)0.80231 (19)0.07045 (7)0.0353 (3)
O10.57547 (12)0.82773 (19)0.13715 (6)0.0437 (3)
O20.74923 (12)0.8135 (2)0.05944 (8)0.0499 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (6)0.0331 (6)0.0289 (5)0.0012 (5)0.0008 (4)0.0026 (5)
C20.0283 (6)0.0339 (7)0.0319 (6)0.0021 (5)0.0001 (5)0.0046 (5)
C30.0325 (7)0.0407 (8)0.0388 (7)0.0013 (6)0.0050 (5)0.0107 (6)
C40.0359 (7)0.0534 (10)0.0315 (6)0.0082 (7)0.0084 (5)0.0068 (6)
C50.0383 (7)0.0464 (9)0.0315 (6)0.0082 (7)0.0030 (5)0.0024 (6)
C60.0350 (7)0.0350 (7)0.0324 (6)0.0005 (6)0.0018 (5)0.0010 (5)
C70.0379 (7)0.0327 (7)0.0334 (6)0.0036 (6)0.0071 (5)0.0010 (5)
C80.0349 (7)0.0276 (6)0.0316 (6)0.0038 (5)0.0060 (5)0.0018 (5)
C90.0362 (7)0.0335 (7)0.0300 (6)0.0034 (6)0.0000 (5)0.0013 (5)
C100.0309 (6)0.0326 (7)0.0361 (6)0.0014 (5)0.0024 (5)0.0012 (5)
C110.0352 (7)0.0264 (6)0.0315 (6)0.0028 (5)0.0064 (5)0.0015 (5)
C120.0353 (7)0.0311 (6)0.0297 (6)0.0038 (5)0.0007 (5)0.0011 (5)
C130.0307 (6)0.0334 (7)0.0340 (6)0.0021 (5)0.0022 (5)0.0008 (5)
N10.0356 (6)0.0301 (6)0.0324 (5)0.0015 (5)0.0078 (4)0.0004 (4)
N20.0354 (6)0.0309 (6)0.0403 (6)0.0037 (5)0.0035 (5)0.0010 (5)
N30.0394 (7)0.0310 (6)0.0362 (6)0.0047 (5)0.0092 (5)0.0012 (4)
O10.0525 (7)0.0471 (7)0.0321 (5)0.0026 (5)0.0068 (4)0.0052 (4)
O20.0356 (6)0.0631 (8)0.0526 (6)0.0053 (6)0.0138 (5)0.0082 (6)
Geometric parameters (Å, º) top
C1—C61.391 (2)C8—C91.391 (2)
C1—N11.3961 (18)C8—C131.3984 (19)
C1—C21.412 (2)C9—C101.387 (2)
C2—C31.394 (2)C9—H90.9500
C2—N21.3998 (19)C10—C111.3858 (19)
C3—C41.394 (2)C10—H100.9500
C3—H30.9500C11—C121.381 (2)
C4—C51.378 (2)C11—N31.4678 (18)
C4—H40.9500C12—C131.384 (2)
C5—C61.395 (2)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—H60.9500N1—H140.92 (2)
C7—N11.4570 (19)N2—H160.91 (2)
C7—C81.5085 (19)N2—H150.91 (2)
C7—H7A0.9900N3—O21.2242 (18)
C7—H7B0.9900N3—O11.2268 (17)
C6—C1—N1122.91 (13)C13—C8—C7119.69 (13)
C6—C1—C2119.50 (13)C10—C9—C8120.62 (13)
N1—C1—C2117.54 (12)C10—C9—H9119.7
C3—C2—N2121.72 (13)C8—C9—H9119.7
C3—C2—C1118.86 (13)C11—C10—C9118.10 (13)
N2—C2—C1119.32 (12)C11—C10—H10120.9
C4—C3—C2121.04 (14)C9—C10—H10120.9
C4—C3—H3119.5C12—C11—C10122.91 (13)
C2—C3—H3119.5C12—C11—N3118.51 (12)
C5—C4—C3119.88 (13)C10—C11—N3118.58 (13)
C5—C4—H4120.1C11—C12—C13118.17 (12)
C3—C4—H4120.1C11—C12—H12120.9
C4—C5—C6120.00 (14)C13—C12—H12120.9
C4—C5—H5120.0C12—C13—C8120.60 (13)
C6—C5—H5120.0C12—C13—H13119.7
C1—C6—C5120.71 (14)C8—C13—H13119.7
C1—C6—H6119.6C1—N1—C7119.22 (11)
C5—C6—H6119.6C1—N1—H14112.9 (11)
N1—C7—C8108.98 (12)C7—N1—H14113.9 (12)
N1—C7—H7A109.9C2—N2—H16111.6 (14)
C8—C7—H7A109.9C2—N2—H15115.6 (13)
N1—C7—H7B109.9H16—N2—H15110.2 (18)
C8—C7—H7B109.9O2—N3—O1123.16 (13)
H7A—C7—H7B108.3O2—N3—C11118.63 (12)
C9—C8—C13119.59 (13)O1—N3—C11118.22 (13)
C9—C8—C7120.70 (12)
C6—C1—C2—C30.7 (2)C8—C9—C10—C110.6 (2)
N1—C1—C2—C3178.11 (12)C9—C10—C11—C120.7 (2)
C6—C1—C2—N2177.18 (13)C9—C10—C11—N3179.23 (13)
N1—C1—C2—N25.45 (19)C10—C11—C12—C130.4 (2)
N2—C2—C3—C4176.32 (14)N3—C11—C12—C13179.52 (12)
C1—C2—C3—C40.0 (2)C11—C12—C13—C80.0 (2)
C2—C3—C4—C50.7 (2)C9—C8—C13—C120.0 (2)
C3—C4—C5—C60.7 (2)C7—C8—C13—C12178.46 (14)
N1—C1—C6—C5178.04 (13)C6—C1—N1—C79.2 (2)
C2—C1—C6—C50.8 (2)C2—C1—N1—C7173.52 (13)
C4—C5—C6—C10.1 (2)C8—C7—N1—C1174.31 (12)
N1—C7—C8—C9114.11 (15)C12—C11—N3—O2179.56 (14)
N1—C7—C8—C1364.36 (17)C10—C11—N3—O20.5 (2)
C13—C8—C9—C100.3 (2)C12—C11—N3—O10.7 (2)
C7—C8—C9—C10178.74 (13)C10—C11—N3—O1179.15 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H14···O1i0.92 (2)2.43 (2)3.3005 (18)158.3 (15)
N2—H16···O2i0.91 (2)2.62 (2)3.4277 (19)148.0 (18)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

We thank the EPSRC for student funding and funds which enabled the purchase of the diffractometer on which the X-ray data were collected. We acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.  CrossRef CAS Web of Science Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085-1090.  CrossRef CAS Web of Science Google Scholar
First citationSchering, A. G. (1966). Patent BE 667333; Chem. Abstr. 65, 7183-7184.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds