inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iron(II) hydrazinium sulfate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 22 December 2006; accepted 29 December 2006; online 12 January 2007)

The title compound, poly[[dihydraziniumiron(II)]-di-μ-sulfato-κ4O:O′], [Fe(SO4)2(N2H5)2]n, contains fairly regular trans-FeN2O4 octa­hedra. The Fe atoms (site symmetry [\overline{1}]) are bridged by pairs of sulfate groups into infinite [100] chains, which are cross-linked by a network of N—H⋯O hydrogen bonds. Fe(N2H5)2(SO4)2 is isostructural with its zinc, chromium(II) and cadmium-containing analogues.

Comment

The divalent-metal–hydrazinium sulfates of general formula M(N2H5)2(SO4)2, where M = Cr, Mn, Fe, Co, Ni, Cu, Zn and Cd can be readily prepared by reacting a salt of the respective metal with hydrazinium sulfate in dilute sulfuric acid (Hand & Prout, 1966[Hand, D. W. & Prout, C. K. (1966). J. Chem. Soc. A, pp. 168-171.]), although this method usually results in a microcrystalline product. Recently, we described the single-crystal structure of Cd(N2H5)2(SO4)2 (Srinivasan et al., 2006[Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2006). Acta Cryst. E62, i219-i221.]) and we now report the isostructural title compound, (I), Fe(N2H5)2(SO4)2. The compounds Zn(N2H5)2(SO4)2 (Prout & Powell, 1961[Prout, C. K. & Powell, H. M. (1961). J. Chem. Soc. pp. 4177-4182.]) and Cr(N2H5)2(SO4)2 (Parkins et al., 2001[Parkins, A. W., Prince, P. D., Smith, R. A. L. & Steed, J. W. (2001). Acta Cryst. C57, 670-671.]) also share the same stucture.

Compound (I) contains trans-FeN2O4 octa­hedra (Fig. 1[link]), in which the N atom is part of a hydrazinium (N2H5+) cation. The Fe atoms (site symmetry [\overline{1}]) are connected by pairs of sulfate groups into infinite chains that propagate in [100]. The intra-chain Fe⋯Fe separation in (I) is equal to the a unit-cell dimension, i.e. 5.3306 (3) Å. The two distinct Fe—O bond lengths in (I) are similar (Table 1[link]) and do not show the gross differences seen in the chromium and zinc analogues.

The iron–sulfate chains in (I) are cross-linked by N—H⋯O hydrogen bonds (Table 2[link]), resulting in the same hydrogen-bonding network seen in the other analogues noted above. A well defined trifurcated N2—H3C⋯(O,O,O) inter­action occurs (mean bond angle about H3C = 107.3°).

[Figure 1]
Figure 1
The asymmetric unit of (I) expanded to show the iron coordination (50% displacement ellipsoids; arbitrary spheres for the H atoms). Symmetry codes: (i) −x, −y, −z; (ii) x − 1, y, z; (iii) 1 − x, −y, −z.
[Figure 2]
Figure 2
Polyhedral view of a fragment of the chain structure of (I). Colour key: Fe octa­hedra green, S tetra­hedra yellow, O pink, N blue, H grey. The H⋯O portions of the hydrogen bonds are coloured light blue.

Experimental

The reaction of hydrazine monohydrate (N2H4·H2O; 0.50 g, 10 mmol) and ethyl bromo­acetate (1.671 g, 10 mmol) in 5 ml of dry ethanol resulted in the formation of a white solid containing hydrazinium bromide and ethyl hydrazinoacetate, as reported earlier (Srinivasan et al., 2006[Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2006). Acta Cryst. E62, i219-i221.]). This white solid (0.236 g) was dissolved in water (30 ml) and mixed with an aqueous solution (30 ml) of FeSO4·7H2O (0.278 g, 1 mmol) and a few drops of conc. H2SO4. The resulting clear solution, with a pH of 2, was concentrated over a water bath to 20 ml and kept for crystallization at room temperature. After three days, many block-shaped light-green crystals of (I) had formed. These were recovered by filtration, washed with cold water and dried in air.

Crystal data
  • [Fe(SO4)2(N2H5)2]

  • Mr = 314.08

  • Triclinic, [P \overline 1]

  • a = 5.3306 (3) Å

  • b = 5.8205 (3) Å

  • c = 7.3835 (4) Å

  • α = 92.034 (3)°

  • β = 103.313 (3)°

  • γ = 99.237 (3)°

  • V = 219.41 (2) Å3

  • Z = 1

  • Dx = 2.377 Mg m−3

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 120 (2) K

  • Lath, pale green

  • 0.05 × 0.02 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.978

  • 3957 measured reflections

  • 1004 independent reflections

  • 911 reflections with I > 2σ(I)

  • Rint = 0.043

  • θmax = 28.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.12

  • 1004 reflections

  • 90 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0127P)2 + 0.6538P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—O1 2.109 (2)
Fe1—O2i 2.147 (2)
Fe1—N1 2.184 (2)
S1—O1—Fe1 142.94 (13)
S1—O2—Fe1ii 128.85 (12)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3iii 0.82 (4) 2.37 (4) 3.070 (3) 143 (3)
N1—H1B⋯O4iv 0.82 (4) 2.12 (4) 2.867 (3) 151 (4)
N2—H2A⋯O4iii 0.88 (4) 1.96 (4) 2.799 (3) 160 (4)
N2—H2B⋯O3 0.80 (4) 2.02 (4) 2.769 (4) 156 (4)
N2—H2C⋯O2v 0.82 (4) 2.51 (4) 2.849 (3) 106 (3)
N2—H2C⋯O2iv 0.82 (4) 2.32 (4) 3.011 (4) 141 (4)
N2—H2C⋯O1vi 0.82 (4) 2.45 (4) 3.073 (3) 133 (4)
Symmetry codes: (iii) -x+1, -y, -z+1; (iv) x-1, y-1, z; (v) -x+1, -y, -z; (vi) x, y-1, z.

The H atoms were located in difference maps and their positions and Uiso values were freely refined.

Data collection: Collect (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) & SORTAV (Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: Collect (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
Fe(N2H5)2(SO4)2Z = 1
Mr = 314.08F(000) = 160
Triclinic, P1Dx = 2.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3306 (3) ÅCell parameters from 984 reflections
b = 5.8205 (3) Åθ = 2.9–27.5°
c = 7.3835 (4) ŵ = 2.23 mm1
α = 92.034 (3)°T = 120 K
β = 103.313 (3)°Lath, pale green
γ = 99.237 (3)°0.05 × 0.02 × 0.01 mm
V = 219.41 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
1004 independent reflections
Radiation source: fine-focus sealed tube911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scansθmax = 28.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 66
Tmin = 0.897, Tmax = 0.978k = 77
3957 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0127P)2 + 0.6538P]
where P = (Fo2 + 2Fc2)/3
1004 reflections(Δ/σ)max < 0.001
90 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.00000.01099 (17)
S10.63302 (12)0.24660 (11)0.21899 (9)0.00929 (18)
O10.3609 (4)0.2280 (4)0.0944 (3)0.0142 (4)
O20.8223 (4)0.2674 (3)0.1024 (3)0.0131 (4)
O30.6559 (4)0.0411 (3)0.3285 (3)0.0130 (4)
O40.6932 (4)0.4606 (3)0.3470 (3)0.0122 (4)
N10.0660 (5)0.1738 (5)0.2599 (4)0.0117 (5)
H1A0.129 (7)0.079 (7)0.350 (5)0.017 (9)*
H1B0.077 (8)0.249 (7)0.265 (5)0.022 (10)*
N20.2501 (5)0.3342 (5)0.2854 (4)0.0144 (5)
H2A0.281 (7)0.403 (7)0.390 (6)0.021 (10)*
H2B0.391 (8)0.256 (7)0.293 (6)0.023 (10)*
H2C0.188 (8)0.442 (7)0.204 (6)0.026 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0100 (3)0.0120 (3)0.0110 (3)0.0012 (2)0.0031 (2)0.0007 (2)
S10.0085 (3)0.0102 (3)0.0094 (3)0.0007 (2)0.0033 (3)0.0001 (3)
O10.0095 (9)0.0156 (10)0.0162 (10)0.0006 (8)0.0014 (8)0.0011 (8)
O20.0136 (10)0.0131 (10)0.0141 (10)0.0020 (8)0.0063 (8)0.0013 (8)
O30.0157 (10)0.0118 (10)0.0126 (10)0.0017 (8)0.0058 (8)0.0024 (8)
O40.0151 (10)0.0112 (10)0.0105 (10)0.0009 (8)0.0048 (8)0.0015 (8)
N10.0079 (11)0.0138 (12)0.0136 (12)0.0014 (10)0.0033 (10)0.0006 (10)
N20.0151 (13)0.0145 (13)0.0133 (13)0.0034 (11)0.0023 (11)0.0012 (11)
Geometric parameters (Å, º) top
Fe1—O12.109 (2)S1—O11.513 (2)
Fe1—O1i2.109 (2)O2—Fe1iv2.147 (2)
Fe1—O2ii2.147 (2)N1—N21.446 (4)
Fe1—O2iii2.147 (2)N1—H1A0.82 (4)
Fe1—N12.184 (2)N1—H1B0.82 (4)
Fe1—N1i2.184 (2)N2—H2A0.88 (4)
S1—O21.464 (2)N2—H2B0.80 (4)
S1—O31.473 (2)N2—H2C0.82 (4)
S1—O41.482 (2)
O1—Fe1—O1i180.0O2—S1—O1108.74 (12)
O1—Fe1—O2ii87.04 (8)O3—S1—O1111.25 (12)
O1i—Fe1—O2ii92.96 (8)O4—S1—O1109.43 (12)
O1—Fe1—O2iii92.96 (8)S1—O1—Fe1142.94 (13)
O1i—Fe1—O2iii87.04 (8)S1—O2—Fe1iv128.85 (12)
O2ii—Fe1—O2iii180.0N2—N1—Fe1118.02 (18)
O1—Fe1—N190.79 (9)N2—N1—H1A102 (3)
O1i—Fe1—N189.21 (9)Fe1—N1—H1A111 (3)
O2ii—Fe1—N195.14 (9)N2—N1—H1B107 (3)
O2iii—Fe1—N184.86 (9)Fe1—N1—H1B107 (3)
O1—Fe1—N1i89.21 (9)H1A—N1—H1B112 (4)
O1i—Fe1—N1i90.79 (9)N1—N2—H2A119 (3)
O2ii—Fe1—N1i84.86 (9)N1—N2—H2B106 (3)
O2iii—Fe1—N1i95.14 (9)H2A—N2—H2B101 (4)
N1—Fe1—N1i180.0N1—N2—H2C106 (3)
O2—S1—O3109.79 (12)H2A—N2—H2C105 (4)
O2—S1—O4107.99 (12)H2B—N2—H2C122 (4)
O3—S1—O4109.57 (12)
O2—S1—O1—Fe1114.0 (2)O3—S1—O2—Fe1iv24.58 (19)
O3—S1—O1—Fe17.1 (3)O4—S1—O2—Fe1iv143.99 (14)
O4—S1—O1—Fe1128.3 (2)O1—S1—O2—Fe1iv97.35 (16)
O2ii—Fe1—O1—S1124.1 (2)O1—Fe1—N1—N276.0 (2)
O2iii—Fe1—O1—S155.9 (2)O1i—Fe1—N1—N2104.0 (2)
N1—Fe1—O1—S129.0 (2)O2ii—Fe1—N1—N2163.1 (2)
N1i—Fe1—O1—S1151.0 (2)O2iii—Fe1—N1—N216.9 (2)
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3v0.82 (4)2.37 (4)3.070 (3)143 (3)
N1—H1B···O4vi0.82 (4)2.12 (4)2.867 (3)151 (4)
N2—H2A···O4v0.88 (4)1.96 (4)2.799 (3)160 (4)
N2—H2B···O30.80 (4)2.02 (4)2.769 (4)156 (4)
N2—H2C···O2iii0.82 (4)2.51 (4)2.849 (3)106 (3)
N2—H2C···O2vi0.82 (4)2.32 (4)3.011 (4)141 (4)
N2—H2C···O1vii0.82 (4)2.45 (4)3.073 (3)133 (4)
Symmetry codes: (iii) x+1, y, z; (v) x+1, y, z+1; (vi) x1, y1, z; (vii) x, y1, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHand, D. W. & Prout, C. K. (1966). J. Chem. Soc. A, pp. 168–171.  CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParkins, A. W., Prince, P. D., Smith, R. A. L. & Steed, J. W. (2001). Acta Cryst. C57, 670–671.  CrossRef CAS IUCr Journals Google Scholar
First citationProut, C. K. & Powell, H. M. (1961). J. Chem. Soc. pp. 4177–4182.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSrinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2006). Acta Cryst. E62, i219–i221.  Web of Science CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds