organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(Amino­carbon­yl)phen­yl]-4-hydr­­oxy-2-methyl-2H-1,2-benzo­thia­zine-3-carboxamide 1,1-dioxide di­methyl sulfoxide solvate

CROSSMARK_Color_square_no_text.svg

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, cChemistry Department, Loughborough University, Loughborough LE11 3TU, England, and dDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan
*Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

(Received 19 December 2006; accepted 16 January 2007; online 26 January 2007)

In the title compound, C17H15N3O5S·C2H6OS, the thia­zine ring adopts a distorted half-chair conformation. The enolic H atom is involved in both intra­molecular and inter­molecular O—H⋯O hydrogen bonds, the latter linking the mol­ecules into centrosymmetric pairs. Both anthranilamide H atoms are involved in hydrogen bonding to O atoms of dimethyl sulfoxide mol­ecules, linking the pairs of mol­ecules into chains.

Comment

Owing to their application as non-steroidal anti-inflammatory agents (Turck et al., 1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). Clin. Pharm. 36, 79-84.]; Bihovsky et al., 2004[Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.]), considerable attention has been given to synthetic and structural investigations of 1,2-benzothia­zine 1,1-dioxides and their precursor inter­mediates (Golič & Leban, 1987[Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280-282.]). During our syntheses of various benzothia­zine derivatives (Rehman et al., 2005[Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.]; Rehman et al., 2006[Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]) the crystal structure of the title compound, (I)[link], has been determined.

[Scheme 1]

In (I)[link] (Fig. 1[link]), the thia­zine ring adopts a distorted half-chair conformation. The geometry at N1 is pyramidal, with the methyl group pointing approximately perpendicular to the thia­zine ring. Atoms O3 and O1 lie approximately in the plane of the thia­zine ring, while atom O2 lies approximately perpendicular to it. Atoms N1, C8, C9, O4 and N2 are coplanar to within 0.093 (2) Å. The S1—N1 bond length of 1.6427 (15) Å is as expected for a sulfonamide.

Like other 1,2-benzothia­zine 1,1-dioxide mol­ecules (Golič & Leban, 1987[Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280-282.]; Fabiola et al., 1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.]), the enolic hydrogen on O3 is involved in intra­molecular hydrogen bonding (Table 1[link]), and there is a shortening of the C7—C8 bond [1.362 (3) Å] due to partial double-bond character. Two further intra­molecular hydrogen bonds are also present in (I)[link] that are not observed in related benzothia­zine mol­ecules such as piroxicam (Kojić-Prodić et al., 1982[Kojić-Prodić, B. & Ružić -Toroš, Z. (1982). Acta Cryst. B38, 2948-2951.]) and meloxicam (Fabiola et al., 1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.]). Specifically, atom H2 forms hydrogen bonds with both N1 and the anthranilamide atom O5. Atom H3 is also involved in inter­molecular hydrogen bonding with atom O4 of an adjacent mol­ecule (Table 1[link] and Fig. 2[link]), linking the mol­ecules into centrosymmetric pairs.

The O atoms of two symmetry-related dimethyl sulfoxide mol­ecules link adjacent benzothia­zine mol­ecules through N—H⋯O hydrogen bonds from H3A and H3B of the benzothia­zine amino group (Table 1[link]). These inter­actions link the centrosymmetric pairs of mol­ecules into chains (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 50% probability level for non-H atoms. Dashed lines denote hydrogen bonds.
[Figure 2]
Figure 2
Projection approximately on to the plane of one hydrogen-bonded chain in (I)[link]. H atoms not involved in hydrogen bonding have been omitted. Dashed lines denote hydrogen bonds. (Symmetry operators to generate mol­ecules containing O4A and O6A, respectively: 1 − x, 2 − y, 1 − z; −x − 1, 1 − y, 1 − z.)

Experimental

N-[2-(Amino­carbon­yl)phen­yl]-4-hydr­oxy-2-methyl-2H-1,2-benzo­thia­­zine-3-carboxamide 1,1-dioxide was synthesized according to a literature method (Rehman et al., 2006[Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). The compound was dissolved in a mixture of methanol and DMSO (80:20 v/v) at room temperature. Crystals were obtained by slow evaporation and dried under high vacuum.

Crystal data
  • C17H15N3O5S·C2H6OS

  • Mr = 451.51

  • Triclinic, [P \overline 1]

  • a = 8.4973 (2) Å

  • b = 10.1959 (4) Å

  • c = 12.0545 (4) Å

  • α = 92.132 (2)°

  • β = 101.540 (2)°

  • γ = 95.550 (2)°

  • V = 1016.75 (6) Å3

  • Z = 2

  • Dx = 1.475 Mg m−3

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.54 × 0.42 × 0.11 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.853, Tmax = 0.967

  • 20897 measured reflections

  • 4663 independent reflections

  • 3397 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.04

  • 4663 reflections

  • 286 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2807P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.91 (2) 1.75 (2) 2.5771 (18) 150 (2)
O3—H3⋯O4i 0.91 (2) 2.48 (2) 2.9028 (19) 108.4 (17)
N2—H2⋯O5 0.87 (2) 1.84 (2) 2.583 (2) 142.8 (18)
N2—H2⋯N1 0.87 (2) 2.27 (2) 2.720 (2) 112.0 (16)
N3—H3A⋯O6 0.905 (17) 2.043 (18) 2.911 (2) 160 (2)
N3—H3B⋯O6ii 0.896 (17) 2.064 (18) 2.941 (2) 166 (2)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x-1, -y+1, -z+1.

H atoms bound to C atoms were placed geometrically and refined using a riding model, with C—H = 0.95 Å, Uiso(H) = 1.2 Ueq(C) for aryl H, or C—H = 0.98 Å, Uiso(H) = 1.5 Ueq(C) for methyl H. The methyl groups were allowed to rotate about their local threefold axes. H atoms bound to N and O atoms were located in difference Fourier maps and their coordinates were refined freely with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2H-1,2-benzothiazine- 3-carboxamide-1,1-dioxide dimethyl sulfoxide solvate top
Crystal data top
C17H15N3O5S·C2H6OSZ = 2
Mr = 451.51F(000) = 472
Triclinic, P1Dx = 1.475 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4973 (2) ÅCell parameters from 4596 reflections
b = 10.1959 (4) Åθ = 1.0–27.5°
c = 12.0545 (4) ŵ = 0.31 mm1
α = 92.132 (2)°T = 120 K
β = 101.540 (2)°Lath, colourless
γ = 95.550 (2)°0.54 × 0.42 × 0.11 mm
V = 1016.75 (6) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4663 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1011
Tmin = 0.853, Tmax = 0.967k = 1313
20897 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: geom except NH & OH coords freely refined
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2807P]
where P = (Fo2 + 2Fc2)/3
4663 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.48 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28059 (17)0.69118 (16)0.73479 (12)0.0181 (3)
S10.31964 (5)0.72519 (5)0.87245 (4)0.02156 (14)
O10.25883 (16)0.61339 (15)0.92530 (11)0.0299 (4)
O20.26700 (16)0.85129 (15)0.89310 (11)0.0273 (3)
C10.5321 (2)0.7427 (2)0.90615 (15)0.0201 (4)
C20.6158 (2)0.7076 (2)1.01020 (16)0.0249 (4)
H2A0.55990.66511.06200.030*
C30.7825 (2)0.7359 (2)1.03684 (16)0.0275 (5)
H3C0.84130.71431.10830.033*
C40.8639 (2)0.7955 (2)0.95985 (17)0.0275 (5)
H40.97800.81490.97920.033*
C50.7805 (2)0.8270 (2)0.85511 (16)0.0242 (4)
H50.83760.86680.80270.029*
C60.6125 (2)0.80042 (19)0.82632 (15)0.0192 (4)
C70.5221 (2)0.83103 (19)0.71524 (15)0.0182 (4)
O30.60524 (15)0.91569 (14)0.65984 (11)0.0229 (3)
H30.538 (3)0.923 (2)0.592 (2)0.034*
C80.3662 (2)0.78096 (19)0.67303 (15)0.0176 (4)
C90.2777 (2)0.82173 (19)0.56403 (15)0.0182 (4)
O40.35180 (15)0.88358 (14)0.49923 (11)0.0229 (3)
N20.11631 (18)0.78914 (16)0.54384 (13)0.0182 (3)
H20.079 (2)0.746 (2)0.5958 (17)0.022*
C100.0048 (2)0.82649 (19)0.45632 (15)0.0170 (4)
C110.1670 (2)0.77877 (19)0.45693 (15)0.0178 (4)
C120.2889 (2)0.8181 (2)0.37254 (16)0.0218 (4)
H120.39840.78790.37210.026*
C130.2542 (2)0.8996 (2)0.28999 (16)0.0220 (4)
H130.33880.92430.23310.026*
C140.0952 (2)0.9451 (2)0.29050 (15)0.0207 (4)
H140.07111.00120.23360.025*
C150.0293 (2)0.90964 (19)0.37341 (15)0.0199 (4)
H150.13800.94220.37350.024*
C160.2088 (2)0.6900 (2)0.54534 (15)0.0206 (4)
C170.2645 (2)0.5504 (2)0.69573 (18)0.0264 (5)
H17A0.22730.54160.61320.040*
H17B0.18600.50030.73180.040*
H17C0.36950.51580.71640.040*
O50.10788 (16)0.67029 (16)0.63157 (11)0.0305 (4)
N30.35961 (19)0.63182 (17)0.53030 (14)0.0225 (4)
H3A0.434 (2)0.640 (2)0.4664 (15)0.027*
H3B0.380 (3)0.573 (2)0.5803 (16)0.027*
S20.77356 (5)0.63477 (5)0.27891 (4)0.02196 (14)
O60.60908 (15)0.59061 (14)0.32438 (12)0.0289 (3)
C180.7341 (2)0.7773 (2)0.20325 (17)0.0266 (5)
H18A0.67390.84830.25650.040*
H18B0.83650.80620.16450.040*
H18C0.67010.75570.14720.040*
C190.8603 (2)0.5220 (2)0.16109 (16)0.0265 (5)
H19A0.78470.51810.10970.040*
H19B0.96120.55190.12060.040*
H19C0.88280.43410.18820.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0168 (8)0.0205 (9)0.0170 (8)0.0005 (6)0.0034 (6)0.0058 (6)
S10.0178 (2)0.0313 (3)0.0169 (2)0.0041 (2)0.00510 (17)0.0078 (2)
O10.0246 (7)0.0407 (10)0.0257 (7)0.0008 (6)0.0076 (6)0.0167 (7)
O20.0248 (7)0.0377 (9)0.0220 (7)0.0128 (6)0.0060 (6)0.0027 (6)
C10.0189 (9)0.0239 (11)0.0178 (9)0.0043 (8)0.0030 (7)0.0028 (8)
C20.0276 (10)0.0302 (12)0.0186 (10)0.0068 (9)0.0059 (8)0.0059 (8)
C30.0270 (11)0.0365 (13)0.0182 (10)0.0106 (9)0.0011 (8)0.0019 (9)
C40.0197 (10)0.0349 (13)0.0254 (10)0.0030 (9)0.0008 (8)0.0002 (9)
C50.0219 (10)0.0281 (12)0.0215 (10)0.0003 (8)0.0028 (8)0.0016 (9)
C60.0184 (9)0.0198 (11)0.0188 (9)0.0017 (8)0.0026 (7)0.0022 (8)
C70.0182 (9)0.0203 (11)0.0169 (9)0.0016 (7)0.0054 (7)0.0031 (8)
O30.0180 (7)0.0283 (8)0.0208 (7)0.0041 (6)0.0017 (5)0.0083 (6)
C80.0166 (9)0.0198 (11)0.0173 (9)0.0000 (7)0.0055 (7)0.0045 (7)
C90.0167 (9)0.0202 (11)0.0174 (9)0.0006 (7)0.0037 (7)0.0005 (8)
O40.0176 (7)0.0315 (9)0.0195 (7)0.0014 (6)0.0041 (5)0.0084 (6)
N20.0173 (8)0.0224 (9)0.0149 (8)0.0007 (6)0.0039 (6)0.0055 (7)
C100.0174 (9)0.0181 (10)0.0148 (9)0.0022 (7)0.0021 (7)0.0004 (7)
C110.0171 (9)0.0185 (10)0.0176 (9)0.0001 (7)0.0039 (7)0.0017 (7)
C120.0164 (9)0.0256 (12)0.0224 (10)0.0011 (8)0.0022 (7)0.0023 (8)
C130.0205 (9)0.0239 (11)0.0201 (9)0.0040 (8)0.0003 (7)0.0039 (8)
C140.0227 (10)0.0223 (11)0.0175 (9)0.0027 (8)0.0042 (7)0.0047 (8)
C150.0182 (9)0.0216 (11)0.0204 (9)0.0014 (8)0.0052 (7)0.0009 (8)
C160.0166 (9)0.0242 (11)0.0205 (9)0.0005 (8)0.0039 (7)0.0008 (8)
C170.0282 (11)0.0206 (11)0.0306 (11)0.0008 (8)0.0075 (8)0.0023 (9)
O50.0189 (7)0.0467 (10)0.0237 (7)0.0035 (6)0.0001 (5)0.0151 (7)
N30.0171 (8)0.0264 (10)0.0226 (9)0.0020 (7)0.0017 (6)0.0070 (7)
S20.0187 (2)0.0272 (3)0.0195 (2)0.0017 (2)0.00293 (18)0.0031 (2)
O60.0183 (7)0.0301 (9)0.0342 (8)0.0006 (6)0.0042 (6)0.0099 (7)
C180.0276 (11)0.0270 (12)0.0251 (10)0.0038 (9)0.0047 (8)0.0036 (9)
C190.0258 (10)0.0291 (12)0.0222 (10)0.0012 (9)0.0002 (8)0.0014 (9)
Geometric parameters (Å, º) top
N1—C81.435 (2)C10—C111.418 (3)
N1—C171.479 (3)C11—C121.399 (2)
N1—S11.6427 (15)C11—C161.497 (3)
S1—O11.4298 (15)C12—C131.378 (3)
S1—O21.4308 (15)C12—H120.950
S1—C11.7591 (18)C13—C141.384 (3)
C1—C21.390 (3)C13—H130.950
C1—C61.402 (3)C14—C151.389 (2)
C2—C31.387 (3)C14—H140.950
C2—H2A0.950C15—H150.950
C3—C41.388 (3)C16—O51.244 (2)
C3—H3C0.950C16—N31.334 (2)
C4—C51.384 (3)C17—H17A0.980
C4—H40.9500C17—H17B0.980
C5—C61.397 (3)C17—H17C0.980
C5—H50.950N3—H3A0.905 (17)
C6—C71.465 (2)N3—H3B0.896 (17)
C7—O31.343 (2)S2—O61.5133 (13)
C7—C81.362 (3)S2—C191.782 (2)
O3—H30.91 (2)S2—C181.784 (2)
C8—C91.473 (2)C18—H18A0.980
C9—O41.249 (2)C18—H18B0.980
C9—N21.350 (2)C18—H18C0.980
N2—C101.410 (2)C19—H19A0.980
N2—H20.87 (2)C19—H19B0.980
C10—C151.390 (3)C19—H19C0.980
C8—N1—C17115.86 (15)C12—C11—C10118.03 (17)
C8—N1—S1114.28 (12)C12—C11—C16120.32 (16)
C17—N1—S1116.99 (12)C10—C11—C16121.64 (15)
O1—S1—O2119.20 (9)C13—C12—C11121.63 (17)
O1—S1—N1108.26 (9)C13—C12—H12119.2
O2—S1—N1108.19 (8)C11—C12—H12119.2
O1—S1—C1109.62 (9)C12—C13—C14119.62 (16)
O2—S1—C1107.77 (9)C12—C13—H13120.2
N1—S1—C1102.52 (8)C14—C13—H13120.2
C2—C1—C6121.65 (17)C13—C14—C15120.62 (18)
C2—C1—S1121.18 (15)C13—C14—H14119.7
C6—C1—S1117.07 (13)C15—C14—H14119.7
C3—C2—C1118.69 (19)C14—C15—C10120.03 (17)
C3—C2—H2A120.7C14—C15—H15120.0
C1—C2—H2A120.7C10—C15—H15120.0
C2—C3—C4120.44 (17)O5—C16—N3119.78 (18)
C2—C3—H3C119.8O5—C16—C11122.02 (16)
C4—C3—H3C119.8N3—C16—C11118.20 (16)
C5—C4—C3120.66 (18)N1—C17—H17A109.5
C5—C4—H4119.7N1—C17—H17B109.5
C3—C4—H4119.7H17A—C17—H17B109.5
C4—C5—C6120.12 (19)N1—C17—H17C109.5
C4—C5—H5119.9H17A—C17—H17C109.5
C6—C5—H5119.9H17B—C17—H17C109.5
C5—C6—C1118.38 (16)C16—N3—H3A121.7 (14)
C5—C6—C7121.02 (17)C16—N3—H3B116.8 (14)
C1—C6—C7120.59 (16)H3A—N3—H3B121 (2)
O3—C7—C8122.88 (16)O6—S2—C19104.83 (9)
O3—C7—C6114.00 (15)O6—S2—C18104.89 (9)
C8—C7—C6123.09 (17)C19—S2—C1898.74 (10)
C7—O3—H3105.3 (15)S2—C18—H18A109.5
C7—C8—N1121.42 (16)S2—C18—H18B109.5
C7—C8—C9120.78 (17)H18A—C18—H18B109.5
N1—C8—C9117.76 (15)S2—C18—H18C109.5
O4—C9—N2124.97 (16)H18A—C18—H18C109.5
O4—C9—C8120.22 (16)H18B—C18—H18C109.5
N2—C9—C8114.80 (16)S2—C19—H19A109.5
C9—N2—C10129.47 (16)S2—C19—H19B109.5
C9—N2—H2116.2 (13)H19A—C19—H19B109.5
C10—N2—H2113.9 (13)S2—C19—H19C109.5
C15—C10—N2122.55 (16)H19A—C19—H19C109.5
C15—C10—C11120.06 (16)H19B—C19—H19C109.5
N2—C10—C11117.37 (16)
C8—N1—S1—O1166.38 (12)O3—C7—C8—C92.2 (3)
C17—N1—S1—O126.32 (15)C6—C7—C8—C9176.05 (16)
C8—N1—S1—O263.14 (14)C17—N1—C8—C7102.3 (2)
C17—N1—S1—O2156.80 (13)S1—N1—C8—C738.2 (2)
C8—N1—S1—C150.56 (14)C17—N1—C8—C980.1 (2)
C17—N1—S1—C189.49 (14)S1—N1—C8—C9139.40 (14)
O1—S1—C1—C232.8 (2)C7—C8—C9—O413.0 (3)
O2—S1—C1—C298.35 (18)N1—C8—C9—O4169.42 (16)
N1—S1—C1—C2147.63 (17)C7—C8—C9—N2165.83 (17)
O1—S1—C1—C6150.75 (15)N1—C8—C9—N211.8 (2)
O2—S1—C1—C678.09 (17)O4—C9—N2—C107.4 (3)
N1—S1—C1—C635.92 (17)C8—C9—N2—C10171.31 (17)
C6—C1—C2—C32.8 (3)C9—N2—C10—C150.7 (3)
S1—C1—C2—C3173.53 (16)C9—N2—C10—C11178.94 (18)
C1—C2—C3—C41.4 (3)C15—C10—C11—C120.1 (3)
C2—C3—C4—C50.4 (3)N2—C10—C11—C12178.18 (16)
C3—C4—C5—C60.8 (3)C15—C10—C11—C16179.47 (17)
C4—C5—C6—C10.5 (3)N2—C10—C11—C161.2 (3)
C4—C5—C6—C7179.02 (18)C10—C11—C12—C130.7 (3)
C2—C1—C6—C52.3 (3)C16—C11—C12—C13179.92 (18)
S1—C1—C6—C5174.08 (15)C11—C12—C13—C140.6 (3)
C2—C1—C6—C7177.22 (18)C12—C13—C14—C150.1 (3)
S1—C1—C6—C76.4 (3)C13—C14—C15—C100.6 (3)
C5—C6—C7—O317.1 (3)N2—C10—C15—C14178.75 (17)
C1—C6—C7—O3163.34 (17)C11—C10—C15—C140.6 (3)
C5—C6—C7—C8164.54 (19)C12—C11—C16—O5168.09 (19)
C1—C6—C7—C815.0 (3)C10—C11—C16—O511.3 (3)
O3—C7—C8—N1179.67 (16)C12—C11—C16—N311.4 (3)
C6—C7—C8—N11.5 (3)C10—C11—C16—N3169.20 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.91 (2)1.75 (2)2.5771 (18)150 (2)
O3—H3···O4i0.91 (2)2.48 (2)2.9028 (19)108.4 (17)
N2—H2···O50.87 (2)1.84 (2)2.583 (2)142.8 (18)
N2—H2···N10.87 (2)2.27 (2)2.720 (2)112.0 (16)
N3—H3A···O60.91 (2)2.04 (2)2.911 (2)160 (2)
N3—H3B···O6ii0.90 (2)2.06 (2)2.941 (2)166 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the EPSRC National Crystallography Service at the University of Southampton for data collection.

References

First citationBihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGolič, L. & Leban, I. (1987). Acta Cryst. C43, 280–282.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKojić-Prodić, B. & Ružić -Toroš, Z. (1982). Acta Cryst. B38, 2948–2951.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  Google Scholar
First citationRehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). Clin. Pharm. 36, 79–84.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds