organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3,5-bis­­(all­yl­oxy)-4-bromo­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 16 January 2007; accepted 16 January 2007; online 24 January 2007)

The asymmetric mol­ecular conformation of the title compound, C15H17BrO4, may be be influenced by an intra­molecular C—H⋯O inter­action. The mol­ecules form ππ stacks in the crystal structure.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our studies to determine the philicity of aryl radicals by competitive cyclization reactions (Kirsop et al., 2004[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1147-o1148.]).

[Scheme 1]

Compound (I)[link] possesses normal geometrical parameters. The dihedral angle between the mean plane of the C1–C6 benzene ring and the plane of the C7/O1/O2 group is 6.0 (5)°. The two —O—CH2—CH=CH2 side chains have very different conformations (Fig. 1[link]), which may be attributable, at least in part, to an intra­molecular C12—H12A⋯O3 inter­action (Table 1[link]). The mol­ecules form ππ stacks in the crystal structure (Fig. 2[link]), with alternating centroid-to-centroid separations between benzene rings [CgCgi = 3.626 (2), CgCgii = 3.466 (2) Å; symmetry codes: (i) x, −y, 1 − z; (ii) x, 1 − y, 1 − z]. The stacking inter­actions give rise to columns of mol­ecules along [010] (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% displacement ellipsoids for non-H atoms. The intra­molecular C—H⋯O inter­action referred to in the Comment is indicated by a dashed line.
[Figure 2]
Figure 2
Part of a ππ stacked column of mol­ecules (30% displacement ellipsoids and H atoms omitted). [Symmetry codes: (i) x, −y, 1 − z; (ii) x, 1 − y, 1 − z.]
[Figure 3]
Figure 3
Unit-cell contents of (I)[link], viewed down [010] (50% displacement ellipsoids and H atoms omitted).

Experimental

4-Bromo-3,5-dihydroxy­benzoic acid (6.8 g, 0.03 mol) was added to 100 ml of ethanol. Concentrated H2SO4 (1 ml) was added and the mixture was refluxed for 14 h. After cooling, the solvent was removed at reduced pressure to give a pale yellow oil. Diethyl ether (100 ml) was added and the mixture was neutralized by careful addition of a saturated NaHCO3 solution (100 ml). The mixture was transferred to a separating funnel and the product extracted with diethyl ether (4 × 100 ml). The combined extracts were dried over anhydrous MgSO4 and evaporated under reduced pressure to give 4-bromo-3,5-dihy­droxybenzoic acid ethyl ester as a white powder (7.5 g, 96%). Ethyl 4-bromo-3,5-dihydroxy­benzoate (3.00 g, 0.011 mol), allyl bromide (1.30 g, 0.011 mol) and K2CO3 (8.00 g, 0.0579 mol) were added to 100 ml of dry acetone. The mixture was stirred at room temperature under a nitro­gen atmosphere for 14 h, then filtered and the solvent removed at reduced pressure to give a dark brown oil. Thin layer chromatography (4:1 hexa­ne–ethyl acetate eluent) showed the title compound as a sharp spot at RF = 0.52. The crude product was purified by flash column chromatography to yield a white powder (1.42 g, 38%). A sample of this powder was recrystallized from hot hexane to give translucent needles of (I)[link] (m.p. 315–317 K).

Crystal data
  • C15H17BrO4

  • Mr = 341.20

  • Orthorhombic, C 2221

  • a = 22.1421 (2) Å

  • b = 7.0559 (13) Å

  • c = 19.5604 (11) Å

  • V = 3056.0 (6) Å3

  • Z = 8

  • Dx = 1.483 Mg m−3

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.22 × 0.04 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.588, Tmax = 0.948

  • 10933 measured reflections

  • 3495 independent reflections

  • 2604 reflections with I > 2σ(I)

  • Rint = 0.084

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.084

  • S = 1.01

  • 3495 reflections

  • 183 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0143P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1500 Friedel pairs

  • Flack parameter: 0.106 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O3 0.95 2.39 2.715 (6) 100

H atoms were placed in idealized locations (C—H = 0.95–0.99 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Ethyl 3,5-bis(allyloxy)-4-bromobenzoate top
Crystal data top
C15H17BrO4F(000) = 1392
Mr = 341.20Dx = 1.483 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 1957 reflections
a = 22.1421 (2) Åθ = 2.9–27.5°
b = 7.0559 (13) ŵ = 2.70 mm1
c = 19.5604 (11) ÅT = 120 K
V = 3056.0 (6) Å3Needle, colourless
Z = 80.22 × 0.04 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
3495 independent reflections
Radiation source: fine-focus sealed tube2604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω and φ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 2028
Tmin = 0.588, Tmax = 0.948k = 99
10933 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0143P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3495 reflectionsΔρmax = 0.47 e Å3
183 parametersΔρmin = 0.53 e Å3
0 restraintsAbsolute structure: Flack (1983), 1500 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.106 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4754 (2)0.3097 (5)0.4289 (2)0.0184 (11)
C20.5137 (2)0.2603 (5)0.4827 (2)0.0185 (10)
C30.4891 (2)0.2071 (5)0.5457 (2)0.0173 (10)
H30.51450.17450.58290.021*
C40.4267 (2)0.2030 (6)0.5526 (2)0.0159 (10)
C50.3893 (2)0.2505 (6)0.4987 (2)0.0171 (10)
H50.34670.24670.50460.021*
C60.4132 (2)0.3035 (6)0.4364 (2)0.0184 (11)
C70.3970 (2)0.1440 (6)0.6178 (2)0.0215 (11)
C80.4125 (2)0.0183 (7)0.7297 (2)0.0278 (12)
H8A0.43790.08480.74840.033*
H8B0.37130.03230.72270.033*
C90.4103 (2)0.1796 (7)0.7799 (2)0.0360 (14)
H9A0.39180.13620.82260.054*
H9B0.38630.28350.76070.054*
H9C0.45140.22440.78910.054*
C100.6157 (2)0.2438 (7)0.5223 (2)0.0246 (12)
H10A0.60950.12060.54540.030*
H10B0.61020.34620.55630.030*
C110.6776 (2)0.2528 (7)0.4924 (3)0.0313 (12)
H110.71050.24760.52360.038*
C120.6911 (2)0.2671 (7)0.4278 (3)0.0360 (13)
H12A0.65980.27280.39460.043*
H12B0.73210.27190.41380.043*
C130.3152 (2)0.3480 (7)0.3880 (2)0.0235 (11)
H13A0.30210.43270.42550.028*
H13B0.30200.21740.39880.028*
C140.2884 (2)0.4107 (6)0.3224 (2)0.0274 (12)
H140.29950.53120.30480.033*
C150.2503 (2)0.3082 (7)0.2876 (3)0.0383 (15)
H15A0.23850.18710.30420.046*
H15B0.23430.35450.24580.046*
O10.34357 (14)0.1487 (5)0.62781 (15)0.0253 (8)
O20.43720 (12)0.0814 (4)0.66439 (15)0.0216 (7)
O30.57368 (14)0.2653 (4)0.46792 (16)0.0251 (8)
O40.37974 (13)0.3545 (4)0.38091 (14)0.0220 (7)
Br10.509124 (19)0.38018 (6)0.34421 (2)0.02348 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.017 (2)0.015 (2)0.0058 (18)0.001 (2)0.0005 (18)
C20.017 (3)0.014 (2)0.025 (3)0.003 (2)0.001 (2)0.0052 (17)
C30.024 (3)0.0149 (19)0.013 (2)0.0015 (19)0.004 (2)0.0008 (16)
C40.017 (3)0.016 (2)0.014 (3)0.0011 (18)0.001 (2)0.0034 (18)
C50.016 (3)0.018 (2)0.017 (3)0.0009 (19)0.001 (2)0.001 (2)
C60.021 (3)0.019 (3)0.016 (3)0.0008 (18)0.003 (2)0.0041 (19)
C70.027 (3)0.015 (2)0.023 (3)0.006 (2)0.002 (2)0.006 (2)
C80.032 (3)0.037 (3)0.014 (3)0.005 (2)0.002 (2)0.005 (2)
C90.036 (3)0.052 (4)0.021 (3)0.000 (2)0.003 (3)0.009 (2)
C100.023 (3)0.029 (3)0.022 (3)0.003 (2)0.003 (2)0.004 (2)
C110.023 (3)0.033 (3)0.038 (3)0.005 (2)0.002 (3)0.002 (3)
C120.020 (3)0.041 (3)0.046 (4)0.001 (2)0.008 (3)0.001 (3)
C130.019 (3)0.025 (3)0.026 (3)0.004 (2)0.001 (2)0.001 (2)
C140.023 (3)0.024 (3)0.035 (3)0.004 (2)0.010 (2)0.002 (2)
C150.038 (4)0.038 (3)0.040 (4)0.002 (2)0.015 (3)0.002 (3)
O10.0175 (19)0.033 (2)0.0253 (18)0.0034 (16)0.0019 (14)0.0034 (16)
O20.0218 (17)0.0273 (17)0.0157 (17)0.0050 (12)0.0004 (14)0.0030 (15)
O30.019 (2)0.0346 (19)0.0217 (19)0.0019 (14)0.0013 (17)0.0002 (16)
O40.0168 (18)0.0308 (18)0.0184 (17)0.0035 (16)0.0010 (13)0.0049 (15)
Br10.0254 (2)0.0274 (2)0.0176 (2)0.0024 (2)0.0027 (2)0.0011 (2)
Geometric parameters (Å, º) top
C1—C61.386 (6)C9—H9B0.980
C1—C21.395 (6)C9—H9C0.980
C1—Br11.884 (4)C10—O31.421 (5)
C2—O31.361 (5)C10—C111.492 (6)
C2—C31.397 (6)C10—H10A0.990
C3—C41.389 (6)C10—H10B0.990
C3—H30.950C11—C121.303 (6)
C4—C51.381 (6)C11—H110.950
C4—C71.494 (6)C12—H12A0.950
C5—C61.381 (6)C12—H12B0.950
C5—H50.950C13—O41.436 (5)
C6—O41.363 (5)C13—C141.481 (6)
C7—O11.200 (5)C13—H13A0.990
C7—O21.348 (5)C13—H13B0.990
C8—O21.459 (5)C14—C151.303 (6)
C8—C91.504 (6)C14—H140.950
C8—H8A0.990C15—H15A0.950
C8—H8B0.990C15—H15B0.950
C9—H9A0.980
C6—C1—C2121.0 (4)C8—C9—H9C109.5
C6—C1—Br1119.7 (3)H9A—C9—H9C109.5
C2—C1—Br1119.2 (3)H9B—C9—H9C109.5
O3—C2—C1115.2 (4)O3—C10—C11107.7 (4)
O3—C2—C3125.1 (4)O3—C10—H10A110.2
C1—C2—C3119.7 (4)C11—C10—H10A110.2
C4—C3—C2118.6 (4)O3—C10—H10B110.2
C4—C3—H3120.7C11—C10—H10B110.2
C2—C3—H3120.7H10A—C10—H10B108.5
C5—C4—C3121.1 (4)C12—C11—C10126.3 (5)
C5—C4—C7117.1 (4)C12—C11—H11116.8
C3—C4—C7121.7 (4)C10—C11—H11116.8
C4—C5—C6120.6 (4)C11—C12—H12A120.0
C4—C5—H5119.7C11—C12—H12B120.0
C6—C5—H5119.7H12A—C12—H12B120.0
O4—C6—C5124.5 (4)O4—C13—C14107.8 (4)
O4—C6—C1116.6 (4)O4—C13—H13A110.1
C5—C6—C1118.9 (4)C14—C13—H13A110.1
O1—C7—O2123.4 (4)O4—C13—H13B110.1
O1—C7—C4124.4 (4)C14—C13—H13B110.1
O2—C7—C4112.3 (4)H13A—C13—H13B108.5
O2—C8—C9110.6 (4)C15—C14—C13123.1 (5)
O2—C8—H8A109.5C15—C14—H14118.5
C9—C8—H8A109.5C13—C14—H14118.5
O2—C8—H8B109.5C14—C15—H15A120.0
C9—C8—H8B109.5C14—C15—H15B120.0
H8A—C8—H8B108.1H15A—C15—H15B120.0
C8—C9—H9A109.5C7—O2—C8116.4 (3)
C8—C9—H9B109.5C2—O3—C10118.5 (3)
H9A—C9—H9B109.5C6—O4—C13117.1 (3)
C6—C1—C2—O3177.6 (3)C5—C4—C7—O15.7 (6)
Br1—C1—C2—O31.0 (5)C3—C4—C7—O1175.3 (4)
C6—C1—C2—C31.2 (6)C5—C4—C7—O2173.3 (4)
Br1—C1—C2—C3179.7 (3)C3—C4—C7—O25.6 (6)
O3—C2—C3—C4177.9 (3)O3—C10—C11—C123.5 (7)
C1—C2—C3—C40.7 (5)O4—C13—C14—C15123.9 (5)
C2—C3—C4—C50.1 (6)O1—C7—O2—C80.3 (6)
C2—C3—C4—C7178.8 (4)C4—C7—O2—C8179.3 (3)
C3—C4—C5—C60.0 (7)C9—C8—O2—C791.1 (5)
C7—C4—C5—C6179.0 (4)C1—C2—O3—C10171.0 (4)
C4—C5—C6—O4179.3 (4)C3—C2—O3—C1010.3 (6)
C4—C5—C6—C10.5 (6)C11—C10—O3—C2179.5 (3)
C2—C1—C6—O4180.0 (4)C5—C6—O4—C131.4 (6)
Br1—C1—C6—O41.5 (5)C1—C6—O4—C13179.8 (4)
C2—C1—C6—C51.1 (6)C14—C13—O4—C6179.3 (3)
Br1—C1—C6—C5179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O30.952.392.715 (6)100
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1147–o1148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds