organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5a-Di­allyl-5,5a,13,14-tetra­hydro-12H-di-1,3-benzimidazolo[1,2-a;1′,2′-c][1,4]diazepine

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and cDepartment of Chemistry, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 10 November 2006; accepted 14 November 2006; online 24 November 2006)

The title compound, C23H24N4, was synthesized from 3,3′-diallyl-1,1′-propyl­enedi(benzimidazole) dibromide and NaH in tetra­hydro­furan solution. In the mol­ecule, the diazepine ring exhibits a boat conformation.

Comment

Electron-rich olefins have attracted considerable attention in both the organic and inorganic preparative literature as a result of their unique properties as reagents and reaction inter­mediates (Böhm & Herrmann, 2000[Böhm, V. P. W. & Herrmann, W. A. (2000). Angew. Chem. Int. Ed. 39, 4036-4038.]). They have been used as powerful reducing agents (Lappert, 1988[Lappert, M. F. (1988). J. Organomet. Chem. 358, 185-214.]), sources of carbene transition metal complexes (Küçükbay et al., 1996[Küçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434-2439.]) and catalysts for acyloin type C—C coupling reactions (Çetinkaya & Küçükbay, 1995[Çetinkaya, E. & Küçükbay, H. (1995). Turk. J. Chem. 19, 24-30.]). They have an extensive chemistry and, in particular, electron-rich olefins that contain an imidazolidine or benzothiazolidine group have long been known, although there are few studies of electron-rich olefins containing a benzimidazolidine group. Isolation of allyl-, crotyl- or benzyl-substituted electron-rich olefins tends to be difficult because the synthesized olefins spontaneously transform to their [1,3]-sigmatropic rearrangement products. As was previously reported (Baldwin & Walker, 1974[Baldwin, J. E. & Walker, J. A. (1974). J. Am. Chem. Soc. 23, 596-597.]; Baldwin et al., 1977[Baldwin, J. E., Branz, S. E. & Walker, J. A. (1977). J. Org. Chem. 42, 4142-4144.]; Çetinkaya et al., 1998[Çetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047-2054.]), we also obtained a [1,3]-sigmatropic rearrangement product, namely 2′,3′-diallyl-2′,3′H-dibenzimidazolo[a,c]perhydro-1,4-diazepine, (2)[link], instead of the corresponding electron-rich olefin, (1)[link], from a reaction of 3,3′-bis­(all­yl)-1,1′-propyl­endi(benzimidazole) dibromide and NaH in THF solution. The crystal structure of (2)[link] is presented here.

[Scheme 1]

The mol­ecular structure of (2) is shown in Fig. 1[link]. The geometric parameters in (2) are within the normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and agree with those in similar structures reported in the literature (Mague & Eduok, 2000[Mague, J. T. & Eduok, E. E. (2000). J. Chem. Crystallogr. 30, 311-313.]; Akkurt et al., 2006a[Akkurt, M., Yıldırım, S. Ö., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o3184-o3186.],b[Akkurt, M., Yıldırım, S. Ö., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o3512-o3514.]). The diazepine ring exhibits a boat conformation. The displacements of atoms N3, C17 and C8 from the C1/N2/C9/C10 mean plane are 0.398 (1), 0.214 (2) and 0.562 (2) Å, respectively. The benzimidazole ring systems in (2) are essentially planar and the dihedral angle between them is 75.56 (5)°.

The mol­ecular conformation of (2) is stabilized by an intra­molecular C—H⋯N hydrogen-bonding inter­action (Table 2).

[Figure 1]
Figure 1
Mol­ecular structure of (2), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted.

Experimental

A mixture of 3,3′-bis­(all­yl)-1,1′-propyl­endi(benzimidazole) dibromide (5.0 g, 9.7 mmol) and NaH (0.5 g, 21 mmol) in THF (50 ml) was stirred for 10 h at room temperature. Volatiles were eliminated in vacuo, toluene (20 ml) was added and the suspension was filtered. The resulting bright-yellow filtrate was concentrated to ca 10 ml and n-hexane (10 ml) was added. Upon cooling, colourless crystals of (2) (2 g, 53%) were obtained (m.p. 408–409 K). 1H NMR (CDCl3): δ 1.6–1.8 (m, –CH2-bridge, 2H), 3.0–3.2 (d, –CH2–, 2H), 3.7–4.0 (m, –N—CH2-bridge, 4H), 4.2 (d, N—CH2–, 2H), 4.8–5.0 (q, =CH2, 2H), 5.1–5.3 (q, =CH2, 2H), 5.4–5.6 (m, –CH=, 1H), 5.9–6.1 (m, –CH=, 1H), 6.2–7.8 (m, Ar—H, 8H). Analysis calculated for C23H24N4: C 77.53, H 6.74, N 15.73%; found: C 76.62, H 6.98, N 16.40%.

Crystal data
  • C23H24N4

  • Mr = 356.46

  • Orthorhombic, P c a 21

  • a = 25.1810 (13) Å

  • b = 8.304 (5) Å

  • c = 8.878 (8) Å

  • V = 1856 (2) Å3

  • Z = 4

  • Dx = 1.276 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • Irregular, colourless

  • 0.44 × 0.43 × 0.39 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.970

  • 18216 measured reflections

  • 2499 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 28.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.02

  • 2499 reflections

  • 244 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0508P)2 + 0.4382P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯N3 0.93 2.56 2.912 (4) 103

H atoms were placed in geometrically idealized positions and constrained to ride on their parents atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: APEXII (Bruker, 2003[Bruker (2003). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: APEXII (Bruker, 2003); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

5,5a-Diallyl-5,5a,13,14-tetrahydro-12H-di-1,3- benzimidazolo[1,2 - a;1',2'-c][1,4]diazepine top
Crystal data top
C23H24N41H NMR (CDCl3): δ 1.6–1.8 (m, –CH2-bridge, 2H), 3.0–3.2 (d, –CH2–, 2H), 3.7–4.0 (m, –N—CH2-bridge, 4H), 4.2 (d, N—CH2–, 2H), 4.8–5.0 (q, =CH2, 2H), 5.1–5.3 (q, =CH2, 2H), 5.4- 5.6 (m, –CH=, 1H), 5.9–6.1 (m, –CH=, 1H), 6.2–7.8 (m, Ar—H, 8H). 13C-NMR (CDCl3): δ 23.71, 39.89, 42.56, 45.29, 87.21, 103.37, 105.54, 109.09, 116.41, 117.31, 118.80, 120.43, 122.13, 123.37, 125.35, 128.27, 129.08, 133.73, 135.14, 138.25, 140.72, 142.13, 152.19.
Mr = 356.46Dx = 1.276 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 7669 reflections
a = 25.1810 (13) Åθ = 2.5–28.4°
b = 8.304 (5) ŵ = 0.08 mm1
c = 8.878 (8) ÅT = 150 K
V = 1856 (2) Å3Irregular, colourless
Z = 40.44 × 0.43 × 0.39 mm
F(000) = 760
Data collection top
Bruker SMART CCD area-detector
diffractometer
2499 independent reflections
Radiation source: sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3333
Tmin = 0.967, Tmax = 0.970k = 1111
18216 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.4382P]
where P = (Fo2 + 2Fc2)/3
2499 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.19 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10280 (6)0.84455 (18)0.66213 (18)0.0223 (4)
N20.05323 (6)0.71239 (18)0.83372 (18)0.0216 (4)
N30.14408 (6)0.70666 (18)1.04193 (18)0.0239 (4)
N40.17718 (6)0.57597 (18)0.83467 (18)0.0233 (4)
C10.10270 (7)0.7667 (2)0.7914 (2)0.0205 (4)
C20.05028 (7)0.8395 (2)0.6135 (2)0.0212 (4)
C30.02758 (7)0.8997 (2)0.4815 (2)0.0258 (5)
C40.02634 (7)0.8751 (2)0.4592 (2)0.0265 (5)
C50.05748 (7)0.7954 (2)0.5675 (2)0.0260 (5)
C60.03590 (7)0.7374 (2)0.7007 (2)0.0243 (5)
C70.01857 (7)0.7589 (2)0.7205 (2)0.0210 (4)
C80.04028 (8)0.6157 (2)0.9661 (2)0.0261 (5)
C90.04758 (8)0.7082 (3)1.1131 (2)0.0297 (5)
C100.10185 (8)0.7928 (2)1.1199 (2)0.0281 (5)
C110.16069 (7)0.5534 (2)1.0851 (2)0.0216 (5)
C120.16005 (7)0.4803 (2)1.2248 (2)0.0252 (5)
C130.18088 (7)0.3236 (2)1.2358 (2)0.0267 (5)
C140.20109 (7)0.2459 (2)1.1108 (2)0.0254 (5)
C150.20119 (7)0.3195 (2)0.9678 (2)0.0231 (5)
C160.18087 (6)0.4740 (2)0.9574 (2)0.0205 (4)
C170.15327 (7)0.7315 (2)0.8795 (2)0.0212 (4)
C180.17773 (8)0.5184 (2)0.6795 (2)0.0268 (5)
C190.12867 (9)0.4219 (3)0.6408 (2)0.0349 (6)
C200.12834 (13)0.2661 (3)0.6183 (3)0.0482 (8)
C210.19213 (7)0.8725 (2)0.8541 (2)0.0276 (5)
C220.24318 (8)0.8507 (2)0.9400 (3)0.0359 (6)
C230.28965 (8)0.8917 (3)0.8956 (3)0.0441 (7)
H30.048000.954600.410800.0310*
H40.042200.911900.371100.0320*
H50.093500.781100.549300.0310*
H60.056700.686800.773200.0290*
H8A0.062800.520900.967500.0310*
H8B0.003700.579800.958700.0310*
H9A0.044500.634201.197200.0360*
H9B0.019600.787901.122500.0360*
H10A0.098400.899301.076100.0340*
H10B0.111900.806101.224700.0340*
H120.146300.532901.308700.0300*
H130.181100.271601.328600.0320*
H140.214900.142701.121200.0300*
H150.214400.266200.883600.0280*
H18A0.208900.451900.664100.0320*
H18B0.180200.610000.612000.0320*
H190.096600.476900.632400.0420*
H20A0.159700.207600.625900.0580*
H20B0.096700.214000.594900.0580*
H21A0.200000.881200.747500.0330*
H21B0.175400.972100.885600.0330*
H220.240700.802701.034500.0430*
H23A0.294100.940100.802000.0530*
H23B0.318900.873200.957000.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0204 (7)0.0239 (7)0.0227 (7)0.0016 (5)0.0006 (6)0.0021 (6)
N20.0200 (7)0.0226 (7)0.0222 (7)0.0004 (5)0.0019 (6)0.0014 (6)
N30.0264 (8)0.0235 (7)0.0219 (7)0.0049 (6)0.0012 (6)0.0004 (6)
N40.0258 (7)0.0206 (7)0.0235 (7)0.0037 (6)0.0024 (6)0.0028 (6)
C10.0215 (8)0.0194 (7)0.0205 (8)0.0015 (6)0.0003 (6)0.0002 (6)
C20.0197 (8)0.0206 (7)0.0233 (8)0.0025 (6)0.0001 (6)0.0023 (6)
C30.0285 (9)0.0263 (8)0.0225 (9)0.0053 (7)0.0004 (7)0.0003 (7)
C40.0288 (9)0.0254 (8)0.0253 (9)0.0060 (6)0.0059 (8)0.0025 (8)
C50.0211 (8)0.0239 (8)0.0330 (10)0.0027 (7)0.0052 (7)0.0053 (7)
C60.0225 (8)0.0227 (8)0.0277 (9)0.0002 (6)0.0007 (7)0.0028 (7)
C70.0236 (8)0.0195 (7)0.0200 (8)0.0025 (6)0.0012 (6)0.0026 (6)
C80.0263 (8)0.0267 (8)0.0254 (9)0.0010 (7)0.0011 (7)0.0054 (8)
C90.0295 (9)0.0381 (10)0.0215 (8)0.0062 (8)0.0020 (7)0.0022 (8)
C100.0313 (9)0.0285 (9)0.0246 (9)0.0086 (7)0.0027 (7)0.0048 (8)
C110.0178 (7)0.0223 (8)0.0246 (9)0.0012 (6)0.0023 (6)0.0005 (7)
C120.0230 (8)0.0296 (9)0.0231 (8)0.0032 (7)0.0021 (7)0.0002 (7)
C130.0252 (8)0.0304 (9)0.0245 (9)0.0009 (7)0.0033 (7)0.0066 (8)
C140.0232 (8)0.0227 (7)0.0303 (9)0.0024 (6)0.0032 (7)0.0059 (7)
C150.0200 (7)0.0229 (8)0.0264 (9)0.0011 (6)0.0016 (7)0.0022 (7)
C160.0170 (7)0.0237 (8)0.0207 (7)0.0005 (6)0.0004 (6)0.0025 (7)
C170.0197 (7)0.0206 (7)0.0233 (8)0.0014 (6)0.0024 (6)0.0008 (6)
C180.0330 (9)0.0255 (8)0.0220 (8)0.0056 (7)0.0048 (7)0.0023 (7)
C190.0382 (10)0.0408 (11)0.0257 (9)0.0008 (9)0.0026 (8)0.0058 (8)
C200.0705 (17)0.0399 (12)0.0343 (11)0.0093 (11)0.0027 (12)0.0001 (10)
C210.0237 (8)0.0227 (8)0.0364 (11)0.0025 (6)0.0064 (8)0.0070 (8)
C220.0309 (10)0.0346 (9)0.0423 (12)0.0052 (8)0.0095 (9)0.0080 (9)
C230.0273 (10)0.0567 (14)0.0482 (13)0.0046 (9)0.0082 (10)0.0249 (12)
Geometric parameters (Å, º) top
N1—C11.317 (3)C19—C201.309 (4)
N1—C21.392 (3)C21—C221.506 (3)
N2—C11.377 (3)C22—C231.281 (3)
N2—C71.386 (3)C3—H30.9300
N2—C81.460 (3)C4—H40.9300
N3—C101.457 (3)C5—H50.9300
N3—C111.393 (3)C6—H60.9300
N3—C171.475 (3)C8—H8A0.9700
N4—C161.383 (3)C8—H8B0.9700
N4—C171.480 (3)C9—H9A0.9700
N4—C181.458 (3)C9—H9B0.9700
C1—C171.523 (3)C10—H10A0.9700
C2—C31.396 (3)C10—H10B0.9700
C2—C71.410 (3)C12—H120.9300
C3—C41.387 (3)C13—H130.9300
C4—C51.406 (3)C14—H140.9300
C5—C61.388 (3)C15—H150.9300
C6—C71.394 (3)C18—H18A0.9700
C8—C91.526 (3)C18—H18B0.9700
C9—C101.538 (3)C19—H190.9300
C11—C121.381 (3)C20—H20A0.9300
C11—C161.407 (3)C20—H20B0.9300
C12—C131.406 (3)C21—H21A0.9700
C13—C141.381 (3)C21—H21B0.9700
C14—C151.409 (3)C22—H220.9300
C15—C161.384 (3)C23—H23A0.9300
C17—C211.543 (3)C23—H23B0.9300
C18—C191.512 (3)
N1···N43.291 (4)C21···H18B3.0800
N1···C183.304 (4)C21···H10A3.0800
N2···N32.942 (3)C22···H14x3.0000
N3···N22.942 (3)C22···H21Avi3.0900
N3···N42.293 (3)C23···H10Bi2.9900
N4···N32.293 (3)H4···C2v3.0900
N4···N13.291 (4)H5···C13ii2.8900
N1···H23Bi2.6900H5···C14ii2.7700
N1···H18B2.7900H5···C15ii2.9300
N1···H21B2.9000H6···C83.0400
N1···H21A2.5800H6···H8B2.4100
N2···H192.8700H6···C12ii2.9800
N2···H10A2.8900H8A···N32.6500
N3···H222.5600H8A···C112.6900
N3···H8A2.6500H8A···C163.0000
C1···C193.227 (4)H8A···C172.9800
C5···C13ii3.587 (4)H8A···C5iii2.7800
C5···C8ii3.557 (4)H8A···C6iii3.0600
C6···C8ii3.598 (4)H8B···C62.8200
C8···C6iii3.598 (4)H8B···H62.4100
C8···C113.252 (4)H9A···C6iii3.0900
C8···C5iii3.557 (4)H10A···N22.8900
C9···C123.548 (4)H10A···C12.7600
C11···C83.252 (4)H10A···C213.0800
C11···C223.474 (4)H10A···C4iv2.8100
C12···C93.548 (4)H10A···C5iv2.7400
C13···C5iii3.587 (4)H10B···C122.9600
C15···C193.534 (4)H10B···H122.5400
C16···C223.503 (4)H10B···C23vi2.9900
C18···N13.304 (4)H12···C102.9500
C19···C153.534 (4)H12···H10B2.5400
C19···C13.227 (4)H13···C20xi2.9000
C22···C163.503 (4)H14···C22viii3.0000
C22···C113.474 (4)H14···H23Avii2.3400
C1···H18B2.8400H15···C182.9200
C1···H10A2.7600H15···H18A2.4900
C1···H192.7900H15···C13i2.9800
C2···H4iv3.0900H18A···C152.9200
C4···H10Av2.8100H18A···H152.4900
C5···H10Av2.7400H18A···H20A2.4000
C5···H8Aii2.7800H18A···C13i3.0400
C6···H8Aii3.0600H18A···C14i2.8800
C6···H9Aii3.0900H18A···C15i3.0600
C6···H8B2.8200H18B···N12.7900
C8···H63.0400H18B···C12.8400
C10···H122.9500H18B···C213.0800
C11···H222.9200H18B···H23Bi2.5800
C11···H8A2.6900H19···N22.8700
C12···H6iii2.9800H19···C12.7900
C12···H10B2.9600H20A···H18A2.4000
C13···H15vi2.9800H21A···N12.5800
C13···H18Avi3.0400H21A···H23A2.4700
C13···H5iii2.8900H21A···C22i3.0900
C14···H23Avii3.0600H21A···H22i2.5000
C14···H21Bviii3.1000H21B···N12.9000
C14···H18Avi2.8800H21B···C14x3.1000
C14···H5iii2.7700H21B···C15x3.0500
C15···H5iii2.9300H22···N32.5600
C15···H21Bviii3.0500H22···C112.9200
C15···H18A2.9200H22···H21Avi2.5000
C15···H18Avi3.0600H23A···H21A2.4700
C16···H8A3.0000H23A···C14xii3.0600
C17···H8A2.9800H23A···H14xii2.3400
C18···H152.9200H23B···N1vi2.6900
C20···H13ix2.9000H23B···H18Bvi2.5800
C1—N1—C2104.69 (15)C5—C4—H4119.00
C1—N2—C7106.29 (15)C4—C5—H5119.00
C1—N2—C8126.99 (15)C6—C5—H5119.00
C7—N2—C8126.60 (15)C5—C6—H6122.00
C10—N3—C11122.48 (15)C7—C6—H6122.00
C10—N3—C17120.70 (14)N2—C8—H8A109.00
C11—N3—C17110.46 (14)N2—C8—H8B109.00
C16—N4—C17110.48 (14)C9—C8—H8A109.00
C16—N4—C18122.88 (14)C9—C8—H8B109.00
C17—N4—C18122.97 (14)H8A—C8—H8B108.00
N1—C1—N2113.59 (16)C8—C9—H9A109.00
N1—C1—C17122.69 (16)C8—C9—H9B109.00
N2—C1—C17123.61 (15)C10—C9—H9A109.00
N1—C2—C3129.68 (16)C10—C9—H9B109.00
N1—C2—C7110.09 (15)H9A—C9—H9B108.00
C3—C2—C7120.23 (16)N3—C10—H10A109.00
C2—C3—C4117.89 (16)N3—C10—H10B109.00
C3—C4—C5121.17 (16)C9—C10—H10A109.00
C4—C5—C6121.85 (16)C9—C10—H10B109.00
C5—C6—C7116.63 (16)H10A—C10—H10B108.00
N2—C7—C2105.32 (15)C11—C12—H12121.00
N2—C7—C6132.47 (16)C13—C12—H12121.00
C2—C7—C6122.21 (16)C12—C13—H13120.00
N2—C8—C9112.63 (15)C14—C13—H13120.00
C8—C9—C10111.76 (15)C13—C14—H14119.00
N3—C10—C9113.94 (15)C15—C14—H14119.00
N3—C11—C12130.17 (16)C14—C15—H15121.00
N3—C11—C16108.36 (15)C16—C15—H15121.00
C12—C11—C16121.47 (16)N4—C18—H18A109.00
C11—C12—C13117.69 (16)N4—C18—H18B109.00
C12—C13—C14120.93 (16)C19—C18—H18A109.00
C13—C14—C15121.47 (16)C19—C18—H18B109.00
C14—C15—C16117.48 (16)H18A—C18—H18B108.00
N4—C16—C11108.89 (14)C18—C19—H19118.00
N4—C16—C15130.15 (16)C20—C19—H19118.00
C11—C16—C15120.95 (16)C19—C20—H20A120.00
N3—C17—N4101.82 (13)C19—C20—H20B120.00
N3—C17—C1113.44 (14)H20A—C20—H20B120.00
N3—C17—C21110.40 (14)C17—C21—H21A109.00
N4—C17—C1111.70 (14)C17—C21—H21B109.00
N4—C17—C21111.42 (14)C22—C21—H21A109.00
C1—C17—C21108.04 (14)C22—C21—H21B109.00
N4—C18—C19112.37 (15)H21A—C21—H21B108.00
C18—C19—C20124.3 (2)C21—C22—H22117.00
C17—C21—C22112.11 (14)C23—C22—H22117.00
C21—C22—C23126.3 (2)C22—C23—H23A120.00
C2—C3—H3121.00C22—C23—H23B120.00
C4—C3—H3121.00H23A—C23—H23B120.00
C3—C4—H4119.00
C2—N1—C1—N21.1 (2)C16—N4—C17—C21118.01 (15)
C2—N1—C1—C17175.15 (15)N1—C1—C17—N489.5 (2)
C1—N1—C2—C3178.33 (18)N1—C1—C17—N3156.09 (16)
C1—N1—C2—C71.39 (19)N2—C1—C17—N486.4 (2)
C7—N2—C1—C17175.80 (15)N1—C1—C17—C2133.4 (2)
C7—N2—C1—N10.4 (2)N2—C1—C17—N328.0 (2)
C8—N2—C1—N1176.68 (16)N2—C1—C17—C21150.75 (16)
C1—N2—C8—C968.4 (2)N1—C2—C7—C6179.59 (16)
C7—N2—C8—C9116.2 (2)C7—C2—C3—C41.0 (2)
C8—N2—C1—C170.4 (3)C3—C2—C7—N2178.60 (15)
C1—N2—C7—C20.45 (18)N1—C2—C3—C4178.69 (17)
C8—N2—C7—C2175.81 (16)C3—C2—C7—C60.7 (3)
C1—N2—C7—C6179.60 (18)N1—C2—C7—N21.15 (19)
C8—N2—C7—C63.3 (3)C2—C3—C4—C51.5 (3)
C11—N3—C17—N40.25 (18)C3—C4—C5—C60.2 (3)
C10—N3—C17—N4152.88 (15)C4—C5—C6—C71.4 (2)
C17—N3—C10—C986.92 (19)C5—C6—C7—N2177.21 (18)
C10—N3—C11—C16152.15 (16)C5—C6—C7—C21.8 (3)
C11—N3—C10—C962.4 (2)N2—C8—C9—C1049.2 (2)
C11—N3—C17—C21118.67 (15)C8—C9—C10—N332.5 (2)
C10—N3—C17—C132.7 (2)N3—C11—C16—N40.1 (2)
C17—N3—C11—C160.1 (2)N3—C11—C16—C15178.87 (15)
C17—N3—C11—C12179.32 (18)C12—C11—C16—C150.4 (3)
C10—N3—C17—C2188.71 (18)N3—C11—C12—C13178.45 (17)
C10—N3—C11—C1228.6 (3)C16—C11—C12—C130.7 (3)
C11—N3—C17—C1119.91 (16)C12—C11—C16—N4179.19 (16)
C16—N4—C17—C1121.06 (15)C11—C12—C13—C140.2 (3)
C18—N4—C17—N3159.23 (15)C12—C13—C14—C150.6 (3)
C17—N4—C16—C110.28 (19)C13—C14—C15—C160.9 (3)
C18—N4—C17—C137.9 (2)C14—C15—C16—C110.3 (2)
C16—N4—C17—N30.32 (17)C14—C15—C16—N4178.12 (17)
C16—N4—C18—C1967.5 (2)C1—C17—C21—C22178.67 (16)
C17—N4—C18—C1988.8 (2)N3—C17—C21—C2254.1 (2)
C18—N4—C16—C1522.2 (3)N4—C17—C21—C2258.3 (2)
C17—N4—C16—C15178.89 (17)N4—C18—C19—C20109.4 (2)
C18—N4—C17—C2183.1 (2)C17—C21—C22—C23143.9 (2)
C18—N4—C16—C11159.21 (16)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z+1/2; (iv) x, y+2, z+1/2; (v) x, y+2, z1/2; (vi) x+1/2, y, z+1/2; (vii) x+1/2, y1, z+1/2; (viii) x, y1, z; (ix) x, y, z1; (x) x, y+1, z; (xi) x, y, z+1; (xii) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N30.932.562.912 (4)103
 

Acknowledgements

ÜY and HK thank İnönü University Research Fund (BAPB-2006- 41 and directed project BAPB-2006-11) for financial support for this study.

References

First citationAkkurt, M., Yıldırım, S. Ö., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o3184–o3186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yıldırım, S. Ö., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o3512–o3514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaldwin, J. E., Branz, S. E. & Walker, J. A. (1977). J. Org. Chem. 42, 4142–4144.  CrossRef CAS Web of Science Google Scholar
First citationBaldwin, J. E. & Walker, J. A. (1974). J. Am. Chem. Soc. 23, 596–597.  CrossRef Web of Science Google Scholar
First citationBöhm, V. P. W. & Herrmann, W. A. (2000). Angew. Chem. Int. Ed. 39, 4036–4038.  CrossRef CAS Google Scholar
First citationBruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047–2054.  Google Scholar
First citationÇetinkaya, E. & Küçükbay, H. (1995). Turk. J. Chem. 19, 24–30.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKüçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434–2439.  CrossRef CAS Web of Science Google Scholar
First citationLappert, M. F. (1988). J. Organomet. Chem. 358, 185–214.  CrossRef CAS Web of Science Google Scholar
First citationMague, J. T. & Eduok, E. E. (2000). J. Chem. Crystallogr. 30, 311–313.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds