organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1-(2-chloro­nicotino­yl)-3-tri­fluoro­methyl-1H-1,2,4-triazole: hydrogen-bonded sheets of alternating R22(8) and R66(36) rings

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 27 October 2006; accepted 27 October 2006; online 3 November 2006)

The mol­ecules of the title compound, C9H5ClF3N5O, are linked by two independent N—H⋯N hydrogen bonds into sheets containing alternating R22(8) and R66(36) rings.

Comment

We have recently reported the mol­ecular and supra­molecular structures of a number of N-aryl-2-chloro­nicotinamides obtained from the reactions between 2-chloro­nicotinoyl chloride and substituted anilines (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]; Cuffini et al., 2006[Cuffini, S., Glidewell, C., Low, J. N., de Oliveira, A. G., de Souza, M. V. N., Vasconcelos, T. R. A., Wardell, S. M. S. V. & Wardell, J. L. (2006). Acta Cryst. B62, 651-665.]). In a continuation of this study, we now report the structure of the title compound, (I)[link], obtained from the reaction between 2-chloro­nicotinoyl chloride and 5-amino-3-trifluoro­methyl-1H-1,2,4-triazole. The formation of (I)[link] was unexpected, as reaction at the exocyclic amino group was expected to yield the isomeric compound, (II) (see scheme).

[Scheme 1]

The carbonyl group of (I)[link] is almost coplanar with the tri­azole ring (Fig. 1[link], Table 1[link]) and this is possibly controlled by the intra­molecular N—H⋯O hydrogen bond (Table 2[link]). On the other hand, the pyridyl ring is rotated significantly out of this plane. The bond distances in the triazole ring provide evidence for strong bond fixation within this ring.

The mol­ecules of compound (I)[link] are linked by two independent N—H⋯N hydrogen bonds (Table 2[link]) into sheets, whose formation can readily be analysed in terms of two simple substructures, each utilizing just one hydrogen bond. One substructure is finite and zero-dimensional, while the other is one-dimensional.

The finite substructure is formed from paired hydrogen bonds. Amino atom N5 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to the triazole ring atom N4 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming by inversion an R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer centred at ([{1 \over 2}][{1 \over 2}][{1 \over 2}]) (Fig. 2[link]). This dimer can conveniently be regarded as the basic building block in the sheet structure.

In the second substructure, amino atom N5 acts as hydrogen-bond donor, via atom H5A, to pyridyl ring atom N21 in the mol­ecule at ([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z), so forming a C(8) chain running parallel to the [10[\overline{1}]] direction and generated by the c-glide plane at y = [{3 \over 4}] (Fig. 3[link]). This chain motif directly links the R22(8) dimer unit centred at ([{1 \over 2}][{1 \over 2}][{1 \over 2}]) to the four dimers centred at (0, 0, 1), (0, 1, 1), (1, 0, 0) and (1, 1, 0), thereby generating a sheet of alternating R22(8) and R66(36) rings parallel to (101) (Fig. 4[link]).

There are no direction-specific inter­actions between adjacent sheets. In particular, C—H⋯π hydrogen bonds and ππ stacking inter­actions are absent.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of the hydrogen-bonded R22(8) dimer centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]). For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded C(8) chain along [10[\overline{1}]]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) and (−[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z) respectively.
[Figure 4]
Figure 4
A stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a sheet of alternating R22(8) and R66(36) rings parallel to (101). For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

A mixture of 2-chloro­nicotinoyl chloride (0.88 g, 5 mmol) and 5-amino-3-trifluoro­methyl-1H-1,2,4-triazole (0.76 g, 5 mmol) (Lopyrev & Rakhmatulina, 1983[Lopyrev, V. A. & Rakhmatulina, T. N. (1983). Zh. Obshch. Khim. 53, 1684. (In Russian.)]) in 1,2-dichloro­ethane (15 ml) was heated under reflux for 1 h. The mixture was then cooled and the solvent removed under reduced pressure. The resulting solid product, (I)[link], was recrystallized from ethyl acetate to give crystals suitable for single-crystal X-ray diffraction.

Crystal data
  • C9H5ClF3N5O

  • Mr = 291.63

  • Monoclinic, P 21 /n

  • a = 4.64770 (10) Å

  • b = 19.7414 (10) Å

  • c = 12.3721 (5) Å

  • β = 91.147 (3)°

  • V = 1134.94 (8) Å3

  • Z = 4

  • Dx = 1.707 Mg m−3

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.26 × 0.06 × 0.05 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.981

  • 14659 measured reflections

  • 2588 independent reflections

  • 1923 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.04

  • 2588 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0386P)2 + 0.619P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—N2 1.391 (2)
N2—C3 1.305 (2)
C3—N4 1.364 (2)
N4—C5 1.328 (2)
C5—N1 1.392 (2)
N1—C27 1.401 (2)
C27—O27 1.209 (2)
C3—C31 1.488 (3)
C5—N5 1.324 (2)
N2—N1—C27—O27 −178.39 (17)
N2—N1—C27—C23 0.1 (3)
N1—C27—C23—C22 70.4 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O27 0.88 2.25 2.836 (2) 124
N5—H5A⋯N21i 0.88 2.40 3.053 (2) 131
N5—H5B⋯N4ii 0.88 2.13 2.985 (2) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

5-Amino-1-(2-chloronicotinoyl)-3-trifluoromethyl-1H-1,2,4-triazole top
Crystal data top
C9H5ClF3N5OF(000) = 584
Mr = 291.63Dx = 1.707 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2588 reflections
a = 4.6477 (1) Åθ = 3.9–27.6°
b = 19.7414 (10) ŵ = 0.38 mm1
c = 12.3721 (5) ÅT = 120 K
β = 91.147 (3)°Needle, colourless
V = 1134.94 (8) Å30.26 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2588 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.9°
φ and ω scansh = 56
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2425
Tmin = 0.927, Tmax = 0.981l = 1616
14659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.619P]
where P = (Fo2 + 2Fc2)/3
2588 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Experimental. IR (KBr disk, ν, cm-1): 3368, 3304, 3213, 3156, 1655, 1581, 1567, 1446, 1408, 1383, 1332, 1202, 1139, 1080, 985, 812, 759, 730, 657, 556, 503.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3230 (3)0.66804 (8)0.53946 (13)0.0196 (4)
N20.1330 (3)0.66249 (8)0.62443 (13)0.0204 (4)
C30.1366 (4)0.59720 (10)0.64084 (15)0.0188 (4)
C310.0261 (4)0.56599 (10)0.73046 (17)0.0229 (5)
F310.2485 (3)0.60360 (6)0.76044 (10)0.0316 (3)
F320.1271 (3)0.50499 (6)0.70283 (11)0.0346 (3)
F330.1419 (3)0.55681 (7)0.81869 (10)0.0391 (4)
N40.3061 (3)0.55840 (8)0.57685 (13)0.0198 (4)
C50.4244 (4)0.60400 (10)0.51248 (15)0.0183 (4)
N50.6132 (4)0.59136 (9)0.43635 (13)0.0229 (4)
C270.4050 (4)0.73123 (10)0.49861 (15)0.0189 (4)
O270.5656 (3)0.73437 (7)0.42315 (11)0.0236 (3)
N210.2498 (3)0.86511 (9)0.70620 (13)0.0227 (4)
C220.3523 (4)0.81141 (10)0.65678 (15)0.0184 (4)
Cl220.61338 (10)0.76614 (3)0.72787 (4)0.02480 (15)
C230.2760 (4)0.79157 (10)0.55210 (15)0.0177 (4)
C240.0833 (4)0.83207 (10)0.49519 (17)0.0222 (4)
C250.0272 (4)0.88902 (11)0.54533 (17)0.0265 (5)
C260.0579 (4)0.90288 (11)0.65022 (18)0.0262 (5)
H5A0.68090.62480.39720.027*
H5B0.67090.54960.42490.027*
H240.02760.82110.42300.027*
H250.15910.91790.50800.032*
H260.02320.94110.68480.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0229 (9)0.0167 (9)0.0194 (9)0.0009 (7)0.0067 (7)0.0003 (7)
N20.0220 (8)0.0207 (9)0.0188 (9)0.0003 (7)0.0074 (7)0.0007 (7)
C30.0205 (10)0.0172 (10)0.0186 (10)0.0004 (8)0.0010 (8)0.0012 (8)
C310.0215 (10)0.0225 (11)0.0249 (11)0.0006 (8)0.0024 (8)0.0004 (9)
F310.0292 (7)0.0296 (7)0.0365 (7)0.0042 (5)0.0157 (5)0.0004 (6)
F320.0414 (8)0.0215 (7)0.0415 (8)0.0087 (6)0.0152 (6)0.0003 (6)
F330.0351 (7)0.0578 (10)0.0243 (7)0.0024 (6)0.0001 (5)0.0129 (6)
N40.0228 (9)0.0172 (9)0.0195 (8)0.0004 (7)0.0046 (7)0.0001 (7)
C50.0207 (10)0.0168 (10)0.0173 (10)0.0002 (8)0.0006 (8)0.0029 (8)
N50.0307 (9)0.0159 (9)0.0224 (9)0.0025 (7)0.0096 (7)0.0003 (7)
C270.0192 (9)0.0197 (10)0.0177 (10)0.0008 (8)0.0005 (8)0.0009 (8)
O270.0277 (8)0.0211 (8)0.0222 (7)0.0017 (6)0.0076 (6)0.0015 (6)
N210.0258 (9)0.0199 (9)0.0225 (9)0.0001 (7)0.0048 (7)0.0027 (7)
C220.0190 (9)0.0165 (10)0.0197 (10)0.0015 (8)0.0030 (8)0.0026 (8)
Cl220.0241 (3)0.0272 (3)0.0230 (3)0.0032 (2)0.00125 (19)0.0024 (2)
C230.0188 (9)0.0148 (10)0.0196 (10)0.0023 (8)0.0044 (8)0.0007 (8)
C240.0250 (10)0.0221 (11)0.0196 (10)0.0009 (8)0.0008 (8)0.0007 (8)
C250.0293 (11)0.0211 (11)0.0290 (12)0.0066 (9)0.0018 (9)0.0048 (9)
C260.0291 (11)0.0200 (11)0.0298 (12)0.0053 (9)0.0059 (9)0.0033 (9)
Geometric parameters (Å, º) top
N1—N21.391 (2)N5—H5B0.88
N2—C31.305 (2)C27—C231.494 (3)
C3—N41.364 (2)N21—C221.318 (3)
N4—C51.328 (2)N21—C261.344 (3)
C5—N11.392 (2)C22—C231.392 (3)
N1—C271.401 (2)C22—Cl221.7328 (19)
C27—O271.209 (2)C23—C241.383 (3)
C3—C311.488 (3)C24—C251.388 (3)
C31—F311.331 (2)C24—H240.95
C31—F321.334 (2)C25—C261.377 (3)
C31—F331.342 (2)C25—H250.95
C5—N51.324 (2)C26—H260.95
N5—H5A0.88
N2—N1—C5109.43 (15)O27—C27—N1120.05 (18)
N2—N1—C27121.60 (15)O27—C27—C23124.11 (18)
C5—N1—C27128.76 (16)N1—C27—C23115.82 (16)
C3—N2—N1100.91 (15)C22—N21—C26116.71 (17)
N2—C3—N4118.04 (17)N21—C22—C23124.78 (18)
N2—C3—C31121.34 (17)N21—C22—Cl22115.82 (15)
N4—C3—C31120.54 (18)C23—C22—Cl22119.32 (15)
F31—C31—F32107.68 (16)C24—C23—C22117.46 (18)
F31—C31—F33106.92 (16)C24—C23—C27119.80 (17)
F32—C31—F33106.41 (17)C22—C23—C27122.66 (17)
F31—C31—C3112.67 (17)C23—C24—C25118.87 (19)
F32—C31—C3111.36 (17)C23—C24—H24120.6
F33—C31—C3111.47 (16)C25—C24—H24120.6
C5—N4—C3102.61 (16)C26—C25—C24118.71 (19)
N5—C5—N4125.95 (18)C26—C25—H25120.6
N5—C5—N1125.04 (18)C24—C25—H25120.6
N4—C5—N1109.00 (16)N21—C26—C25123.43 (19)
C5—N5—H5A120.0N21—C26—H26118.3
C5—N5—H5B120.0C25—C26—H26118.3
H5A—N5—H5B120.0
C5—N1—N2—C30.0 (2)C5—N1—C27—O277.3 (3)
C27—N1—N2—C3175.24 (17)N2—N1—C27—C230.1 (3)
N1—N2—C3—N40.1 (2)C5—N1—C27—C23174.18 (18)
N1—N2—C3—C31176.58 (17)C26—N21—C22—C230.0 (3)
N2—C3—C31—F3124.8 (3)C26—N21—C22—Cl22176.68 (14)
N4—C3—C31—F31158.62 (17)N21—C22—C23—C241.5 (3)
N2—C3—C31—F32145.91 (18)Cl22—C22—C23—C24175.11 (14)
N4—C3—C31—F3237.5 (2)N21—C22—C23—C27178.22 (18)
N2—C3—C31—F3395.4 (2)Cl22—C22—C23—C271.6 (3)
N4—C3—C31—F3381.2 (2)O27—C27—C23—C2465.5 (3)
N2—C3—N4—C50.1 (2)N1—C27—C23—C24112.9 (2)
C31—C3—N4—C5176.59 (17)O27—C27—C23—C22111.2 (2)
C3—N4—C5—N5178.57 (19)N1—C27—C23—C2270.4 (2)
C3—N4—C5—N10.1 (2)C22—C23—C24—C251.2 (3)
N2—N1—C5—N5178.62 (17)C27—C23—C24—C25178.06 (18)
C27—N1—C5—N53.8 (3)C23—C24—C25—C260.4 (3)
N2—N1—C5—N40.0 (2)C22—N21—C26—C251.8 (3)
C27—N1—C5—N4174.86 (18)C24—C25—C26—N212.0 (3)
N2—N1—C27—O27178.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O270.882.252.836 (2)124
N5—H5A···N21i0.882.403.053 (2)131
N5—H5B···N4ii0.882.132.985 (2)163
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, UK; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCuffini, S., Glidewell, C., Low, J. N., de Oliveira, A. G., de Souza, M. V. N., Vasconcelos, T. R. A., Wardell, S. M. S. V. & Wardell, J. L. (2006). Acta Cryst. B62, 651–665.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLopyrev, V. A. & Rakhmatulina, T. N. (1983). Zh. Obshch. Khim. 53, 1684. (In Russian.)  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSouza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204–o208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds