inorganic compounds
Iron(II) hydrazinium sulfate
aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, poly[[dihydraziniumiron(II)]-di-μ-sulfato-κ4O:O′], [Fe(SO4)2(N2H5)2]n, contains fairly regular trans-FeN2O4 octahedra. The Fe atoms (site symmetry ) are bridged by pairs of sulfate groups into infinite [100] chains, which are cross-linked by a network of N—H⋯O hydrogen bonds. Fe(N2H5)2(SO4)2 is isostructural with its zinc, chromium(II) and cadmium-containing analogues.
Comment
The divalent-metal–hydrazinium sulfates of general formula M(N2H5)2(SO4)2, where M = Cr, Mn, Fe, Co, Ni, Cu, Zn and Cd can be readily prepared by reacting a salt of the respective metal with hydrazinium sulfate in dilute sulfuric acid (Hand & Prout, 1966), although this method usually results in a microcrystalline product. Recently, we described the single-crystal structure of Cd(N2H5)2(SO4)2 (Srinivasan et al., 2006) and we now report the isostructural title compound, (I), Fe(N2H5)2(SO4)2. The compounds Zn(N2H5)2(SO4)2 (Prout & Powell, 1961) and Cr(N2H5)2(SO4)2 (Parkins et al., 2001) also share the same stucture.
Compound (I) contains trans-FeN2O4 octahedra (Fig. 1), in which the N atom is part of a hydrazinium (N2H5+) cation. The Fe atoms (site symmetry ) are connected by pairs of sulfate groups into infinite chains that propagate in [100]. The intra-chain Fe⋯Fe separation in (I) is equal to the a unit-cell dimension, i.e. 5.3306 (3) Å. The two distinct Fe—O bond lengths in (I) are similar (Table 1) and do not show the gross differences seen in the chromium and zinc analogues.
The iron–sulfate chains in (I) are cross-linked by N—H⋯O hydrogen bonds (Table 2), resulting in the same hydrogen-bonding network seen in the other analogues noted above. A well defined trifurcated N2—H3C⋯(O,O,O) interaction occurs (mean bond angle about H3C = 107.3°).
Experimental
The reaction of hydrazine monohydrate (N2H4·H2O; 0.50 g, 10 mmol) and ethyl bromoacetate (1.671 g, 10 mmol) in 5 ml of dry ethanol resulted in the formation of a white solid containing hydrazinium bromide and ethyl hydrazinoacetate, as reported earlier (Srinivasan et al., 2006). This white solid (0.236 g) was dissolved in water (30 ml) and mixed with an aqueous solution (30 ml) of FeSO4·7H2O (0.278 g, 1 mmol) and a few drops of conc. H2SO4. The resulting clear solution, with a pH of 2, was concentrated over a water bath to 20 ml and kept for crystallization at room temperature. After three days, many block-shaped light-green crystals of (I) had formed. These were recovered by filtration, washed with cold water and dried in air.
Crystal data
|
Refinement
|
|
The H atoms were located in difference maps and their positions and Uiso values were freely refined.
Data collection: Collect (Nonius, 1998); cell HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806056509/br2024sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806056509/br2024Isup2.hkl
Data collection: Collect (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.Fe(N2H5)2(SO4)2 | Z = 1 |
Mr = 314.08 | F(000) = 160 |
Triclinic, P1 | Dx = 2.377 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.3306 (3) Å | Cell parameters from 984 reflections |
b = 5.8205 (3) Å | θ = 2.9–27.5° |
c = 7.3835 (4) Å | µ = 2.23 mm−1 |
α = 92.034 (3)° | T = 120 K |
β = 103.313 (3)° | Lath, pale green |
γ = 99.237 (3)° | 0.05 × 0.02 × 0.01 mm |
V = 219.41 (2) Å3 |
Nonius KappaCCD diffractometer | 1004 independent reflections |
Radiation source: fine-focus sealed tube | 911 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω and φ scans | θmax = 28.0°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −6→6 |
Tmin = 0.897, Tmax = 0.978 | k = −7→7 |
3957 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | All H-atom parameters refined |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0127P)2 + 0.6538P] where P = (Fo2 + 2Fc2)/3 |
1004 reflections | (Δ/σ)max < 0.001 |
90 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.0000 | 0.0000 | 0.0000 | 0.01099 (17) | |
S1 | 0.63302 (12) | 0.24660 (11) | 0.21899 (9) | 0.00929 (18) | |
O1 | 0.3609 (4) | 0.2280 (4) | 0.0944 (3) | 0.0142 (4) | |
O2 | 0.8223 (4) | 0.2674 (3) | 0.1024 (3) | 0.0131 (4) | |
O3 | 0.6559 (4) | 0.0411 (3) | 0.3285 (3) | 0.0130 (4) | |
O4 | 0.6932 (4) | 0.4606 (3) | 0.3470 (3) | 0.0122 (4) | |
N1 | 0.0660 (5) | −0.1738 (5) | 0.2599 (4) | 0.0117 (5) | |
H1A | 0.129 (7) | −0.079 (7) | 0.350 (5) | 0.017 (9)* | |
H1B | −0.077 (8) | −0.249 (7) | 0.265 (5) | 0.022 (10)* | |
N2 | 0.2501 (5) | −0.3342 (5) | 0.2854 (4) | 0.0144 (5) | |
H2A | 0.281 (7) | −0.403 (7) | 0.390 (6) | 0.021 (10)* | |
H2B | 0.391 (8) | −0.256 (7) | 0.293 (6) | 0.023 (10)* | |
H2C | 0.188 (8) | −0.442 (7) | 0.204 (6) | 0.026 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0100 (3) | 0.0120 (3) | 0.0110 (3) | 0.0012 (2) | 0.0031 (2) | 0.0007 (2) |
S1 | 0.0085 (3) | 0.0102 (3) | 0.0094 (3) | 0.0007 (2) | 0.0033 (3) | 0.0001 (3) |
O1 | 0.0095 (9) | 0.0156 (10) | 0.0162 (10) | 0.0006 (8) | 0.0014 (8) | 0.0011 (8) |
O2 | 0.0136 (10) | 0.0131 (10) | 0.0141 (10) | 0.0020 (8) | 0.0063 (8) | 0.0013 (8) |
O3 | 0.0157 (10) | 0.0118 (10) | 0.0126 (10) | 0.0017 (8) | 0.0058 (8) | 0.0024 (8) |
O4 | 0.0151 (10) | 0.0112 (10) | 0.0105 (10) | 0.0009 (8) | 0.0048 (8) | −0.0015 (8) |
N1 | 0.0079 (11) | 0.0138 (12) | 0.0136 (12) | 0.0014 (10) | 0.0033 (10) | 0.0006 (10) |
N2 | 0.0151 (13) | 0.0145 (13) | 0.0133 (13) | 0.0034 (11) | 0.0023 (11) | 0.0012 (11) |
Fe1—O1 | 2.109 (2) | S1—O1 | 1.513 (2) |
Fe1—O1i | 2.109 (2) | O2—Fe1iv | 2.147 (2) |
Fe1—O2ii | 2.147 (2) | N1—N2 | 1.446 (4) |
Fe1—O2iii | 2.147 (2) | N1—H1A | 0.82 (4) |
Fe1—N1 | 2.184 (2) | N1—H1B | 0.82 (4) |
Fe1—N1i | 2.184 (2) | N2—H2A | 0.88 (4) |
S1—O2 | 1.464 (2) | N2—H2B | 0.80 (4) |
S1—O3 | 1.473 (2) | N2—H2C | 0.82 (4) |
S1—O4 | 1.482 (2) | ||
O1—Fe1—O1i | 180.0 | O2—S1—O1 | 108.74 (12) |
O1—Fe1—O2ii | 87.04 (8) | O3—S1—O1 | 111.25 (12) |
O1i—Fe1—O2ii | 92.96 (8) | O4—S1—O1 | 109.43 (12) |
O1—Fe1—O2iii | 92.96 (8) | S1—O1—Fe1 | 142.94 (13) |
O1i—Fe1—O2iii | 87.04 (8) | S1—O2—Fe1iv | 128.85 (12) |
O2ii—Fe1—O2iii | 180.0 | N2—N1—Fe1 | 118.02 (18) |
O1—Fe1—N1 | 90.79 (9) | N2—N1—H1A | 102 (3) |
O1i—Fe1—N1 | 89.21 (9) | Fe1—N1—H1A | 111 (3) |
O2ii—Fe1—N1 | 95.14 (9) | N2—N1—H1B | 107 (3) |
O2iii—Fe1—N1 | 84.86 (9) | Fe1—N1—H1B | 107 (3) |
O1—Fe1—N1i | 89.21 (9) | H1A—N1—H1B | 112 (4) |
O1i—Fe1—N1i | 90.79 (9) | N1—N2—H2A | 119 (3) |
O2ii—Fe1—N1i | 84.86 (9) | N1—N2—H2B | 106 (3) |
O2iii—Fe1—N1i | 95.14 (9) | H2A—N2—H2B | 101 (4) |
N1—Fe1—N1i | 180.0 | N1—N2—H2C | 106 (3) |
O2—S1—O3 | 109.79 (12) | H2A—N2—H2C | 105 (4) |
O2—S1—O4 | 107.99 (12) | H2B—N2—H2C | 122 (4) |
O3—S1—O4 | 109.57 (12) | ||
O2—S1—O1—Fe1 | 114.0 (2) | O3—S1—O2—Fe1iv | 24.58 (19) |
O3—S1—O1—Fe1 | −7.1 (3) | O4—S1—O2—Fe1iv | 143.99 (14) |
O4—S1—O1—Fe1 | −128.3 (2) | O1—S1—O2—Fe1iv | −97.35 (16) |
O2ii—Fe1—O1—S1 | 124.1 (2) | O1—Fe1—N1—N2 | −76.0 (2) |
O2iii—Fe1—O1—S1 | −55.9 (2) | O1i—Fe1—N1—N2 | 104.0 (2) |
N1—Fe1—O1—S1 | 29.0 (2) | O2ii—Fe1—N1—N2 | −163.1 (2) |
N1i—Fe1—O1—S1 | −151.0 (2) | O2iii—Fe1—N1—N2 | 16.9 (2) |
Symmetry codes: (i) −x, −y, −z; (ii) x−1, y, z; (iii) −x+1, −y, −z; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3v | 0.82 (4) | 2.37 (4) | 3.070 (3) | 143 (3) |
N1—H1B···O4vi | 0.82 (4) | 2.12 (4) | 2.867 (3) | 151 (4) |
N2—H2A···O4v | 0.88 (4) | 1.96 (4) | 2.799 (3) | 160 (4) |
N2—H2B···O3 | 0.80 (4) | 2.02 (4) | 2.769 (4) | 156 (4) |
N2—H2C···O2iii | 0.82 (4) | 2.51 (4) | 2.849 (3) | 106 (3) |
N2—H2C···O2vi | 0.82 (4) | 2.32 (4) | 3.011 (4) | 141 (4) |
N2—H2C···O1vii | 0.82 (4) | 2.45 (4) | 3.073 (3) | 133 (4) |
Symmetry codes: (iii) −x+1, −y, −z; (v) −x+1, −y, −z+1; (vi) x−1, y−1, z; (vii) x, y−1, z. |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hand, D. W. & Prout, C. K. (1966). J. Chem. Soc. A, pp. 168–171. CrossRef Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parkins, A. W., Prince, P. D., Smith, R. A. L. & Steed, J. W. (2001). Acta Cryst. C57, 670–671. CrossRef CAS IUCr Journals Google Scholar
Prout, C. K. & Powell, H. M. (1961). J. Chem. Soc. pp. 4177–4182. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2006). Acta Cryst. E62, i219–i221. Web of Science CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.