organic compounds
1-Ethyl-4-hydroxy-2,6-dimethylpyridinium bromide dihydrate
aSchool of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and bFaculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
*Correspondence e-mail: kal_44in@yahoo.co.in
The title compound, C9H14NO+Br−·2H2O, comprises 1-ethyl-2,6-dimethyl-4-hydroxypyridinium cations and bromide anions, with two solvent water molecules per formula unit. In the the anions, cations and water molecules are linked via intermolecular O—H⋯Br and O—H⋯O hydrogen bonds, forming layers parallel to the (100) plane.
Comment
2,6-Dimethyl-4-hydroxypyridinone and 4-hydroxypyridinium salts have attracted much attention in the field of non-linear optics (NLO), since the 4-hydroxypyridinium conjugated electronic system could be an interesting hyperpolarizable chromophore for NLO activity (Manivannan et al., 2004; Dhanuskodi et al., 2006). To achieve self-assembly of organic cations in the manner required to exhibit NLO activity (Tamuly et al., 2005), suitable anions must be identified and used effectively. Halide anions have been reported to improve the physicochemical stability of 1-ethyl-2,6-dimethyl-4-(1H)-pyridinones (Dhanuskodi et al., 2006). We report here the of 1-ethyl-2,6-dimethyl-4-hydroxypyridinium bromide dihydrate (EDMPBr·2H2O), (I).
The (Fig. 1) comprises 1-ethyl-2,6-dimethyl-4-hydroxypyridinium cations and bromide anions, with two solvent water molecules per formula unit. The C2—N1—C6 bond angle in the cation [120.71 (16)°] is comparable to that in 2,6-dimethylpyridine (Bond & Davies, 2001) and the 2,6-dimethylpyridine-urea complex (Lee & Wallwork, 1965). The organic cations lie in layers parallel to the (100) plane (Fig. 2). The bromide anions and water molecules lie between these layers, forming hydrogen-bonded sheets via O—H⋯O and O—H⋯Br interactions (Fig. 3 and Table 1). Two distinct ring motifs exist within these sheets, with graph-set descriptors R46(12) and R106(20) (Bernstein et al., 1995). O—H⋯O hydrogen bonds are formed between atom O1 of the hydroxyl group of the organic cation and one of the solvent water molecules (Fig. 2 and Table 1).
of (I)Experimental
The title compound was synthesized by dissolving 1-ethyl-2,6-dimethyl-4(1H)-pyridinone trihydrate (EDMP·3H2O, 1.51 g) with HBr (2.43 g) in distilled water (5 ml). The solution was stirred well at room temperature for 7 h and the solvent was allowed to evaporate at 323 K. The residual crystalline powder was redissolved in distilled water, and single crystals of (I) were obtained by slow evaporation at 303 K.
Crystal data
|
Refinement
|
H atoms, except those of the water molecules, were positioned geometrically with C—H = 0.93 (CH), 0.96 (CH3) or 0.97 Å (CH2), and with O—H = 0.80 Å. They were then refined as riding, with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C). H atoms of the water molecules were found in difference Fourier maps and refined initially with a restrained geometry. In the final cycles of they were made to ride on their parent O atoms, with Uiso(H) = 1.2Ueq(O).
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli 1995).
Supporting information
https://doi.org/10.1107/S1600536807000232/bi2126sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807000232/bi2126Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli 1995).C9H14NO+Br−·2H2O | F(000) = 552 |
Mr = 268.15 | Dx = 1.476 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2935 reflections |
a = 10.5747 (3) Å | θ = 1.0–27.5° |
b = 8.0382 (1) Å | µ = 3.39 mm−1 |
c = 15.0377 (4) Å | T = 120 K |
β = 109.298 (1)° | Block, colourless |
V = 1206.41 (5) Å3 | 0.54 × 0.48 × 0.12 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2768 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 2455 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.033 |
φ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −13→13 |
Tmin = 0.176, Tmax = 0.666 | k = −10→10 |
15899 measured reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0208P)2 + 0.702P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2768 reflections | Δρmax = 0.30 e Å−3 |
131 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0104 (6) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.53552 (11) | 0.11597 (15) | −0.12166 (8) | 0.0210 (3) | |
H1 | 0.6082 | 0.1578 | −0.1037 | 0.025* | |
N1 | 0.30377 (13) | 0.25353 (16) | 0.03692 (9) | 0.0151 (3) | |
C2 | 0.25160 (15) | 0.15705 (19) | −0.04183 (11) | 0.0164 (3) | |
C3 | 0.33045 (16) | 0.11197 (19) | −0.09427 (11) | 0.0167 (3) | |
H3 | 0.2949 | 0.0458 | −0.1474 | 0.020* | |
C4 | 0.46300 (16) | 0.16421 (19) | −0.06866 (11) | 0.0159 (3) | |
C5 | 0.51367 (15) | 0.26305 (19) | 0.01139 (11) | 0.0162 (3) | |
H5 | 0.6019 | 0.2999 | 0.0295 | 0.019* | |
C6 | 0.43404 (15) | 0.30649 (19) | 0.06379 (11) | 0.0162 (3) | |
C7 | 0.49030 (18) | 0.4105 (2) | 0.15046 (13) | 0.0242 (4) | |
H7A | 0.5830 | 0.4336 | 0.1602 | 0.036* | |
H7B | 0.4825 | 0.3515 | 0.2039 | 0.036* | |
H7C | 0.4415 | 0.5132 | 0.1428 | 0.036* | |
C8 | 0.21871 (17) | 0.2994 (2) | 0.09484 (12) | 0.0203 (3) | |
H8A | 0.1264 | 0.3101 | 0.0541 | 0.024* | |
H8B | 0.2474 | 0.4065 | 0.1243 | 0.024* | |
C9 | 0.22680 (19) | 0.1707 (2) | 0.17072 (13) | 0.0252 (4) | |
H9A | 0.2006 | 0.0639 | 0.1419 | 0.038* | |
H9B | 0.1678 | 0.2021 | 0.2046 | 0.038* | |
H9C | 0.3171 | 0.1648 | 0.2135 | 0.038* | |
C10 | 0.10880 (16) | 0.1013 (2) | −0.07030 (13) | 0.0241 (4) | |
H1A | 0.0942 | 0.0425 | −0.0190 | 0.036* | |
H1B | 0.0897 | 0.0292 | −0.1240 | 0.036* | |
H1C | 0.0509 | 0.1966 | −0.0861 | 0.036* | |
O1W | 0.22566 (12) | 0.76473 (15) | 0.07413 (9) | 0.0252 (3) | |
H11 | 0.2091 | 0.7218 | 0.1186 | 0.030* | |
H12 | 0.1964 | 0.7154 | 0.0286 | 0.030* | |
O2W | 0.15723 (11) | 0.63640 (15) | 0.21883 (8) | 0.0221 (3) | |
H21 | 0.1498 | 0.7078 | 0.2552 | 0.027* | |
H22 | 0.0903 | 0.5849 | 0.2026 | 0.027* | |
Br1 | 0.123005 (16) | 0.92168 (2) | 0.370123 (12) | 0.02309 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0193 (6) | 0.0291 (6) | 0.0176 (6) | −0.0035 (5) | 0.0102 (5) | −0.0053 (5) |
N1 | 0.0185 (6) | 0.0149 (6) | 0.0138 (7) | 0.0036 (5) | 0.0079 (5) | 0.0023 (5) |
C2 | 0.0168 (7) | 0.0171 (7) | 0.0136 (8) | 0.0022 (6) | 0.0029 (6) | 0.0045 (6) |
C3 | 0.0193 (8) | 0.0177 (7) | 0.0121 (8) | −0.0003 (6) | 0.0038 (6) | 0.0002 (6) |
C4 | 0.0189 (8) | 0.0164 (7) | 0.0137 (8) | 0.0025 (6) | 0.0072 (6) | 0.0024 (6) |
C5 | 0.0164 (7) | 0.0182 (8) | 0.0141 (8) | −0.0018 (6) | 0.0051 (6) | 0.0009 (6) |
C6 | 0.0191 (8) | 0.0141 (7) | 0.0149 (8) | 0.0008 (6) | 0.0048 (6) | 0.0021 (6) |
C7 | 0.0297 (9) | 0.0252 (9) | 0.0193 (9) | −0.0042 (7) | 0.0100 (7) | −0.0056 (7) |
C8 | 0.0238 (8) | 0.0200 (8) | 0.0225 (9) | 0.0047 (7) | 0.0148 (7) | 0.0013 (7) |
C9 | 0.0330 (10) | 0.0243 (9) | 0.0243 (10) | 0.0016 (7) | 0.0177 (8) | 0.0025 (7) |
C10 | 0.0166 (8) | 0.0306 (9) | 0.0245 (10) | −0.0001 (7) | 0.0060 (7) | 0.0021 (7) |
O1W | 0.0263 (6) | 0.0302 (6) | 0.0224 (7) | −0.0068 (5) | 0.0125 (5) | −0.0044 (5) |
O2W | 0.0223 (6) | 0.0229 (6) | 0.0212 (6) | −0.0018 (5) | 0.0071 (5) | −0.0026 (5) |
Br1 | 0.02279 (10) | 0.02429 (11) | 0.02064 (11) | 0.00401 (7) | 0.00508 (7) | −0.00067 (7) |
O1—C4 | 1.3332 (18) | C7—H7C | 0.960 |
O1—H1 | 0.800 | C8—C9 | 1.522 (2) |
N1—C6 | 1.369 (2) | C8—H8A | 0.970 |
N1—C2 | 1.370 (2) | C8—H8B | 0.970 |
N1—C8 | 1.4905 (19) | C9—H9A | 0.960 |
C2—C3 | 1.372 (2) | C9—H9B | 0.960 |
C2—C10 | 1.496 (2) | C9—H9C | 0.960 |
C3—C4 | 1.390 (2) | C10—H1A | 0.960 |
C3—H3 | 0.930 | C10—H1B | 0.960 |
C4—C5 | 1.393 (2) | C10—H1C | 0.960 |
C5—C6 | 1.375 (2) | O1W—H11 | 0.821 |
C5—H5 | 0.930 | O1W—H12 | 0.763 |
C6—C7 | 1.496 (2) | O2W—H21 | 0.815 |
C7—H7A | 0.960 | O2W—H22 | 0.786 |
C7—H7B | 0.960 | ||
C4—O1—H1 | 110.7 | H7A—C7—H7C | 109.5 |
C6—N1—C2 | 120.65 (13) | H7B—C7—H7C | 109.5 |
C6—N1—C8 | 119.56 (13) | N1—C8—C9 | 112.01 (13) |
C2—N1—C8 | 119.79 (13) | N1—C8—H8A | 109.2 |
N1—C2—C3 | 119.91 (14) | C9—C8—H8A | 109.2 |
N1—C2—C10 | 119.81 (14) | N1—C8—H8B | 109.2 |
C3—C2—C10 | 120.28 (15) | C9—C8—H8B | 109.2 |
C2—C3—C4 | 120.64 (15) | H8A—C8—H8B | 107.9 |
C2—C3—H3 | 119.7 | C8—C9—H9A | 109.5 |
C4—C3—H3 | 119.7 | C8—C9—H9B | 109.5 |
O1—C4—C3 | 118.23 (14) | H9A—C9—H9B | 109.5 |
O1—C4—C5 | 123.32 (14) | C8—C9—H9C | 109.5 |
C3—C4—C5 | 118.44 (14) | H9A—C9—H9C | 109.5 |
C6—C5—C4 | 120.43 (14) | H9B—C9—H9C | 109.5 |
C6—C5—H5 | 119.8 | C2—C10—H1A | 109.5 |
C4—C5—H5 | 119.8 | C2—C10—H1B | 109.5 |
N1—C6—C5 | 119.93 (14) | H1A—C10—H1B | 109.5 |
N1—C6—C7 | 120.17 (14) | C2—C10—H1C | 109.5 |
C5—C6—C7 | 119.90 (14) | H1A—C10—H1C | 109.5 |
C6—C7—H7A | 109.5 | H1B—C10—H1C | 109.5 |
C6—C7—H7B | 109.5 | H11—O1W—H12 | 112.4 |
H7A—C7—H7B | 109.5 | H21—O2W—H22 | 107.6 |
C6—C7—H7C | 109.5 | ||
C6—N1—C2—C3 | 0.3 (2) | C3—C4—C5—C6 | 0.4 (2) |
C8—N1—C2—C3 | −178.74 (14) | C2—N1—C6—C5 | 0.1 (2) |
C6—N1—C2—C10 | −179.64 (14) | C8—N1—C6—C5 | 179.21 (14) |
C8—N1—C2—C10 | 1.3 (2) | C2—N1—C6—C7 | −179.43 (14) |
N1—C2—C3—C4 | −0.4 (2) | C8—N1—C6—C7 | −0.4 (2) |
C10—C2—C3—C4 | 179.54 (15) | C4—C5—C6—N1 | −0.5 (2) |
C2—C3—C4—O1 | 179.55 (14) | C4—C5—C6—C7 | 179.06 (15) |
C2—C3—C4—C5 | 0.1 (2) | C6—N1—C8—C9 | −90.24 (18) |
O1—C4—C5—C6 | −179.05 (14) | C2—N1—C8—C9 | 88.85 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1Wi | 0.80 | 1.78 | 2.5720 (16) | 173 |
O1W—H11···O2W | 0.82 | 1.90 | 2.7135 (16) | 175 |
O1W—H12···Br1ii | 0.76 | 2.50 | 3.2610 (12) | 172 |
O2W—H21···Br1 | 0.81 | 2.52 | 3.3332 (12) | 178 |
O2W—H22···Br1iii | 0.79 | 2.52 | 3.3061 (12) | 173 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+3/2, z−1/2; (iii) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the EPSRC National Crystallography Service (University of Southampton, UK) for the X-ray data collection. TS thanks Professor V. Parthasarathi, School of Physics, Bharathidasan University, for fruitful discussions.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1039–o1040. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dhanuskodi, S., Manivannan, S. & Kirschbaum, K. (2006). Spectrochim. Acta Part A, 64, 504–511. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lee, J. D. & Wallwork, S. C. (1965). Acta Cryst. 19, 311–313. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Manivannan, S., Tiwari, S. K. & Dhanuskodi, S. (2004). Solid State Commun. 132, 123–127. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamuly, C., Sarma, R. S., Batsanov, A. S., Goeta, A. E. & Baruah, J. B. (2005). Acta Cryst. C61, o324–o327. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.