metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-2-Methyl-5-(methyl­sulfanylmeth­yl)aza­ferrocene]bis­­(penta­carbonyl­tungsten)

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, University of Łódź, 90-136 Łódź, Narutowicza 68, Poland, and bDepartment of Chemistry, Imperial College London, South Kensington, London SW 7AZ, England
*Correspondence e-mail: kondor15@wp.pl

(Received 30 November 2006; accepted 22 December 2006; online 10 January 2007)

The title compound, [W2Fe(C5H5)(C7H10NS)(CO)10], was prepared by reaction of 5-methyl­sulfanylmethyl-2-methyl aza­ferrocene with photochemically generated [W(CO)5]·THF. The X-ray structural analysis showed the azaferrocenyl unit to have adopted a nearly eclipsed geometry. The geometries at the two tungsten centers are distorted octahedral.

Comment

Unsubstituted aza­ferrocene behaves as a 2-electron donor ligand towards metal centres and its coordination chemistry has been the subject of numerous studies. The first complexes (with Pd and Pt) were synthesized by Pyshnograeva et al. (1984[Pyshnograeva, N. I., Setkina, V. N. & Kursanov, D. N. (1984). Izv. Akad. Nauk. SSSR Ser. Khim. pp. 2778-2780.]) but were not then structurally characterized. However, X-ray crystallographic study of trans-bis­(aza­ferrocene)­dichloro­palladium(II) has been reported recently (Jerzykiewicz et al., 2006[Jerzykiewicz, L. B., Kowalski, K. & Zakrzewski, J. (2006). Acta Cryst. E62, m1832-m1834.]). Aza­ferrocene has also been described as a monodendate axial ligand able to coordinate to metal centres in macrocyclic systems such as cobaltoximes and metalloporphyrins (Zakrzewski & Giannotti, 1994[Zakrzewski, J. & Giannotti, C. (1994). Trends Organomet. Chem. C49, 84-85.], 1995[Zakrzewski, J. & Giannotti, C. (1995). Coord. Chem. Rev. 140, 167-187.]). Best et al. (1991[Best, S. P., Clark, R. J. H., Deeming, A. J., McQueen, R. C. S., Powell, N. I., Acuna, C., Arce, A. J. & De Sanctis, Y. (1991). J. Chem. Soc. Dalton Trans. pp. 1111-1115.]) have synthesized and characterized unique examples of cyclo­metallated aza­ferrocene complexes. Structural and Mössbauer spectroscopic studies of M(CO)5 (M = Cr, Mo, W) aza­ferrocene complexes indicate that aza­ferrocene acts as a moderate σ-donating and rather weak π-accepting ligand (Silver et al., 1997[Silver, J., Zakrzewski, J., Tosik, A. & Bukowska-Strzyzewska, M. (1997). J. Organomet. Chem. 540, 169-174.]). The W(CO)5 group has recently been reported to enable Friedel–Crafts acyl­ation reactions of aza­ferrocenes (Kowalski et al., 2005b[Kowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005b). J. Organomet. Chem. 690, 1474-1477.]).

[Scheme 1]
[Scheme 2]

In contrast to the well known coordination chemistry of unsubstituted aza­ferrocene ligands, the coordination behaviour of its derivatives is still an underdeveloped area. However, chelate complexes of bis­azaferrocene with Ni and Pd (Salo & Guan, 2003[Salo, E. V. & Guan, Z. (2003). Organometallics, 22, 5033-5046.]) and aza­ferrocenylimines with Ni (Watanabe, 2005[Watanabe, M. (2005). Macromol. Rapid Commun. 26, 34-39.]) have recently been described and proven to be catalysts in olefin polymerization.

In the course of our studies on the coordination behaviour of aza­ferrocene derivatives possessing a second donor atom (P, S or Se) in the side chain we examined the reaction of ligand (1) with photochemically generated [W(CO)5]THF (see reaction scheme). Rather than the expected product (1)-W(CO)4, we isolated the rather unstable title complex, (I)[link] (Fig. 1[link]). The X-ray structural analysis of (I) showed the azaferrocenyl unit to have adopted an eclipsed geometry, the two five-membered rings being staggered by only ca 60° (and inclinated by ca 40°). The N-bound W atom W2 is only slightly (ca 0.06 Å) out of the pyrrole plane. The four carbonyl groups on W2 that are cis to N1 adopt a staggered conformation with respect to the C4N ring. There are no intermolecular interactions of note.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing displacement ellipsoids at the 50% probability level. H atoms have been omitted.

Experimental

Ligand (1) was synthesized by the reaction of lithiated 2,5-dimethyl­azaferrocene with dimethyl disulfide according to a literature procedure (Kowalski & Zakrzewski, 2004[Kowalski, K. & Zakrzewski, J. (2004). J. Organomet. Chem. 689, 1046-1049.]; Kowalski et al., 2005a[Kowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005a). J. Organomet. Chem. 690, 764-772.]). W(CO)6 (200 mg, 0.56 mmol) was then dissolved in THF (50 ml) and was photolysed with a 400 W high-pressure mercury lamp for 30 min. Ligand (1) (130 mg, 0.50 mmol) was added to the photolyte and the resulting solution was stirred at 323 K for 3 h. Removal of solvent gave a red–brown oil which was subjected to column chromatography (eluent: chloro­form/hexane (50:2)). Evaporation of the solvent then afforded (I)[link] as an orange solid in 38% yield (172 mg). Crystals of (I)[link] suitable for X-ray analysis were obtained by slow diffusion of hexane into a concentrated solution of the complex in dichloro­methane.

Crystal data
  • [W2Fe(C5H5)(C7H10NS)(CO)10]

  • Mr = 908.96

  • Monoclinic, P 21 /c

  • a = 19.3188 (2) Å

  • b = 9.5893 (1) Å

  • c = 14.2096 (2) Å

  • β = 99.795 (1)°

  • V = 2594.01 (5) Å3

  • Z = 4

  • Dx = 2.327 Mg m−3

  • Mo Kα radiation

  • μ = 9.53 mm−1

  • T = 173 (2) K

  • Block, orange

  • 0.16 × 0.13 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • ω scans

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.275, Tmax = 0.470

  • 26034 measured reflections

  • 8556 independent reflections

  • 7621 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 31.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.08

  • 8556 reflections

  • 335 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0357P)2 + 2.3697P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 2.98 e Å−3

  • Δρmin = −1.32 e Å−3

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–0.98 Å. For methyl H atoms, Uiso(H) = 1.5Ueq(C); for all other H atoms, Uiso(H) = 1.2Ueq(C). The highest peak and deepest hole in the residual electron density are located 1.06 Å and 0.43 Å, respectively, from W2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

[µ-2-Methyl-5-(methylsulfanylmethyl)azaferrocene]bis(pentacarbonyltungsten) top
Crystal data top
[W2Fe(C5H5)(C7H10NS)(CO)10]F(000) = 1696
Mr = 908.96Dx = 2.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20170 reflections
a = 19.3188 (2) Åθ = 3.8–32.5°
b = 9.5893 (1) ŵ = 9.53 mm1
c = 14.2096 (2) ÅT = 173 K
β = 99.795 (1)°Block, orange
V = 2594.01 (5) Å30.16 × 0.13 × 0.09 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
8556 independent reflections
Radiation source: Enhance (Mo) X-ray Source7621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 31.5°, θmin = 3.9°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2006), based on Clark & Reid (1995)]
h = 2828
Tmin = 0.275, Tmax = 0.470k = 148
26034 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.3697P]
where P = (Fo2 + 2Fc2)/3
8556 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 2.98 e Å3
0 restraintsΔρmin = 1.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.047570 (6)0.286540 (12)0.159791 (8)0.01928 (3)
W20.362692 (6)0.178735 (13)0.174718 (8)0.02270 (4)
Fe0.28944 (2)0.17956 (4)0.07026 (3)0.02104 (8)
N10.30528 (13)0.0325 (3)0.17661 (16)0.0203 (4)
C20.23284 (15)0.0603 (3)0.1455 (2)0.0210 (5)
C30.21824 (18)0.2029 (3)0.1613 (2)0.0271 (6)
H3A0.17380.24770.14760.033*
C40.28288 (18)0.2649 (3)0.2014 (2)0.0278 (6)
H4A0.28980.35980.21970.033*
C50.33546 (17)0.1612 (3)0.2096 (2)0.0243 (6)
C60.3377 (2)0.1232 (4)0.0430 (2)0.0379 (8)
H6A0.36610.04310.04640.046*
C70.3612 (2)0.2566 (5)0.0074 (3)0.0432 (9)
H7A0.40840.28180.01680.052*
C80.3022 (3)0.3451 (4)0.0144 (3)0.0429 (9)
H8A0.30270.44010.00470.051*
C90.2426 (2)0.2679 (4)0.0544 (3)0.0383 (8)
H9A0.19570.30170.06740.046*
C100.2644 (2)0.1319 (4)0.0721 (2)0.0362 (8)
H10A0.23470.05820.09910.043*
C110.17911 (15)0.0488 (3)0.1152 (2)0.0220 (5)
H11A0.15280.02570.05110.026*
H11B0.20260.13980.11100.026*
S120.11767 (4)0.06207 (7)0.20027 (5)0.02046 (12)
C130.17877 (17)0.0806 (4)0.3105 (2)0.0296 (6)
H13A0.20500.00650.32460.044*
H13B0.15290.10160.36250.044*
H13C0.21150.15680.30440.044*
C140.4108 (2)0.1803 (4)0.2541 (3)0.0350 (7)
H14A0.44070.12710.21800.053*
H14B0.42300.27940.25330.053*
H14C0.41790.14690.32030.053*
C150.00474 (17)0.4610 (3)0.1238 (2)0.0265 (6)
O150.03425 (15)0.5626 (3)0.10160 (18)0.0382 (6)
C160.00134 (18)0.1998 (3)0.0333 (2)0.0288 (6)
O160.02842 (18)0.1549 (3)0.0362 (2)0.0505 (8)
C170.03686 (18)0.2191 (3)0.2146 (2)0.0279 (6)
O170.08778 (15)0.1891 (3)0.2417 (2)0.0432 (7)
C180.08804 (18)0.3645 (3)0.2915 (2)0.0277 (6)
O180.10938 (17)0.4061 (3)0.36625 (19)0.0474 (7)
C190.12436 (17)0.3780 (4)0.0984 (2)0.0284 (6)
O190.16367 (15)0.4377 (3)0.0621 (2)0.0465 (7)
C200.41061 (18)0.3591 (4)0.1683 (3)0.0346 (7)
O200.43570 (16)0.4673 (3)0.1640 (3)0.0562 (8)
C210.31425 (18)0.2141 (4)0.0383 (2)0.0295 (6)
O210.28939 (18)0.2422 (4)0.0374 (2)0.0510 (7)
C220.29270 (18)0.3015 (3)0.2261 (2)0.0266 (6)
O220.25929 (15)0.3848 (3)0.25499 (19)0.0378 (6)
C230.4122 (2)0.1569 (4)0.3142 (3)0.0363 (8)
O230.4400 (2)0.1560 (4)0.3910 (2)0.0642 (10)
C240.44666 (19)0.0917 (4)0.1255 (3)0.0344 (7)
O240.49610 (16)0.0557 (4)0.0985 (2)0.0554 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01935 (6)0.02064 (6)0.01746 (5)0.00163 (4)0.00199 (4)0.00023 (4)
W20.02053 (6)0.02430 (6)0.02232 (6)0.00243 (4)0.00097 (4)0.00156 (4)
Fe0.0229 (2)0.02063 (19)0.02036 (18)0.00142 (15)0.00583 (15)0.00161 (14)
N10.0214 (11)0.0214 (11)0.0180 (10)0.0016 (9)0.0028 (8)0.0016 (8)
C20.0212 (12)0.0225 (12)0.0203 (12)0.0001 (10)0.0064 (10)0.0009 (10)
C30.0286 (15)0.0242 (14)0.0304 (15)0.0041 (11)0.0108 (12)0.0004 (11)
C40.0354 (17)0.0237 (14)0.0260 (14)0.0035 (12)0.0104 (12)0.0070 (11)
C50.0278 (14)0.0257 (14)0.0200 (12)0.0056 (11)0.0059 (11)0.0039 (10)
C60.047 (2)0.045 (2)0.0256 (15)0.0054 (17)0.0195 (15)0.0056 (14)
C70.040 (2)0.058 (2)0.0340 (18)0.0152 (19)0.0127 (15)0.0101 (18)
C80.064 (3)0.0301 (17)0.0366 (19)0.0085 (17)0.0138 (18)0.0086 (15)
C90.043 (2)0.043 (2)0.0290 (16)0.0064 (16)0.0041 (14)0.0121 (14)
C100.046 (2)0.042 (2)0.0198 (14)0.0063 (16)0.0048 (13)0.0015 (13)
C110.0217 (12)0.0264 (13)0.0183 (11)0.0007 (10)0.0044 (10)0.0007 (10)
S120.0188 (3)0.0210 (3)0.0219 (3)0.0008 (2)0.0046 (2)0.0007 (2)
C130.0293 (15)0.0379 (17)0.0210 (13)0.0049 (13)0.0028 (11)0.0037 (12)
C140.0313 (17)0.0352 (18)0.0364 (18)0.0105 (14)0.0003 (14)0.0052 (14)
C150.0293 (15)0.0289 (15)0.0209 (13)0.0055 (12)0.0033 (11)0.0020 (11)
O150.0465 (15)0.0350 (13)0.0328 (12)0.0164 (11)0.0062 (11)0.0057 (10)
C160.0297 (16)0.0283 (15)0.0268 (14)0.0011 (12)0.0002 (12)0.0036 (12)
O160.0589 (19)0.0516 (18)0.0350 (14)0.0099 (15)0.0093 (13)0.0092 (13)
C170.0282 (15)0.0245 (14)0.0320 (15)0.0037 (11)0.0076 (12)0.0017 (11)
O170.0350 (14)0.0375 (14)0.0627 (19)0.0015 (11)0.0240 (14)0.0013 (13)
C180.0331 (16)0.0242 (14)0.0252 (14)0.0021 (12)0.0031 (12)0.0004 (11)
O180.0631 (19)0.0499 (17)0.0252 (12)0.0014 (14)0.0037 (12)0.0097 (11)
C190.0277 (15)0.0314 (16)0.0247 (13)0.0021 (12)0.0006 (11)0.0032 (12)
O190.0384 (15)0.0594 (18)0.0425 (15)0.0119 (13)0.0092 (12)0.0184 (13)
C200.0254 (15)0.0319 (17)0.0445 (19)0.0039 (13)0.0002 (13)0.0014 (14)
O200.0401 (16)0.0370 (15)0.088 (3)0.0121 (13)0.0002 (15)0.0030 (16)
C210.0294 (16)0.0308 (16)0.0282 (15)0.0030 (12)0.0043 (12)0.0002 (12)
O210.0574 (19)0.0617 (19)0.0306 (14)0.0014 (16)0.0016 (13)0.0111 (14)
C220.0289 (15)0.0248 (14)0.0246 (14)0.0046 (12)0.0002 (11)0.0005 (11)
O220.0434 (15)0.0311 (12)0.0395 (14)0.0040 (11)0.0085 (11)0.0050 (11)
C230.0355 (18)0.0416 (19)0.0296 (16)0.0091 (15)0.0006 (13)0.0068 (14)
O230.062 (2)0.089 (3)0.0339 (15)0.0233 (19)0.0127 (14)0.0136 (16)
C240.0291 (16)0.0421 (19)0.0323 (16)0.0058 (14)0.0062 (13)0.0062 (14)
O240.0332 (15)0.075 (2)0.063 (2)0.0020 (15)0.0202 (14)0.0206 (17)
Geometric parameters (Å, º) top
W1—C151.977 (3)C6—C101.408 (6)
W1—C172.030 (3)C6—C71.421 (6)
W1—C192.043 (3)C6—H6A0.950
W1—C162.043 (3)C7—C81.410 (6)
W1—C182.044 (3)C7—H7A0.950
W1—S122.5560 (7)C8—C91.405 (6)
W2—C201.971 (4)C8—H8A0.950
W2—C222.021 (3)C9—C101.406 (6)
W2—C212.033 (3)C9—H9A0.950
W2—C242.050 (4)C10—H10A0.950
W2—C232.060 (4)C11—S121.837 (3)
W2—N12.312 (2)C11—H11A0.990
Fe—C22.011 (3)C11—H11B0.990
Fe—C82.032 (4)S12—C131.803 (3)
Fe—C92.032 (4)C13—H13A0.980
Fe—C52.036 (3)C13—H13B0.980
Fe—C102.049 (3)C13—H13C0.980
Fe—C72.050 (4)C14—H14A0.980
Fe—N12.052 (2)C14—H14B0.980
Fe—C32.054 (3)C14—H14C0.980
Fe—C42.059 (3)C15—O151.145 (4)
Fe—C62.064 (3)C16—O161.139 (4)
N1—C51.411 (4)C17—O171.152 (4)
N1—C21.419 (4)C18—O181.143 (4)
C2—C31.422 (4)C19—O191.142 (4)
C2—C111.484 (4)C20—O201.152 (4)
C3—C41.413 (5)C21—O211.134 (4)
C3—H3A0.950C22—O221.146 (4)
C4—C51.412 (5)C23—O231.132 (5)
C4—H4A0.950C24—O241.141 (4)
C5—C141.496 (5)
C15—W1—C1787.73 (13)C3—C2—C11125.1 (3)
C15—W1—C1984.40 (13)N1—C2—Fe71.09 (15)
C17—W1—C19172.10 (13)C3—C2—Fe71.17 (17)
C15—W1—C1689.36 (13)C11—C2—Fe131.6 (2)
C17—W1—C1687.06 (14)C4—C3—C2106.4 (3)
C19—W1—C1692.24 (13)C4—C3—Fe70.09 (18)
C15—W1—C1891.54 (13)C2—C3—Fe67.90 (17)
C17—W1—C1888.40 (14)C4—C3—H3A126.8
C19—W1—C1892.41 (13)C2—C3—H3A126.8
C16—W1—C18175.33 (13)Fe—C3—H3A126.8
C15—W1—S12177.61 (9)C5—C4—C3108.1 (3)
C17—W1—S1294.29 (9)C5—C4—Fe68.94 (17)
C19—W1—S1293.57 (9)C3—C4—Fe69.73 (18)
C16—W1—S1289.48 (10)C5—C4—H4A125.9
C18—W1—S1289.79 (9)C3—C4—H4A125.9
C20—W2—C2281.59 (14)Fe—C4—H4A127.0
C20—W2—C2187.34 (14)N1—C5—C4109.7 (3)
C22—W2—C2191.13 (13)N1—C5—C14124.4 (3)
C20—W2—C2486.36 (15)C4—C5—C14125.7 (3)
C22—W2—C24167.79 (14)N1—C5—Fe70.42 (15)
C21—W2—C2490.28 (14)C4—C5—Fe70.72 (18)
C20—W2—C2389.37 (16)C14—C5—Fe129.3 (2)
C22—W2—C2386.63 (14)C10—C6—C7107.1 (4)
C21—W2—C23176.26 (14)C10—C6—Fe69.42 (19)
C24—W2—C2391.29 (15)C7—C6—Fe69.3 (2)
C20—W2—N1178.05 (13)C10—C6—H6A126.4
C22—W2—N198.88 (11)C7—C6—H6A126.4
C21—W2—N190.75 (11)Fe—C6—H6A126.4
C24—W2—N193.22 (12)C8—C7—C6108.2 (4)
C23—W2—N192.55 (13)C8—C7—Fe69.1 (2)
C2—Fe—C8152.97 (16)C6—C7—Fe70.3 (2)
C2—Fe—C9119.93 (14)C8—C7—H7A125.9
C8—Fe—C940.46 (17)C6—C7—H7A125.9
C2—Fe—C567.71 (12)Fe—C7—H7A126.3
C8—Fe—C5124.51 (15)C9—C8—C7107.9 (4)
C9—Fe—C5160.08 (15)C9—C8—Fe69.8 (2)
C2—Fe—C10109.85 (14)C7—C8—Fe70.5 (2)
C8—Fe—C1067.79 (16)C9—C8—H8A126.0
C9—Fe—C1040.29 (16)C7—C8—H8A126.0
C5—Fe—C10158.64 (15)Fe—C8—H8A125.2
C2—Fe—C7165.77 (16)C8—C9—C10108.1 (4)
C8—Fe—C740.42 (18)C8—C9—Fe69.7 (2)
C9—Fe—C767.77 (17)C10—C9—Fe70.5 (2)
C5—Fe—C7109.37 (15)C8—C9—H9A125.9
C10—Fe—C767.43 (16)C10—C9—H9A125.9
C2—Fe—N140.88 (10)Fe—C9—H9A125.4
C8—Fe—N1162.78 (15)C9—C10—C6108.7 (4)
C9—Fe—N1156.53 (14)C9—C10—Fe69.2 (2)
C5—Fe—N140.38 (11)C6—C10—Fe70.6 (2)
C10—Fe—N1123.66 (13)C9—C10—H10A125.7
C7—Fe—N1127.91 (15)C6—C10—H10A125.7
C2—Fe—C340.93 (12)Fe—C10—H10A126.1
C8—Fe—C3116.70 (16)C2—C11—S12110.89 (19)
C9—Fe—C3104.90 (15)C2—C11—H11A109.5
C5—Fe—C368.00 (13)S12—C11—H11A109.5
C10—Fe—C3125.10 (15)C2—C11—H11B109.5
C7—Fe—C3152.36 (17)S12—C11—H11B109.5
N1—Fe—C369.09 (11)H11A—C11—H11B108.1
C2—Fe—C467.80 (12)C13—S12—C11100.25 (14)
C8—Fe—C4104.93 (15)C13—S12—W1110.86 (12)
C9—Fe—C4122.47 (15)C11—S12—W1106.69 (10)
C5—Fe—C440.34 (13)S12—C13—H13A109.5
C10—Fe—C4160.29 (15)S12—C13—H13B109.5
C7—Fe—C4119.71 (16)H13A—C13—H13B109.5
N1—Fe—C468.34 (12)S12—C13—H13C109.5
C3—Fe—C440.17 (13)H13A—C13—H13C109.5
C2—Fe—C6128.59 (14)H13B—C13—H13C109.5
C8—Fe—C668.09 (17)C5—C14—H14A109.5
C9—Fe—C667.83 (16)C5—C14—H14B109.5
C5—Fe—C6123.72 (15)H14A—C14—H14B109.5
C10—Fe—C640.03 (16)C5—C14—H14C109.5
C7—Fe—C640.40 (17)H14A—C14—H14C109.5
N1—Fe—C6111.32 (13)H14B—C14—H14C109.5
C3—Fe—C6163.52 (16)O15—C15—W1178.7 (3)
C4—Fe—C6156.23 (15)O16—C16—W1175.6 (3)
C5—N1—C2105.6 (2)O17—C17—W1174.6 (3)
C5—N1—Fe69.21 (16)O18—C18—W1178.2 (3)
C2—N1—Fe68.02 (15)O19—C19—W1174.5 (3)
C5—N1—W2126.8 (2)O20—C20—W2176.9 (3)
C2—N1—W2127.62 (18)O21—C21—W2175.4 (3)
Fe—N1—W2127.27 (11)O22—C22—W2171.0 (3)
N1—C2—C3110.0 (3)O23—C23—W2174.5 (4)
N1—C2—C11124.2 (3)O24—C24—W2173.5 (3)
C2—Fe—N1—C5117.6 (2)C3—Fe—C5—N183.16 (18)
C8—Fe—N1—C532.8 (5)C4—Fe—C5—N1120.3 (2)
C9—Fe—N1—C5159.3 (3)C6—Fe—C5—N183.7 (2)
C10—Fe—N1—C5160.8 (2)C2—Fe—C5—C481.48 (19)
C7—Fe—N1—C574.5 (2)C8—Fe—C5—C470.9 (3)
C3—Fe—N1—C580.23 (19)C9—Fe—C5—C435.4 (5)
C4—Fe—N1—C536.98 (18)C10—Fe—C5—C4169.2 (4)
C6—Fe—N1—C5117.5 (2)C7—Fe—C5—C4113.4 (2)
C8—Fe—N1—C2150.5 (5)N1—Fe—C5—C4120.3 (2)
C9—Fe—N1—C241.7 (4)C3—Fe—C5—C437.13 (18)
C5—Fe—N1—C2117.6 (2)C6—Fe—C5—C4156.0 (2)
C10—Fe—N1—C281.6 (2)C2—Fe—C5—C14157.7 (3)
C7—Fe—N1—C2167.8 (2)C8—Fe—C5—C1449.8 (4)
C3—Fe—N1—C237.41 (17)C9—Fe—C5—C1485.4 (5)
C4—Fe—N1—C280.66 (18)C10—Fe—C5—C1470.1 (5)
C6—Fe—N1—C2124.91 (19)C7—Fe—C5—C147.3 (4)
C2—Fe—N1—W2121.3 (2)N1—Fe—C5—C14118.9 (4)
C8—Fe—N1—W288.2 (5)C3—Fe—C5—C14157.9 (3)
C9—Fe—N1—W279.6 (4)C4—Fe—C5—C14120.8 (4)
C5—Fe—N1—W2121.0 (2)C6—Fe—C5—C1435.3 (4)
C10—Fe—N1—W239.7 (2)C2—Fe—C6—C1074.1 (3)
C7—Fe—N1—W246.5 (2)C8—Fe—C6—C1081.1 (3)
C3—Fe—N1—W2158.75 (18)C9—Fe—C6—C1037.3 (2)
C4—Fe—N1—W2158.00 (18)C5—Fe—C6—C10161.1 (2)
C6—Fe—N1—W23.6 (2)C7—Fe—C6—C10118.6 (3)
C22—W2—N1—C5135.2 (2)N1—Fe—C6—C10117.4 (2)
C21—W2—N1—C5133.6 (2)C3—Fe—C6—C1029.2 (6)
C24—W2—N1—C543.3 (2)C4—Fe—C6—C10158.2 (3)
C23—W2—N1—C548.2 (2)C2—Fe—C6—C7167.4 (2)
C22—W2—N1—C244.6 (2)C8—Fe—C6—C737.5 (3)
C21—W2—N1—C246.7 (2)C9—Fe—C6—C781.3 (3)
C24—W2—N1—C2137.0 (2)C5—Fe—C6—C780.3 (3)
C23—W2—N1—C2131.6 (2)C10—Fe—C6—C7118.6 (3)
C22—W2—N1—Fe134.18 (16)N1—Fe—C6—C7124.0 (2)
C21—W2—N1—Fe42.92 (16)C3—Fe—C6—C7147.8 (5)
C24—W2—N1—Fe47.40 (17)C4—Fe—C6—C739.6 (5)
C23—W2—N1—Fe138.84 (17)C10—C6—C7—C80.5 (4)
C5—N1—C2—C31.5 (3)Fe—C6—C7—C858.9 (3)
Fe—N1—C2—C360.8 (2)C10—C6—C7—Fe59.3 (2)
W2—N1—C2—C3178.33 (19)C2—Fe—C7—C8163.5 (5)
C5—N1—C2—C11172.7 (3)C9—Fe—C7—C838.0 (2)
Fe—N1—C2—C11128.0 (3)C5—Fe—C7—C8120.9 (2)
W2—N1—C2—C117.1 (4)C10—Fe—C7—C881.8 (3)
C5—N1—C2—Fe59.31 (18)N1—Fe—C7—C8162.3 (2)
W2—N1—C2—Fe120.89 (18)C3—Fe—C7—C841.5 (4)
C8—Fe—C2—N1161.3 (3)C4—Fe—C7—C877.7 (3)
C9—Fe—C2—N1162.20 (18)C6—Fe—C7—C8119.5 (4)
C5—Fe—C2—N138.33 (15)C2—Fe—C7—C644.1 (7)
C10—Fe—C2—N1118.91 (18)C8—Fe—C7—C6119.5 (4)
C7—Fe—C2—N142.6 (6)C9—Fe—C7—C681.4 (3)
C3—Fe—C2—N1120.0 (2)C5—Fe—C7—C6119.7 (2)
C4—Fe—C2—N182.08 (18)C10—Fe—C7—C637.7 (2)
C6—Fe—C2—N177.8 (2)N1—Fe—C7—C678.2 (3)
C8—Fe—C2—C341.3 (4)C3—Fe—C7—C6161.0 (3)
C9—Fe—C2—C377.8 (2)C4—Fe—C7—C6162.8 (2)
C5—Fe—C2—C381.6 (2)C6—C7—C8—C90.4 (4)
C10—Fe—C2—C3121.1 (2)Fe—C7—C8—C960.1 (3)
C7—Fe—C2—C3162.5 (6)C6—C7—C8—Fe59.7 (2)
N1—Fe—C2—C3120.0 (2)C2—Fe—C8—C952.7 (4)
C4—Fe—C2—C337.9 (2)C5—Fe—C8—C9162.2 (2)
C6—Fe—C2—C3162.2 (2)C10—Fe—C8—C937.7 (2)
C8—Fe—C2—C1179.4 (4)C7—Fe—C8—C9118.5 (4)
C9—Fe—C2—C1142.9 (3)N1—Fe—C8—C9172.6 (4)
C5—Fe—C2—C11157.7 (3)C3—Fe—C8—C981.6 (3)
C10—Fe—C2—C110.4 (3)C4—Fe—C8—C9122.9 (2)
C7—Fe—C2—C1176.8 (7)C6—Fe—C8—C981.1 (3)
N1—Fe—C2—C11119.3 (3)C2—Fe—C8—C7171.2 (3)
C3—Fe—C2—C11120.7 (4)C9—Fe—C8—C7118.5 (4)
C4—Fe—C2—C11158.6 (3)C5—Fe—C8—C779.3 (3)
C6—Fe—C2—C1141.5 (3)C10—Fe—C8—C780.8 (3)
N1—C2—C3—C40.9 (3)N1—Fe—C8—C754.0 (6)
C11—C2—C3—C4172.1 (3)C3—Fe—C8—C7159.9 (2)
Fe—C2—C3—C459.8 (2)C4—Fe—C8—C7118.6 (3)
N1—C2—C3—Fe60.74 (19)C6—Fe—C8—C737.5 (3)
C11—C2—C3—Fe128.1 (3)C7—C8—C9—C100.2 (4)
C2—Fe—C3—C4118.2 (3)Fe—C8—C9—C1060.3 (2)
C8—Fe—C3—C481.5 (2)C7—C8—C9—Fe60.5 (3)
C9—Fe—C3—C4123.1 (2)C2—Fe—C9—C8155.4 (2)
C5—Fe—C3—C437.28 (19)C5—Fe—C9—C847.7 (5)
C10—Fe—C3—C4162.0 (2)C10—Fe—C9—C8118.8 (4)
C7—Fe—C3—C452.7 (4)C7—Fe—C9—C838.0 (3)
N1—Fe—C3—C480.8 (2)N1—Fe—C9—C8174.5 (3)
C6—Fe—C3—C4175.4 (5)C3—Fe—C9—C8113.9 (3)
C8—Fe—C3—C2160.4 (2)C4—Fe—C9—C874.0 (3)
C9—Fe—C3—C2118.8 (2)C6—Fe—C9—C881.8 (3)
C5—Fe—C3—C280.89 (19)C2—Fe—C9—C1085.8 (2)
C10—Fe—C3—C279.8 (2)C8—Fe—C9—C10118.8 (4)
C7—Fe—C3—C2170.9 (3)C5—Fe—C9—C10166.5 (4)
N1—Fe—C3—C237.37 (17)C7—Fe—C9—C1080.8 (3)
C4—Fe—C3—C2118.2 (3)N1—Fe—C9—C1055.6 (4)
C6—Fe—C3—C257.2 (6)C3—Fe—C9—C10127.3 (2)
C2—C3—C4—C50.0 (3)C4—Fe—C9—C10167.2 (2)
Fe—C3—C4—C558.4 (2)C6—Fe—C9—C1037.1 (2)
C2—C3—C4—Fe58.4 (2)C8—C9—C10—C60.1 (4)
C2—Fe—C4—C581.24 (19)Fe—C9—C10—C659.7 (2)
C8—Fe—C4—C5126.3 (2)C8—C9—C10—Fe59.8 (3)
C9—Fe—C4—C5166.5 (2)C7—C6—C10—C90.4 (4)
C10—Fe—C4—C5168.3 (4)Fe—C6—C10—C958.9 (2)
C7—Fe—C4—C585.3 (2)C7—C6—C10—Fe59.3 (2)
N1—Fe—C4—C537.01 (17)C2—Fe—C10—C9113.2 (2)
C3—Fe—C4—C5119.8 (3)C8—Fe—C10—C937.9 (3)
C6—Fe—C4—C556.9 (4)C5—Fe—C10—C9167.4 (3)
C2—Fe—C4—C338.60 (18)C7—Fe—C10—C981.8 (3)
C8—Fe—C4—C3113.9 (2)N1—Fe—C10—C9156.7 (2)
C9—Fe—C4—C373.7 (2)C3—Fe—C10—C969.9 (3)
C5—Fe—C4—C3119.8 (3)C4—Fe—C10—C933.8 (5)
C10—Fe—C4—C348.4 (5)C6—Fe—C10—C9119.8 (3)
C7—Fe—C4—C3154.9 (2)C2—Fe—C10—C6127.0 (2)
N1—Fe—C4—C382.83 (19)C8—Fe—C10—C681.9 (3)
C6—Fe—C4—C3176.8 (3)C9—Fe—C10—C6119.8 (3)
C2—N1—C5—C41.5 (3)C5—Fe—C10—C647.6 (5)
Fe—N1—C5—C460.0 (2)C7—Fe—C10—C638.0 (2)
W2—N1—C5—C4178.35 (19)N1—Fe—C10—C683.5 (2)
C2—N1—C5—C14176.6 (3)C3—Fe—C10—C6170.2 (2)
Fe—N1—C5—C14124.8 (3)C4—Fe—C10—C6153.6 (4)
W2—N1—C5—C143.2 (4)N1—C2—C11—S12112.4 (3)
C2—N1—C5—Fe58.54 (17)C3—C2—C11—S1257.5 (3)
W2—N1—C5—Fe121.66 (18)Fe—C2—C11—S12153.07 (18)
C3—C4—C5—N10.9 (3)C2—C11—S12—C1351.9 (2)
Fe—C4—C5—N159.8 (2)C2—C11—S12—W1167.45 (18)
C3—C4—C5—C14176.0 (3)C17—W1—S12—C1397.47 (15)
Fe—C4—C5—C14125.1 (3)C19—W1—S12—C1383.31 (15)
C3—C4—C5—Fe58.9 (2)C16—W1—S12—C13175.52 (15)
C2—Fe—C5—N138.80 (16)C18—W1—S12—C139.09 (15)
C8—Fe—C5—N1168.8 (2)C17—W1—S12—C11154.29 (14)
C9—Fe—C5—N1155.6 (4)C19—W1—S12—C1124.94 (14)
C10—Fe—C5—N148.9 (4)C16—W1—S12—C1167.28 (14)
C7—Fe—C5—N1126.3 (2)C18—W1—S12—C11117.34 (14)
 

Acknowledgements

We acknowledge financial support from Imperial College London and the University of Łódź.

References

First citationBest, S. P., Clark, R. J. H., Deeming, A. J., McQueen, R. C. S., Powell, N. I., Acuna, C., Arce, A. J. & De Sanctis, Y. (1991). J. Chem. Soc. Dalton Trans. pp. 1111–1115.  CrossRef Google Scholar
First citationBruker (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJerzykiewicz, L. B., Kowalski, K. & Zakrzewski, J. (2006). Acta Cryst. E62, m1832–m1834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKowalski, K. & Zakrzewski, J. (2004). J. Organomet. Chem. 689, 1046–1049.  Web of Science CrossRef CAS Google Scholar
First citationKowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005a). J. Organomet. Chem. 690, 764–772.  Web of Science CSD CrossRef CAS Google Scholar
First citationKowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005b). J. Organomet. Chem. 690, 1474–1477.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPyshnograeva, N. I., Setkina, V. N. & Kursanov, D. N. (1984). Izv. Akad. Nauk. SSSR Ser. Khim. pp. 2778–2780.  Google Scholar
First citationSalo, E. V. & Guan, Z. (2003). Organometallics, 22, 5033–5046.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSilver, J., Zakrzewski, J., Tosik, A. & Bukowska-Strzyzewska, M. (1997). J. Organomet. Chem. 540, 169–174.  CSD CrossRef CAS Web of Science Google Scholar
First citationWatanabe, M. (2005). Macromol. Rapid Commun. 26, 34–39.  Web of Science CrossRef CAS Google Scholar
First citationZakrzewski, J. & Giannotti, C. (1994). Trends Organomet. Chem. C49, 84–85.  Google Scholar
First citationZakrzewski, J. & Giannotti, C. (1995). Coord. Chem. Rev. 140, 167–187.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds