metal-organic compounds
catena-Poly[[[diaquacadmium(II)]-μ-2,2′-bipyridine-6,6′-dicarboxylato] dihydrate]
aMain Building, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: knightjc@cardiff.ac.uk
The title hydrated 2,2′-bipyridine-6,6′-dicarboxylate–cadmium(II) complex, {[Cd(C12H2N2O4)(H2O)2]·2H2O}n, crystallizes with eight oxygen-bridged monomer units in the The divalent cadmium ion is seven-coordinate, and the can best be described as slightly distorted pentagonal–bipyramidal.
Comment
The title compound, (I), has been synthesized as part of a study investigating complex stability. Specifically, the research is part of initial investigations towards generating GdIII-based contrast agents for applications in (MRI), where overall complex stability is crucial in preventing dissociation in vivo, due to the well documented interference of Gd3+ in biological processes (Cacheris, 1990).
The research aims to elucidate structural features that contribute significantly to overall stability. A comprehensive series of transition metals has been considered, providing an insight into competition reactions which may compromise the effectiveness of the ability of the ligands to coordinate to the Gd3+ ion and neutralize its potential toxicity (Caravan, 1999).
In this complex, the Cd atom is located at the centre of a distorted pentagonal bipyramid of seven coordinating atoms (five O atoms and two N atoms; Fig. 1). One of these donor atoms (O4i) originates from another symmetry-related complex (x − , − y, z). The bond lengths are comparable to those of similar polymeric cadmium-based complexes (Deloume & Loiseleur, 1974). The bridging behaviour results in the formation of a polymer, which extends in a zigzag fashion (see Fig. 2).
The donor atoms O4i and O5 are located in the axial positions, with N1, N2, O1, O3 and O6 in the equatorial plane. The deviation of the equatorial angles N1—Cd1—N2, N2—Cd1—O3, O3—Cd1—O6, O6—Cd1—O1, O1—Cd1—N1 (Table 1) from the theoretical average angle of 72° can be explained by the narrow bite angle resulting from the coordination of the rigid tetradentate ligand. While the bridging carboxylate group lies almost perpendicular to the tetradentate ligand at 88.75 (13)°, the axial water molecule appears to lean away from the more sterically demanding ligand, tending towards the equatorial water donor at a more acute angle of 82.08 (12)°.
The oxygen-bridged polymer is formed via coordination of one of the carbonyl O atoms (O4i) to the cadmium in an axial orientation at an average angle of 90.10° to the pentagonal plane. The molecular packing is layered, with intermolecular π-stacking between bipyridine rings (N1/C1–C5 and N2/C6–C10) at a centroid–centroid distance of 3.267 Å. The equatorially coordinating water molecule (O6) is hydrogen bonded to a solvent water molecule (O8), which in turn is bonded to a second solvent water molecule (O7) which is hydrogen bonded to the axially coordinating water (O5) (see Fig. 3). All significant hydrogen bonds are listed in Table 2.
Experimental
To an aqueous solution (5 ml water) of 2,2-bipyridine-6,6-dicarboxylate disodium salt (0.05 mol) was added an aqueous solution (5 ml water) of cadmium(II) perchlorate (0.05 mol) and the solution was stirred continuously at room temperature for 5 h. A white precipitate was collected via filtration and redissolved in the minimum amount of hot deionized water. Slow evaporation of the solution yielded well defined crystals suitable for X-ray diffraction. 1H NMR (D2O): 8.48 (d, 2H, J = 9.63 Hz, py-H1), 8.16 (t, 2H, J = 9.75 Hz, py-H2), 8.08 (d, 2H, J = 7.60 Hz, py-H3).
Crystal data
|
Refinement
|
|
The carbon bound H atoms were placed in calculated positions using a riding model with Uiso(H) = 1.2Ueq(C) and C—H = 0.95. The solvent water H atoms were located and refined with Uiso(H) = 1.2Ueq(O)]; however, the H atoms on the coordinating water molecules could not be found at geometrically sensible positions and were not included in the refinement.
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806046423/fi2017sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806046423/fi2017Isup2.hkl
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cd(C12H2N2O4)(H2O)2]·2H2O | F(000) = 1664.0 |
Mr = 422.63 | Dx = 1.999 Mg m−3 |
Orthorhombic, Pcab | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2bc 2ac | Cell parameters from 24536 reflections |
a = 8.665 (5) Å | θ = 2.9–27.5° |
b = 17.392 (5) Å | µ = 1.59 mm−1 |
c = 18.812 (5) Å | T = 150 K |
V = 2835 (2) Å3 | Block, colourless |
Z = 8 | 0.52 × 0.4 × 0.22 mm |
Bruker–Nonius KappaCCD diffractometer | 2349 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.092 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | θmax = 27.5°, θmin = 3.2° |
Tmin = 0.492, Tmax = 0.722 | h = −11→11 |
13837 measured reflections | k = −15→22 |
3234 independent reflections | l = −24→24 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.050 | w = 1/[σ2(Fo2) + (0.0704P)2 + 1.3489P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.131 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.49 e Å−3 |
3234 reflections | Δρmin = −0.53 e Å−3 |
208 parameters |
Experimental. 1H NMR (D2O): 8.48 (d, 2H, J = 9.63?Hz, py-H1), 8.16 (t, 2H, J = 9.75?Hz, py-H2), 8.08 (d, 2H, J = 7.60?Hz, py-H3). IR (KBr) cm-1: 1617.02 (–C=O), 1591.95, 1574.59, 1421.28, 1384.64, 1267.97, 1144.55, 1111.76, 1087.66, 1018.23, 909.272, 770.423. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8416 (5) | −0.0338 (3) | 0.0556 (3) | 0.0178 (11) | |
C2 | 0.8675 (6) | −0.0807 (3) | −0.0025 (3) | 0.0199 (11) | |
H2 | 0.9326 | −0.1244 | 0.0017 | 0.024* | |
C3 | 0.7986 (6) | −0.0636 (3) | −0.0662 (3) | 0.0224 (12) | |
H3 | 0.8159 | −0.0951 | −0.1067 | 0.027* | |
C4 | 0.7035 (5) | 0.0003 (3) | −0.0706 (3) | 0.0200 (11) | |
H4 | 0.6551 | 0.0135 | −0.1143 | 0.024* | |
C5 | 0.6802 (5) | 0.0447 (3) | −0.0106 (3) | 0.0179 (11) | |
C6 | 0.5794 (5) | 0.1142 (3) | −0.0097 (3) | 0.0168 (11) | |
C7 | 0.5030 (6) | 0.1419 (3) | −0.0701 (3) | 0.0221 (11) | |
H5 | 0.5132 | 0.1164 | −0.1145 | 0.027* | |
C8 | 0.4132 (6) | 0.2067 (3) | −0.0641 (3) | 0.0251 (12) | |
H8 | 0.3603 | 0.2264 | −0.1043 | 0.030* | |
C9 | 0.4004 (6) | 0.2431 (3) | 0.0014 (3) | 0.0201 (11) | |
H7 | 0.3364 | 0.2870 | 0.0068 | 0.024* | |
C10 | 0.4827 (5) | 0.2142 (3) | 0.0590 (3) | 0.0174 (11) | |
C11 | 0.9164 (5) | −0.0482 (3) | 0.1272 (3) | 0.0181 (11) | |
C12 | 0.4806 (6) | 0.2505 (3) | 0.1310 (3) | 0.0174 (11) | |
N1 | 0.7503 (5) | 0.0284 (2) | 0.0518 (2) | 0.0166 (9) | |
N2 | 0.5693 (5) | 0.1500 (2) | 0.0531 (2) | 0.0177 (9) | |
O1 | 0.8860 (4) | −0.0007 (2) | 0.17608 (17) | 0.0217 (8) | |
O2 | 1.0017 (4) | −0.10573 (19) | 0.1324 (2) | 0.0240 (8) | |
O3 | 0.5496 (4) | 0.2156 (2) | 0.18009 (18) | 0.0259 (8) | |
O4 | 0.9154 (4) | 0.1849 (2) | 0.13790 (19) | 0.0245 (8) | |
O5 | 0.5412 (4) | 0.01180 (19) | 0.19987 (17) | 0.0212 (8) | |
O6 | 0.7508 (4) | 0.1238 (2) | 0.27733 (19) | 0.0225 (8) | |
O7 | 0.8528 (5) | −0.1242 (2) | −0.2466 (2) | 0.0403 (11) | |
H7A | 0.9337 | −0.1427 | −0.2277 | 0.048* | |
H7B | 0.8762 | −0.0776 | −0.2593 | 0.048* | |
O8 | 0.3706 (4) | 0.2275 (2) | 0.29834 (19) | 0.0292 (9) | |
H8A | 0.3340 | 0.2731 | 0.3089 | 0.035* | |
H8B | 0.2974 | 0.2057 | 0.2748 | 0.035* | |
Cd1 | 0.70612 (4) | 0.103047 (19) | 0.156370 (18) | 0.01591 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.013 (2) | 0.013 (3) | 0.028 (3) | 0.003 (2) | 0.002 (2) | 0.003 (2) |
C2 | 0.021 (3) | 0.008 (2) | 0.031 (3) | 0.000 (2) | 0.003 (2) | −0.003 (2) |
C3 | 0.032 (3) | 0.014 (3) | 0.022 (3) | 0.000 (2) | 0.001 (2) | −0.004 (2) |
C4 | 0.022 (3) | 0.018 (3) | 0.020 (3) | −0.005 (2) | −0.002 (2) | −0.001 (2) |
C5 | 0.017 (2) | 0.012 (3) | 0.025 (3) | −0.004 (2) | 0.000 (2) | 0.000 (2) |
C6 | 0.016 (2) | 0.014 (3) | 0.021 (3) | −0.0046 (19) | 0.002 (2) | 0.004 (2) |
C7 | 0.030 (3) | 0.017 (3) | 0.020 (3) | 0.001 (2) | −0.002 (2) | −0.001 (2) |
C8 | 0.025 (3) | 0.027 (3) | 0.024 (3) | 0.006 (2) | −0.005 (2) | 0.008 (2) |
C9 | 0.019 (2) | 0.016 (3) | 0.025 (3) | 0.001 (2) | −0.001 (2) | 0.005 (2) |
C10 | 0.017 (2) | 0.008 (2) | 0.026 (3) | −0.002 (2) | 0.002 (2) | 0.000 (2) |
C11 | 0.013 (2) | 0.014 (3) | 0.028 (3) | −0.004 (2) | 0.000 (2) | 0.003 (2) |
C12 | 0.019 (2) | 0.009 (2) | 0.024 (3) | −0.001 (2) | 0.002 (2) | −0.001 (2) |
N1 | 0.017 (2) | 0.013 (2) | 0.020 (2) | −0.0026 (18) | −0.0001 (16) | −0.0021 (18) |
N2 | 0.021 (2) | 0.009 (2) | 0.023 (2) | −0.0003 (18) | 0.0023 (17) | 0.0006 (17) |
O1 | 0.0254 (19) | 0.0185 (19) | 0.0211 (17) | 0.0056 (17) | −0.0025 (15) | 0.0029 (15) |
O2 | 0.026 (2) | 0.016 (2) | 0.030 (2) | 0.0057 (16) | −0.0009 (16) | −0.0006 (16) |
O3 | 0.035 (2) | 0.019 (2) | 0.0242 (19) | 0.0089 (17) | −0.0019 (16) | −0.0007 (16) |
O4 | 0.0254 (19) | 0.0131 (19) | 0.035 (2) | −0.0065 (16) | 0.0008 (16) | −0.0008 (16) |
O5 | 0.0236 (18) | 0.0172 (18) | 0.0228 (18) | −0.0057 (15) | −0.0001 (15) | 0.0017 (15) |
O6 | 0.0289 (19) | 0.0156 (18) | 0.023 (2) | 0.0027 (16) | −0.0033 (15) | −0.0012 (16) |
O7 | 0.040 (2) | 0.019 (2) | 0.061 (3) | −0.002 (2) | −0.016 (2) | 0.017 (2) |
O8 | 0.035 (2) | 0.018 (2) | 0.035 (2) | 0.0018 (18) | 0.0004 (18) | −0.0021 (17) |
Cd1 | 0.0193 (2) | 0.0107 (2) | 0.0177 (2) | −0.00014 (14) | −0.00005 (14) | −0.00005 (14) |
C1—N1 | 1.342 (6) | C10—N2 | 1.350 (6) |
C1—C2 | 1.381 (7) | C10—C12 | 1.494 (7) |
C1—C11 | 1.515 (7) | C11—O2 | 1.247 (6) |
C2—C3 | 1.371 (7) | C11—O1 | 1.264 (6) |
C2—H2 | 0.9500 | C12—O3 | 1.256 (6) |
C3—C4 | 1.386 (7) | C12—O4i | 1.265 (6) |
C3—H3 | 0.9500 | N1—Cd1 | 2.388 (4) |
C4—C5 | 1.383 (7) | N2—Cd1 | 2.418 (4) |
C4—H4 | 0.9500 | O1—Cd1 | 2.413 (3) |
C5—N1 | 1.351 (6) | O3—Cd1 | 2.423 (4) |
C5—C6 | 1.492 (7) | O4—C12ii | 1.265 (6) |
C6—N2 | 1.340 (6) | O4—Cd1 | 2.332 (4) |
C6—C7 | 1.400 (7) | O5—Cd1 | 2.287 (3) |
C7—C8 | 1.373 (7) | O6—Cd1 | 2.336 (4) |
C7—H5 | 0.9500 | O7—H7A | 0.8490 |
C8—C9 | 1.389 (7) | O7—H7B | 0.8691 |
C8—H8 | 0.9500 | O8—H8A | 0.8762 |
C9—C10 | 1.390 (7) | O8—H8B | 0.8617 |
C9—H7 | 0.9500 | ||
N1—C1—C2 | 122.0 (4) | O3—C12—C10 | 117.2 (4) |
N1—C1—C11 | 115.6 (4) | O4i—C12—C10 | 118.3 (5) |
C2—C1—C11 | 122.4 (4) | C1—N1—C5 | 118.7 (4) |
C3—C2—C1 | 119.5 (5) | C1—N1—Cd1 | 119.3 (3) |
C3—C2—H2 | 120.3 | C5—N1—Cd1 | 122.0 (3) |
C1—C2—H2 | 120.3 | C6—N2—C10 | 119.6 (4) |
C2—C3—C4 | 119.0 (5) | C6—N2—Cd1 | 121.3 (3) |
C2—C3—H3 | 120.5 | C10—N2—Cd1 | 119.1 (3) |
C4—C3—H3 | 120.5 | C11—O1—Cd1 | 120.8 (3) |
C3—C4—C5 | 119.0 (5) | C12—O3—Cd1 | 121.4 (3) |
C3—C4—H4 | 120.5 | C12ii—O4—Cd1 | 154.9 (3) |
C5—C4—H4 | 120.5 | H7A—O7—H7B | 106.1 |
N1—C5—C4 | 121.8 (5) | H8A—O8—H8B | 104.4 |
N1—C5—C6 | 115.1 (4) | O5—Cd1—O4 | 164.37 (12) |
C4—C5—C6 | 123.1 (5) | O5—Cd1—O6 | 82.08 (12) |
N2—C6—C7 | 121.7 (4) | O4—Cd1—O6 | 85.52 (13) |
N2—C6—C5 | 115.1 (4) | O5—Cd1—N1 | 91.00 (13) |
C7—C6—C5 | 123.2 (5) | O4—Cd1—N1 | 94.87 (13) |
C8—C7—C6 | 118.9 (5) | O6—Cd1—N1 | 149.28 (13) |
C8—C7—H5 | 120.5 | O5—Cd1—O1 | 80.18 (12) |
C6—C7—H5 | 120.5 | O4—Cd1—O1 | 88.70 (13) |
C7—C8—C9 | 119.5 (5) | O6—Cd1—O1 | 81.88 (12) |
C7—C8—H8 | 120.3 | N1—Cd1—O1 | 67.44 (13) |
C9—C8—H8 | 120.3 | O5—Cd1—N2 | 102.44 (13) |
C8—C9—C10 | 119.0 (5) | O4—Cd1—N2 | 93.18 (13) |
C8—C9—H7 | 120.5 | O6—Cd1—N2 | 144.24 (13) |
C10—C9—H7 | 120.5 | N1—Cd1—N2 | 66.47 (14) |
N2—C10—C9 | 121.3 (4) | O1—Cd1—N2 | 133.86 (12) |
N2—C10—C12 | 115.5 (4) | O5—Cd1—O3 | 98.34 (13) |
C9—C10—C12 | 123.2 (5) | O4—Cd1—O3 | 88.24 (13) |
O2—C11—O1 | 126.1 (5) | O6—Cd1—O3 | 77.80 (12) |
O2—C11—C1 | 117.2 (4) | N1—Cd1—O3 | 132.91 (13) |
O1—C11—C1 | 116.7 (4) | O1—Cd1—O3 | 159.62 (12) |
O3—C12—O4i | 124.5 (5) | N2—Cd1—O3 | 66.44 (12) |
N1—C1—C2—C3 | 0.1 (8) | C10—C12—O3—Cd1 | 7.5 (6) |
C11—C1—C2—C3 | −178.7 (4) | C12ii—O4—Cd1—O5 | −122.0 (8) |
C1—C2—C3—C4 | −0.4 (7) | C12ii—O4—Cd1—O6 | −84.5 (8) |
C2—C3—C4—C5 | −0.4 (7) | C12ii—O4—Cd1—N1 | 126.3 (8) |
C3—C4—C5—N1 | 1.5 (7) | C12ii—O4—Cd1—O1 | −166.4 (8) |
C3—C4—C5—C6 | −179.6 (4) | C12ii—O4—Cd1—N2 | 59.7 (8) |
N1—C5—C6—N2 | −1.4 (6) | C12ii—O4—Cd1—O3 | −6.6 (8) |
C4—C5—C6—N2 | 179.6 (4) | C1—N1—Cd1—O5 | −75.5 (4) |
N1—C5—C6—C7 | 177.1 (4) | C5—N1—Cd1—O5 | 101.3 (4) |
C4—C5—C6—C7 | −1.9 (7) | C1—N1—Cd1—O4 | 90.0 (4) |
N2—C6—C7—C8 | −1.3 (7) | C5—N1—Cd1—O4 | −93.2 (4) |
C5—C6—C7—C8 | −179.7 (5) | C1—N1—Cd1—O6 | 0.6 (5) |
C6—C7—C8—C9 | 0.1 (8) | C5—N1—Cd1—O6 | 177.4 (3) |
C7—C8—C9—C10 | 1.9 (8) | C1—N1—Cd1—O1 | 3.4 (3) |
C8—C9—C10—N2 | −2.8 (7) | C5—N1—Cd1—O1 | −179.7 (4) |
C8—C9—C10—C12 | 178.1 (5) | C1—N1—Cd1—N2 | −178.7 (4) |
N1—C1—C11—O2 | 179.8 (4) | C5—N1—Cd1—N2 | −1.8 (3) |
C2—C1—C11—O2 | −1.3 (7) | C1—N1—Cd1—O3 | −177.9 (3) |
N1—C1—C11—O1 | 0.0 (6) | C5—N1—Cd1—O3 | −1.0 (4) |
C2—C1—C11—O1 | 178.9 (4) | C11—O1—Cd1—O5 | 91.6 (3) |
N2—C10—C12—O3 | −4.8 (6) | C11—O1—Cd1—O4 | −99.4 (4) |
C9—C10—C12—O3 | 174.4 (5) | C11—O1—Cd1—O6 | 174.9 (4) |
N2—C10—C12—O4i | 172.5 (4) | C11—O1—Cd1—N1 | −3.6 (3) |
C9—C10—C12—O4i | −8.3 (7) | C11—O1—Cd1—N2 | −6.2 (4) |
C2—C1—N1—C5 | 0.9 (7) | C11—O1—Cd1—O3 | 179.2 (4) |
C11—C1—N1—C5 | 179.9 (4) | C6—N2—Cd1—O5 | −84.6 (4) |
C2—C1—N1—Cd1 | 177.9 (4) | C10—N2—Cd1—O5 | 96.3 (3) |
C11—C1—N1—Cd1 | −3.2 (5) | C6—N2—Cd1—O4 | 94.9 (4) |
C4—C5—N1—C1 | −1.7 (7) | C10—N2—Cd1—O4 | −84.2 (3) |
C6—C5—N1—C1 | 179.3 (4) | C6—N2—Cd1—O6 | −178.3 (3) |
C4—C5—N1—Cd1 | −178.6 (3) | C10—N2—Cd1—O6 | 2.5 (5) |
C6—C5—N1—Cd1 | 2.4 (5) | C6—N2—Cd1—N1 | 1.0 (3) |
C7—C6—N2—C10 | 0.4 (7) | C10—N2—Cd1—N1 | −178.1 (4) |
C5—C6—N2—C10 | 178.9 (4) | C6—N2—Cd1—O1 | 3.6 (4) |
C7—C6—N2—Cd1 | −178.7 (4) | C10—N2—Cd1—O1 | −175.5 (3) |
C5—C6—N2—Cd1 | −0.2 (5) | C6—N2—Cd1—O3 | −178.4 (4) |
C9—C10—N2—C6 | 1.6 (7) | C10—N2—Cd1—O3 | 2.5 (3) |
C12—C10—N2—C6 | −179.2 (4) | C12—O3—Cd1—O5 | −105.5 (4) |
C9—C10—N2—Cd1 | −179.2 (4) | C12—O3—Cd1—O4 | 88.8 (4) |
C12—C10—N2—Cd1 | −0.1 (5) | C12—O3—Cd1—O6 | 174.6 (4) |
O2—C11—O1—Cd1 | −176.6 (4) | C12—O3—Cd1—N1 | −6.3 (4) |
C1—C11—O1—Cd1 | 3.3 (5) | C12—O3—Cd1—O1 | 170.3 (4) |
O4i—C12—O3—Cd1 | −169.6 (4) | C12—O3—Cd1—N2 | −5.5 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O4iii | 0.85 | 2.26 | 3.055 (5) | 156 |
O7—H7B···O5iv | 0.87 | 1.88 | 2.729 (5) | 167 |
O8—H8A···O6i | 0.88 | 2.02 | 2.814 (5) | 150 |
O8—H8B···O7v | 0.86 | 2.00 | 2.816 (6) | 158 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (iii) −x+2, −y, −z; (iv) −x+3/2, y, z−1/2; (v) −x+1, −y, −z. |
Acknowledgements
This project was supported by the MRC (research grant No. G0300261).
References
Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cacheris, W. P. (1990). Magn. Reson. Imaging, 8, 467–481. CrossRef CAS PubMed Web of Science Google Scholar
Caravan, P. (1999). Chem. Rev. 99, 2293–2352. Web of Science CrossRef PubMed CAS Google Scholar
Deloume, J.-P. & Loiseleur, H. (1974). Acta Cryst. B30, 607–609. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.