organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-4-hy­droxy-2,6-di­methyl­pyridinium bromide dihydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and bFaculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
*Correspondence e-mail: kal_44in@yahoo.co.in

(Received 8 December 2006; accepted 3 January 2007; online 12 January 2007)

The title compound, C9H14NO+Br·2H2O, comprises 1-ethyl-2,6-dimethyl-4-hydroxy­pyridinium cations and bromide anions, with two solvent water mol­ecules per formula unit. In the crystal structure, the anions, cations and water mol­ecules are linked via inter­molecular O—H⋯Br and O—H⋯O hydrogen bonds, forming layers parallel to the (100) plane.

Comment

2,6-Dimethyl-4-hydroxy­pyridinone and 4-hydroxy­pyridinium salts have attracted much attention in the field of non-linear optics (NLO), since the 4-hydroxy­pyridinium conjugated electronic system could be an inter­esting hyperpolarizable chromophore for NLO activity (Manivannan et al., 2004[Manivannan, S., Tiwari, S. K. & Dhanuskodi, S. (2004). Solid State Commun. 132, 123-127.]; Dhanuskodi et al., 2006[Dhanuskodi, S., Manivannan, S. & Kirschbaum, K. (2006). Spectrochim. Acta Part A, 64, 504-511.]). To achieve self-assembly of organic cations in the manner required to exhibit NLO activity (Tamuly et al., 2005[Tamuly, C., Sarma, R. S., Batsanov, A. S., Goeta, A. E. & Baruah, J. B. (2005). Acta Cryst. C61, o324-o327.]), suitable anions must be identified and used effectively. Halide anions have been reported to improve the physicochemical stability of 1-ethyl-2,6-dimethyl-4-(1H)-pyridinones (Dhanuskodi et al., 2006[Dhanuskodi, S., Manivannan, S. & Kirschbaum, K. (2006). Spectrochim. Acta Part A, 64, 504-511.]). We report here the crystal structure of 1-ethyl-2,6-dimethyl-4-hydroxy­pyridinium bromide dihydrate (EDMPBr·2H2O), (I)[link].

[Scheme 1]

The crystal structure of (I)[link] (Fig. 1[link]) comprises 1-ethyl-2,6-dimethyl-4-hydroxy­pyridinium cations and bromide anions, with two solvent water mol­ecules per formula unit. The C2—N1—C6 bond angle in the cation [120.71 (16)°] is comparable to that in 2,6-dimethyl­pyridine (Bond & Davies, 2001[Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1039-o1040.]) and the 2,6-dimethyl­pyridine-urea complex (Lee & Wallwork, 1965[Lee, J. D. & Wallwork, S. C. (1965). Acta Cryst. 19, 311-313.]). The organic cations lie in layers parallel to the (100) plane (Fig. 2[link]). The bromide anions and water mol­ecules lie between these layers, forming hydrogen-bonded sheets via O—H⋯O and O—H⋯Br inter­actions (Fig. 3[link] and Table 1[link]). Two distinct ring motifs exist within these sheets, with graph-set descriptors R46(12) and R106(20) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). O—H⋯O hydrogen bonds are formed between atom O1 of the hydroxyl group of the organic cation and one of the solvent water mol­ecules (Fig. 2[link] and Table 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary radius.
[Figure 2]
Figure 2
View of (I)[link] along b, showing layers of organic cations lying parallel to the (100) plane, with Br anions and water mol­ecules lying between them. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
A single Br/H2O sheet viewed along the a-axis direction, showing O—H⋯O and O—H⋯Br hydrogen bonds (dashed lines).

Experimental

The title compound was synthesized by dissolving 1-ethyl-2,6-di­meth­yl-4(1H)-pyridinone trihydrate (EDMP·3H2O, 1.51 g) with HBr (2.43 g) in distilled water (5 ml). The solution was stirred well at room temperature for 7 h and the solvent was allowed to evaporate at 323 K. The residual crystalline powder was redissolved in distilled water, and single crystals of (I)[link] were obtained by slow evaporation at 303 K.

Crystal data
  • C9H14NO+Br·2H2O

  • Mr = 268.15

  • Monoclinic, P 21 /c

  • a = 10.5747 (3) Å

  • b = 8.0382 (1) Å

  • c = 15.0377 (4) Å

  • β = 109.298 (1)°

  • V = 1206.41 (5) Å3

  • Z = 4

  • Dx = 1.476 Mg m−3

  • Mo Kα radiation

  • μ = 3.39 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.54 × 0.48 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.176, Tmax = 0.666

  • 15899 measured reflections

  • 2768 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.052

  • S = 1.04

  • 2768 reflections

  • 131 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0208P)2 + 0.702P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.52 e Å−3

  • Extinction correction: SHELXL

  • Extinction coefficient: 0.0104 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Wi 0.80 1.78 2.5720 (16) 173
O1W—H11⋯O2W 0.82 1.90 2.7135 (16) 175
O1W—H12⋯Br1ii 0.76 2.50 3.2610 (12) 172
O2W—H21⋯Br1 0.81 2.52 3.3332 (12) 178
O2W—H22⋯Br1iii 0.79 2.52 3.3061 (12) 173
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

H atoms, except those of the water mol­ecules, were positioned geometrically with C—H = 0.93 (CH), 0.96 (CH3) or 0.97 Å (CH2), and with O—H = 0.80 Å. They were then refined as riding, with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C). H atoms of the water mol­ecules were found in difference Fourier maps and refined initially with a restrained geometry. In the final cycles of refinement, they were made to ride on their parent O atoms, with Uiso(H) = 1.2Ueq(O).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli 1995).

(I) top
Crystal data top
C9H14NO+Br·2H2OF(000) = 552
Mr = 268.15Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2935 reflections
a = 10.5747 (3) Åθ = 1.0–27.5°
b = 8.0382 (1) ŵ = 3.39 mm1
c = 15.0377 (4) ÅT = 120 K
β = 109.298 (1)°Block, colourless
V = 1206.41 (5) Å30.54 × 0.48 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2768 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2455 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.033
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.176, Tmax = 0.666k = 1010
15899 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.702P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2768 reflectionsΔρmax = 0.30 e Å3
131 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53552 (11)0.11597 (15)0.12166 (8)0.0210 (3)
H10.60820.15780.10370.025*
N10.30377 (13)0.25353 (16)0.03692 (9)0.0151 (3)
C20.25160 (15)0.15705 (19)0.04183 (11)0.0164 (3)
C30.33045 (16)0.11197 (19)0.09427 (11)0.0167 (3)
H30.29490.04580.14740.020*
C40.46300 (16)0.16421 (19)0.06866 (11)0.0159 (3)
C50.51367 (15)0.26305 (19)0.01139 (11)0.0162 (3)
H50.60190.29990.02950.019*
C60.43404 (15)0.30649 (19)0.06379 (11)0.0162 (3)
C70.49030 (18)0.4105 (2)0.15046 (13)0.0242 (4)
H7A0.58300.43360.16020.036*
H7B0.48250.35150.20390.036*
H7C0.44150.51320.14280.036*
C80.21871 (17)0.2994 (2)0.09484 (12)0.0203 (3)
H8A0.12640.31010.05410.024*
H8B0.24740.40650.12430.024*
C90.22680 (19)0.1707 (2)0.17072 (13)0.0252 (4)
H9A0.20060.06390.14190.038*
H9B0.16780.20210.20460.038*
H9C0.31710.16480.21350.038*
C100.10880 (16)0.1013 (2)0.07030 (13)0.0241 (4)
H1A0.09420.04250.01900.036*
H1B0.08970.02920.12400.036*
H1C0.05090.19660.08610.036*
O1W0.22566 (12)0.76473 (15)0.07413 (9)0.0252 (3)
H110.20910.72180.11860.030*
H120.19640.71540.02860.030*
O2W0.15723 (11)0.63640 (15)0.21883 (8)0.0221 (3)
H210.14980.70780.25520.027*
H220.09030.58490.20260.027*
Br10.123005 (16)0.92168 (2)0.370123 (12)0.02309 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (6)0.0291 (6)0.0176 (6)0.0035 (5)0.0102 (5)0.0053 (5)
N10.0185 (6)0.0149 (6)0.0138 (7)0.0036 (5)0.0079 (5)0.0023 (5)
C20.0168 (7)0.0171 (7)0.0136 (8)0.0022 (6)0.0029 (6)0.0045 (6)
C30.0193 (8)0.0177 (7)0.0121 (8)0.0003 (6)0.0038 (6)0.0002 (6)
C40.0189 (8)0.0164 (7)0.0137 (8)0.0025 (6)0.0072 (6)0.0024 (6)
C50.0164 (7)0.0182 (8)0.0141 (8)0.0018 (6)0.0051 (6)0.0009 (6)
C60.0191 (8)0.0141 (7)0.0149 (8)0.0008 (6)0.0048 (6)0.0021 (6)
C70.0297 (9)0.0252 (9)0.0193 (9)0.0042 (7)0.0100 (7)0.0056 (7)
C80.0238 (8)0.0200 (8)0.0225 (9)0.0047 (7)0.0148 (7)0.0013 (7)
C90.0330 (10)0.0243 (9)0.0243 (10)0.0016 (7)0.0177 (8)0.0025 (7)
C100.0166 (8)0.0306 (9)0.0245 (10)0.0001 (7)0.0060 (7)0.0021 (7)
O1W0.0263 (6)0.0302 (6)0.0224 (7)0.0068 (5)0.0125 (5)0.0044 (5)
O2W0.0223 (6)0.0229 (6)0.0212 (6)0.0018 (5)0.0071 (5)0.0026 (5)
Br10.02279 (10)0.02429 (11)0.02064 (11)0.00401 (7)0.00508 (7)0.00067 (7)
Geometric parameters (Å, º) top
O1—C41.3332 (18)C7—H7C0.960
O1—H10.800C8—C91.522 (2)
N1—C61.369 (2)C8—H8A0.970
N1—C21.370 (2)C8—H8B0.970
N1—C81.4905 (19)C9—H9A0.960
C2—C31.372 (2)C9—H9B0.960
C2—C101.496 (2)C9—H9C0.960
C3—C41.390 (2)C10—H1A0.960
C3—H30.930C10—H1B0.960
C4—C51.393 (2)C10—H1C0.960
C5—C61.375 (2)O1W—H110.821
C5—H50.930O1W—H120.763
C6—C71.496 (2)O2W—H210.815
C7—H7A0.960O2W—H220.786
C7—H7B0.960
C4—O1—H1110.7H7A—C7—H7C109.5
C6—N1—C2120.65 (13)H7B—C7—H7C109.5
C6—N1—C8119.56 (13)N1—C8—C9112.01 (13)
C2—N1—C8119.79 (13)N1—C8—H8A109.2
N1—C2—C3119.91 (14)C9—C8—H8A109.2
N1—C2—C10119.81 (14)N1—C8—H8B109.2
C3—C2—C10120.28 (15)C9—C8—H8B109.2
C2—C3—C4120.64 (15)H8A—C8—H8B107.9
C2—C3—H3119.7C8—C9—H9A109.5
C4—C3—H3119.7C8—C9—H9B109.5
O1—C4—C3118.23 (14)H9A—C9—H9B109.5
O1—C4—C5123.32 (14)C8—C9—H9C109.5
C3—C4—C5118.44 (14)H9A—C9—H9C109.5
C6—C5—C4120.43 (14)H9B—C9—H9C109.5
C6—C5—H5119.8C2—C10—H1A109.5
C4—C5—H5119.8C2—C10—H1B109.5
N1—C6—C5119.93 (14)H1A—C10—H1B109.5
N1—C6—C7120.17 (14)C2—C10—H1C109.5
C5—C6—C7119.90 (14)H1A—C10—H1C109.5
C6—C7—H7A109.5H1B—C10—H1C109.5
C6—C7—H7B109.5H11—O1W—H12112.4
H7A—C7—H7B109.5H21—O2W—H22107.6
C6—C7—H7C109.5
C6—N1—C2—C30.3 (2)C3—C4—C5—C60.4 (2)
C8—N1—C2—C3178.74 (14)C2—N1—C6—C50.1 (2)
C6—N1—C2—C10179.64 (14)C8—N1—C6—C5179.21 (14)
C8—N1—C2—C101.3 (2)C2—N1—C6—C7179.43 (14)
N1—C2—C3—C40.4 (2)C8—N1—C6—C70.4 (2)
C10—C2—C3—C4179.54 (15)C4—C5—C6—N10.5 (2)
C2—C3—C4—O1179.55 (14)C4—C5—C6—C7179.06 (15)
C2—C3—C4—C50.1 (2)C6—N1—C8—C990.24 (18)
O1—C4—C5—C6179.05 (14)C2—N1—C8—C988.85 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wi0.801.782.5720 (16)173
O1W—H11···O2W0.821.902.7135 (16)175
O1W—H12···Br1ii0.762.503.2610 (12)172
O2W—H21···Br10.812.523.3332 (12)178
O2W—H22···Br1iii0.792.523.3061 (12)173
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (University of Southampton, UK) for the X-ray data collection. TS thanks Professor V. Parthasarathi, School of Physics, Bharathidasan University, for fruitful discussions.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1039–o1040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhanuskodi, S., Manivannan, S. & Kirschbaum, K. (2006). Spectrochim. Acta Part A, 64, 504–511.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, J. D. & Wallwork, S. C. (1965). Acta Cryst. 19, 311–313.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationManivannan, S., Tiwari, S. K. & Dhanuskodi, S. (2004). Solid State Commun. 132, 123–127.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamuly, C., Sarma, R. S., Batsanov, A. S., Goeta, A. E. & Baruah, J. B. (2005). Acta Cryst. C61, o324–o327.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds