metal-organic compounds
catena-Poly[[(tetrafluoroborato-κF)silver(I)]-μ-triphenylphosphine-κ2P:C3]
aDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: sb285@bath.ac.uk
The title compound, [Ag(BF4)(C18H15P)]n, crystallizes from dichloromethane–pentane as a one-dimensional coordination polymer in which the Ag atom is bound to a phosphine P atom, one F atom of tetrafluoroborate and one C atom of a neighbouring triphenylphosphine ligand.
Comment
Complexes of silver in which close metal–arene interactions are present in the solid state are not uncommon, with the first example reported by Smith & Rundle (1958). Typically, in such complexes, the silver is partnered with weakly or non-coordinating anions such as trifluoromethanesulfonate or perchlorate. On the other hand, there have been few reports of solid state structures of silver complexes which contain bound tetrafluoroborate.
We have previously described (tertiary phosphine)silver complexes of functionalized 1-closo-carborane anions (Patmore et al., 2002; Clarke et al., 2004). Whilst attempting to prepare one such complex from silver tetrafluoroborate and [(PPh3)2Rh(nbd)]·CB11H7Et5 (Molinos et al., 2005), colourless single crystals suitable for an X-ray diffraction experiment were obtained. The crystals were determined to be the title complex, (I), and the results of the diffraction study are described below.
In (I) (Fig. 1), the coordination of the silver is quasi-trigonal, the silver bonding to P, F1 and C3i [symmetry code: (i) − x, y − , − z], with the silver having only slight deviation from the P—F—C ligand plane [0.0672 (7) Å]. The Ag—C3i and Ag—F1 distances are long (Table 1), but are consistent with bonding interactions, and the coordination of C3i results in a one-dimensional coordination polymer. As expected, the coordination of F1 results in a B—F1 distance greater than the other B—F distances.
There are two other Ag⋯F contacts within van der Waals radii. An Ag⋯F2 contact is accommodated by a small Ag—F1—B—F2 torsion angle and a reduced F1—B—F2 angle. The effect of this close contact is also seen in an increased P—Ag—F1 angle relative to P—Ag—C3i and F1—Ag—C3i. Finally, an Ag⋯F contact occurs between Ag and F3ii [symmetry code: (ii) 1 − x, −y, −z] in a pairwise manner, with a matching contact between the symmetry-related Agii and F3 (Fig. 2).
Experimental
A solution containing equimolar quantities of silver tetrafluoroborate and [(PPh3)2Rh(nbd)]·CB11H7Et5 (Molinos et al., 2005) in dichloromethane was layered with pentanes and held at 278 K for one week to crystallize. A crystal of (I) suitable for a single-crystal X-ray diffraction study was selected directly from the sample.
Crystal data
|
Refinement
|
H atoms were located in difference Fourier maps and placed in idealized positions, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). The largest peak and deepest hole in the final difference map are located 0.75 and 0.60 Å from the Ag atom, respectively.
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806054511/dn3031sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806054511/dn3031Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.[Ag(BF4)(C18H15P)] | F(000) = 904 |
Mr = 456.95 | Dx = 1.733 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 38097 reflections |
a = 12.0606 (1) Å | θ = 2.9–30.0° |
b = 11.2379 (1) Å | µ = 1.28 mm−1 |
c = 12.9254 (1) Å | T = 150 K |
β = 90.0093 (7)° | Block, colourless |
V = 1751.85 (3) Å3 | 0.33 × 0.25 × 0.18 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 5109 independent reflections |
Radiation source: fine-focus sealed tube | 4717 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
652 1.0° images with φ and ω scans | θmax = 30.0°, θmin = 3.8° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −16→16 |
Tmin = 0.678, Tmax = 0.803 | k = −15→15 |
31041 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0322P)2 + 1.6142P] where P = (Fo2 + 2Fc2)/3 |
5109 reflections | (Δ/σ)max < 0.001 |
226 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −1.37 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag | 0.611584 (13) | −0.042004 (13) | 0.164743 (11) | 0.03024 (6) | |
P | 0.69044 (3) | 0.09718 (4) | 0.28367 (3) | 0.01861 (8) | |
C1 | 0.82162 (14) | 0.16844 (14) | 0.25136 (13) | 0.0200 (3) | |
C2 | 0.89562 (14) | 0.20668 (15) | 0.32828 (13) | 0.0229 (3) | |
H2 | 0.8786 | 0.1939 | 0.3992 | 0.028* | |
C3 | 0.99410 (15) | 0.26337 (15) | 0.30070 (15) | 0.0266 (3) | |
H3 | 1.0445 | 0.2889 | 0.3526 | 0.032* | |
C4 | 1.01831 (16) | 0.28241 (17) | 0.19599 (17) | 0.0316 (4) | |
H4 | 1.0856 | 0.3204 | 0.1769 | 0.038* | |
C5 | 0.94475 (18) | 0.24616 (16) | 0.12056 (16) | 0.0316 (4) | |
H5 | 0.9612 | 0.2603 | 0.0497 | 0.038* | |
C6 | 0.84627 (16) | 0.18891 (15) | 0.14766 (14) | 0.0253 (3) | |
H6 | 0.7961 | 0.1639 | 0.0954 | 0.030* | |
C11 | 0.71924 (14) | 0.02228 (14) | 0.40527 (13) | 0.0209 (3) | |
C12 | 0.64926 (17) | 0.03004 (16) | 0.49078 (14) | 0.0271 (4) | |
H12 | 0.5866 | 0.0812 | 0.4889 | 0.032* | |
C13 | 0.6713 (2) | −0.03743 (18) | 0.57922 (16) | 0.0352 (4) | |
H13 | 0.6234 | −0.0320 | 0.6374 | 0.042* | |
C14 | 0.7621 (2) | −0.1117 (2) | 0.58266 (18) | 0.0431 (5) | |
H14 | 0.7772 | −0.1566 | 0.6433 | 0.052* | |
C15 | 0.8318 (2) | −0.1210 (2) | 0.49674 (18) | 0.0423 (5) | |
H15 | 0.8940 | −0.1728 | 0.4987 | 0.051* | |
C16 | 0.81032 (17) | −0.05452 (17) | 0.40873 (16) | 0.0307 (4) | |
H16 | 0.8578 | −0.0612 | 0.3504 | 0.037* | |
C21 | 0.60075 (14) | 0.22346 (14) | 0.31065 (13) | 0.0206 (3) | |
C22 | 0.50795 (16) | 0.24133 (16) | 0.24879 (16) | 0.0290 (4) | |
H22 | 0.4890 | 0.1843 | 0.1975 | 0.035* | |
C23 | 0.44245 (17) | 0.34282 (19) | 0.26175 (19) | 0.0368 (4) | |
H23 | 0.3788 | 0.3545 | 0.2196 | 0.044* | |
C24 | 0.47023 (17) | 0.42631 (18) | 0.33594 (18) | 0.0344 (4) | |
H24 | 0.4259 | 0.4955 | 0.3444 | 0.041* | |
C25 | 0.56295 (16) | 0.40925 (16) | 0.39822 (15) | 0.0294 (4) | |
H25 | 0.5818 | 0.4669 | 0.4490 | 0.035* | |
C26 | 0.62809 (15) | 0.30801 (15) | 0.38628 (13) | 0.0231 (3) | |
H26 | 0.6910 | 0.2962 | 0.4293 | 0.028* | |
B | 0.66670 (19) | −0.0528 (2) | −0.08054 (17) | 0.0296 (4) | |
F1 | 0.59061 (13) | −0.10780 (13) | −0.01281 (10) | 0.0465 (3) | |
F2 | 0.72340 (16) | 0.03121 (18) | −0.02458 (14) | 0.0662 (5) | |
F3 | 0.60793 (12) | −0.00064 (12) | −0.16008 (10) | 0.0379 (3) | |
F4 | 0.73747 (15) | −0.13653 (18) | −0.11968 (13) | 0.0648 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag | 0.03680 (9) | 0.02773 (8) | 0.02618 (8) | −0.00542 (5) | −0.00191 (6) | −0.00851 (5) |
P | 0.02229 (19) | 0.01627 (17) | 0.01727 (18) | −0.00097 (14) | 0.00198 (14) | −0.00160 (13) |
C1 | 0.0230 (7) | 0.0157 (6) | 0.0212 (7) | 0.0002 (5) | 0.0045 (6) | −0.0010 (5) |
C2 | 0.0238 (8) | 0.0204 (7) | 0.0247 (8) | 0.0007 (6) | 0.0007 (6) | 0.0018 (6) |
C3 | 0.0218 (8) | 0.0209 (7) | 0.0370 (9) | 0.0011 (6) | −0.0014 (7) | 0.0036 (7) |
C4 | 0.0288 (9) | 0.0237 (8) | 0.0424 (11) | −0.0015 (7) | 0.0120 (8) | 0.0042 (7) |
C5 | 0.0407 (10) | 0.0230 (8) | 0.0309 (9) | −0.0038 (7) | 0.0158 (8) | −0.0005 (7) |
C6 | 0.0343 (9) | 0.0191 (7) | 0.0223 (8) | −0.0012 (6) | 0.0065 (6) | −0.0025 (6) |
C11 | 0.0251 (8) | 0.0184 (7) | 0.0193 (7) | −0.0001 (6) | 0.0021 (6) | −0.0002 (5) |
C12 | 0.0319 (9) | 0.0261 (8) | 0.0231 (8) | 0.0036 (7) | 0.0061 (7) | 0.0019 (6) |
C13 | 0.0457 (12) | 0.0359 (10) | 0.0241 (9) | 0.0037 (8) | 0.0094 (8) | 0.0059 (7) |
C14 | 0.0528 (13) | 0.0456 (12) | 0.0310 (10) | 0.0101 (10) | 0.0033 (9) | 0.0159 (9) |
C15 | 0.0415 (11) | 0.0459 (12) | 0.0396 (11) | 0.0171 (10) | 0.0053 (9) | 0.0150 (9) |
C16 | 0.0325 (9) | 0.0307 (9) | 0.0288 (9) | 0.0076 (7) | 0.0068 (7) | 0.0060 (7) |
C21 | 0.0217 (7) | 0.0175 (7) | 0.0226 (7) | −0.0010 (5) | 0.0030 (6) | 0.0001 (6) |
C22 | 0.0269 (8) | 0.0238 (8) | 0.0361 (10) | −0.0010 (6) | −0.0062 (7) | −0.0020 (7) |
C23 | 0.0280 (9) | 0.0303 (9) | 0.0520 (13) | 0.0046 (7) | −0.0056 (8) | 0.0014 (9) |
C24 | 0.0303 (9) | 0.0241 (8) | 0.0489 (12) | 0.0064 (7) | 0.0087 (8) | 0.0003 (8) |
C25 | 0.0333 (9) | 0.0216 (8) | 0.0333 (9) | 0.0006 (7) | 0.0095 (7) | −0.0040 (7) |
C26 | 0.0257 (8) | 0.0206 (7) | 0.0230 (7) | −0.0007 (6) | 0.0031 (6) | −0.0023 (6) |
B | 0.0291 (10) | 0.0369 (11) | 0.0229 (9) | 0.0034 (8) | −0.0060 (7) | −0.0042 (8) |
F1 | 0.0651 (9) | 0.0474 (8) | 0.0270 (6) | −0.0102 (7) | 0.0058 (6) | 0.0015 (5) |
F2 | 0.0600 (10) | 0.0889 (14) | 0.0497 (9) | −0.0271 (9) | −0.0101 (8) | −0.0274 (9) |
F3 | 0.0452 (7) | 0.0356 (6) | 0.0328 (6) | 0.0025 (5) | −0.0092 (5) | 0.0080 (5) |
F4 | 0.0595 (10) | 0.0807 (12) | 0.0543 (9) | 0.0422 (9) | −0.0040 (8) | −0.0117 (8) |
Ag—P | 2.3903 (4) | C13—C14 | 1.378 (3) |
Ag—F1 | 2.4242 (13) | C13—H13 | 0.9500 |
Ag—C3i | 2.5706 (18) | C14—C15 | 1.397 (3) |
P—C11 | 1.8163 (17) | C14—H14 | 0.9500 |
P—C21 | 1.8182 (17) | C15—C16 | 1.385 (3) |
P—C1 | 1.8219 (17) | C15—H15 | 0.9500 |
C1—C6 | 1.392 (2) | C16—H16 | 0.9500 |
C1—C2 | 1.403 (2) | C21—C22 | 1.390 (2) |
C2—C3 | 1.394 (2) | C21—C26 | 1.402 (2) |
C2—H2 | 0.9500 | C22—C23 | 1.398 (3) |
C3—C4 | 1.401 (3) | C22—H22 | 0.9500 |
C3—Agii | 2.5706 (18) | C23—C24 | 1.383 (3) |
C3—H3 | 0.9500 | C23—H23 | 0.9500 |
C4—C5 | 1.380 (3) | C24—C25 | 1.391 (3) |
C4—H4 | 0.9500 | C24—H24 | 0.9500 |
C5—C6 | 1.396 (3) | C25—C26 | 1.391 (2) |
C5—H5 | 0.9500 | C25—H25 | 0.9500 |
C6—H6 | 0.9500 | C26—H26 | 0.9500 |
C11—C12 | 1.393 (2) | B—F4 | 1.367 (3) |
C11—C16 | 1.398 (2) | B—F2 | 1.372 (3) |
C12—C13 | 1.397 (3) | B—F3 | 1.380 (2) |
C12—H12 | 0.9500 | B—F1 | 1.411 (3) |
Ag···F3iii | 2.6912 (14) | Ag···F2 | 2.913 (2) |
P—Ag—F1 | 148.19 (4) | C14—C13—H13 | 119.8 |
P—Ag—C3i | 129.96 (5) | C12—C13—H13 | 119.8 |
F1—Ag—C3i | 81.56 (6) | C13—C14—C15 | 119.86 (19) |
C11—P—C21 | 108.03 (8) | C13—C14—H14 | 120.1 |
C11—P—C1 | 103.66 (8) | C15—C14—H14 | 120.1 |
C21—P—C1 | 102.57 (7) | C16—C15—C14 | 120.0 (2) |
C11—P—Ag | 109.22 (5) | C16—C15—H15 | 120.0 |
C21—P—Ag | 113.41 (6) | C14—C15—H15 | 120.0 |
C1—P—Ag | 119.06 (5) | C15—C16—C11 | 120.41 (18) |
C6—C1—C2 | 119.71 (15) | C15—C16—H16 | 119.8 |
C6—C1—P | 118.61 (13) | C11—C16—H16 | 119.8 |
C2—C1—P | 121.63 (12) | C22—C21—C26 | 119.49 (16) |
C3—C2—C1 | 120.04 (16) | C22—C21—P | 118.78 (13) |
C3—C2—H2 | 120.0 | C26—C21—P | 121.51 (13) |
C1—C2—H2 | 120.0 | C21—C22—C23 | 120.27 (18) |
C2—C3—C4 | 119.63 (18) | C21—C22—H22 | 119.9 |
C2—C3—Agii | 85.52 (11) | C23—C22—H22 | 119.9 |
C4—C3—Agii | 98.12 (12) | C24—C23—C22 | 120.00 (19) |
C2—C3—H3 | 120.2 | C24—C23—H23 | 120.0 |
C4—C3—H3 | 120.2 | C22—C23—H23 | 120.0 |
Agii—C3—H3 | 86.4 | C23—C24—C25 | 120.17 (18) |
C5—C4—C3 | 120.24 (17) | C23—C24—H24 | 119.9 |
C5—C4—H4 | 119.9 | C25—C24—H24 | 119.9 |
C3—C4—H4 | 119.9 | C24—C25—C26 | 120.16 (18) |
C4—C5—C6 | 120.39 (17) | C24—C25—H25 | 119.9 |
C4—C5—H5 | 119.8 | C26—C25—H25 | 119.9 |
C6—C5—H5 | 119.8 | C25—C26—C21 | 119.92 (17) |
C1—C6—C5 | 119.98 (18) | C25—C26—H26 | 120.0 |
C1—C6—H6 | 120.0 | C21—C26—H26 | 120.0 |
C5—C6—H6 | 120.0 | F4—B—F2 | 110.9 (2) |
C12—C11—C16 | 119.30 (16) | F4—B—F3 | 109.72 (17) |
C12—C11—P | 122.79 (14) | F2—B—F3 | 110.87 (19) |
C16—C11—P | 117.64 (13) | F4—B—F1 | 109.54 (19) |
C11—C12—C13 | 119.98 (18) | F2—B—F1 | 107.37 (18) |
C11—C12—H12 | 120.0 | F3—B—F1 | 108.32 (17) |
C13—C12—H12 | 120.0 | B—F1—Ag | 112.70 (12) |
C14—C13—C12 | 120.43 (19) | ||
Ag—F1—B—F2 | −5.7 (2) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1, −y, −z. |
Acknowledgements
The EPSCR and Royal Society are thanked for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Clarke, A. J., Ingleson, M. J., Kociok-Köhn, G., Mahon, M. F., Patmore, N. J., Rourke, J. P., Ruggiero, G. D. & Weller, A. S. (2004). J. Am. Chem. Soc. 126, 1503–1517. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Molinos, E., Kociok-Köhn, G. & Weller, A. S. (2005). Chem. Commun. pp. 3609–3611. CrossRef Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Patmore, N. J., Hague, C., Cotgreave, J. H., Mahon, M. F., Frost, C. G. & Weller, A. S. (2002). Chem. Eur. J. 8, 2088–2098. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Smith, H. G. & Rundle, R. E. (1958). J. Am. Chem. Soc. 80, 5075–5080. CSD CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.