metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tetra­fluoro­borato-κF)silver(I)]-μ-tri­phenyl­phosphine-κ2P:C3]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: sb285@bath.ac.uk

(Received 29 November 2006; accepted 15 December 2006; online 6 January 2007)

The title compound, [Ag(BF4)(C18H15P)]n, crystallizes from dichloro­methane–pentane as a one-dimensional coordination polymer in which the Ag atom is bound to a phosphine P atom, one F atom of tetra­fluoro­borate and one C atom of a neighbouring triphenyl­phosphine ligand.

Comment

Complexes of silver in which close metal–arene inter­actions are present in the solid state are not uncommon, with the first example reported by Smith & Rundle (1958[Smith, H. G. & Rundle, R. E. (1958). J. Am. Chem. Soc. 80, 5075-5080.]). Typically, in such complexes, the silver is partnered with weakly or non-coordinating anions such as trifluoro­methane­sulfonate or perchlorate. On the other hand, there have been few reports of solid state structures of silver complexes which contain bound tetra­fluoro­borate.

[Scheme 1]

We have previously described (tertiary phosphine)silver complexes of functionalized 1-closo-carborane anions (Patmore et al., 2002[Patmore, N. J., Hague, C., Cotgreave, J. H., Mahon, M. F., Frost, C. G. & Weller, A. S. (2002). Chem. Eur. J. 8, 2088-2098.]; Clarke et al., 2004[Clarke, A. J., Ingleson, M. J., Kociok-Köhn, G., Mahon, M. F., Patmore, N. J., Rourke, J. P., Ruggiero, G. D. & Weller, A. S. (2004). J. Am. Chem. Soc. 126, 1503-1517.]). Whilst attempting to prepare one such complex from silver tetra­fluoro­borate and [(PPh3)2Rh(nbd)]·CB11H7Et5 (Molinos et al., 2005[Molinos, E., Kociok-Köhn, G. & Weller, A. S. (2005). Chem. Commun. pp. 3609-3611.]), colourless single crystals suitable for an X-ray diffraction experiment were obtained. The crystals were determined to be the title complex, (I)[link], and the results of the diffraction study are described below.

In (I)[link] (Fig. 1[link]), the coordination of the silver is quasi-trigonal, the silver bonding to P, F1 and C3i [symmetry code: (i) [{3\over 2}] − x, y − [{1\over 2}], [{1\over 2}] − z], with the silver having only slight deviation from the P—F—C ligand plane [0.0672 (7) Å]. The Ag—C3i and Ag—F1 distances are long (Table 1[link]), but are consistent with bonding inter­actions, and the coordination of C3i results in a one-dimensional coordination polymer. As expected, the coordination of F1 results in a B—F1 distance greater than the other B—F distances.

There are two other Ag⋯F contacts within van der Waals radii. An Ag⋯F2 contact is accommodated by a small Ag—F1—B—F2 torsion angle and a reduced F1—B—F2 angle. The effect of this close contact is also seen in an increased P—Ag—F1 angle relative to P—Ag—C3i and F1—Ag—C3i. Finally, an Ag⋯F contact occurs between Ag and F3ii [symmetry code: (ii) 1 − x, −y, −z] in a pairwise manner, with a matching contact between the symmetry-related Agii and F3 (Fig. 2[link]).

[Figure 1]
Figure 1
Part of the polymeric structure of (I)[link], showing its polymeric nature. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) [{3\over 2}] − x, y − [{1\over 2}], [{1\over 2}] − z; (iii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z.]
[Figure 2]
Figure 2
Two asymmetric units of (I)[link], together with neighbouring Agiii and C6H5Pii groups, showing the pairwise packing. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) [{3\over 2}] − x, y − [{1\over 2}], [{1\over 2}] − z; (ii) 1 − x,-y,-z; (iii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z.]

Experimental

A solution containing equimolar quanti­ties of silver tetra­fluoro­borate and [(PPh3)2Rh(nbd)]·CB11H7Et5 (Molinos et al., 2005[Molinos, E., Kociok-Köhn, G. & Weller, A. S. (2005). Chem. Commun. pp. 3609-3611.]) in dichloro­methane was layered with pentanes and held at 278 K for one week to crystallize. A crystal of (I)[link] suitable for a single-crystal X-ray diffraction study was selected directly from the sample.

Crystal data
  • [Ag(BF4)(C18H15P)]

  • Mr = 456.95

  • Monoclinic, P 21 /n

  • a = 12.0606 (1) Å

  • b = 11.2379 (1) Å

  • c = 12.9254 (1) Å

  • β = 90.0093 (7)°

  • V = 1751.85 (3) Å3

  • Z = 4

  • Dx = 1.733 Mg m−3

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.33 × 0.25 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.678, Tmax = 0.803

  • 31041 measured reflections

  • 5109 independent reflections

  • 4717 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.04

  • 5109 reflections

  • 226 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0322P)2 + 1.6142P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag—P 2.3903 (4)
Ag—F1 2.4242 (13)
Ag—C3i 2.5706 (18)
B—F4 1.367 (3)
B—F2 1.372 (3)
B—F3 1.380 (2)
B—F1 1.411 (3)
Ag⋯F3ii 2.6912 (14)
Ag⋯F2 2.913 (2)
P—Ag—F1 148.19 (4)
P—Ag—C3i 129.96 (5)
F1—Ag—C3i 81.56 (6)
F4—B—F3 109.72 (17)
F2—B—F3 110.87 (19)
F4—B—F1 109.54 (19)
F2—B—F1 107.37 (18)
F3—B—F1 108.32 (17)
B—F1—Ag 112.70 (12)
Ag—F1—B—F2 −5.7 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

H atoms were located in difference Fourier maps and placed in idealized positions, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). The largest peak and deepest hole in the final difference map are located 0.75 and 0.60 Å from the Ag atom, respectively.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

catena-Poly[[(tetrafluoroborato-κF)silver(I)]-µ-triphenylphosphine- κ2P:C3] top
Crystal data top
[Ag(BF4)(C18H15P)]F(000) = 904
Mr = 456.95Dx = 1.733 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 38097 reflections
a = 12.0606 (1) Åθ = 2.9–30.0°
b = 11.2379 (1) ŵ = 1.28 mm1
c = 12.9254 (1) ÅT = 150 K
β = 90.0093 (7)°Block, colourless
V = 1751.85 (3) Å30.33 × 0.25 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5109 independent reflections
Radiation source: fine-focus sealed tube4717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
652 1.0° images with φ and ω scansθmax = 30.0°, θmin = 3.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1616
Tmin = 0.678, Tmax = 0.803k = 1515
31041 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.6142P]
where P = (Fo2 + 2Fc2)/3
5109 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 1.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.611584 (13)0.042004 (13)0.164743 (11)0.03024 (6)
P0.69044 (3)0.09718 (4)0.28367 (3)0.01861 (8)
C10.82162 (14)0.16844 (14)0.25136 (13)0.0200 (3)
C20.89562 (14)0.20668 (15)0.32828 (13)0.0229 (3)
H20.87860.19390.39920.028*
C30.99410 (15)0.26337 (15)0.30070 (15)0.0266 (3)
H31.04450.28890.35260.032*
C41.01831 (16)0.28241 (17)0.19599 (17)0.0316 (4)
H41.08560.32040.17690.038*
C50.94475 (18)0.24616 (16)0.12056 (16)0.0316 (4)
H50.96120.26030.04970.038*
C60.84627 (16)0.18891 (15)0.14766 (14)0.0253 (3)
H60.79610.16390.09540.030*
C110.71924 (14)0.02228 (14)0.40527 (13)0.0209 (3)
C120.64926 (17)0.03004 (16)0.49078 (14)0.0271 (4)
H120.58660.08120.48890.032*
C130.6713 (2)0.03743 (18)0.57922 (16)0.0352 (4)
H130.62340.03200.63740.042*
C140.7621 (2)0.1117 (2)0.58266 (18)0.0431 (5)
H140.77720.15660.64330.052*
C150.8318 (2)0.1210 (2)0.49674 (18)0.0423 (5)
H150.89400.17280.49870.051*
C160.81032 (17)0.05452 (17)0.40873 (16)0.0307 (4)
H160.85780.06120.35040.037*
C210.60075 (14)0.22346 (14)0.31065 (13)0.0206 (3)
C220.50795 (16)0.24133 (16)0.24879 (16)0.0290 (4)
H220.48900.18430.19750.035*
C230.44245 (17)0.34282 (19)0.26175 (19)0.0368 (4)
H230.37880.35450.21960.044*
C240.47023 (17)0.42631 (18)0.33594 (18)0.0344 (4)
H240.42590.49550.34440.041*
C250.56295 (16)0.40925 (16)0.39822 (15)0.0294 (4)
H250.58180.46690.44900.035*
C260.62809 (15)0.30801 (15)0.38628 (13)0.0231 (3)
H260.69100.29620.42930.028*
B0.66670 (19)0.0528 (2)0.08054 (17)0.0296 (4)
F10.59061 (13)0.10780 (13)0.01281 (10)0.0465 (3)
F20.72340 (16)0.03121 (18)0.02458 (14)0.0662 (5)
F30.60793 (12)0.00064 (12)0.16008 (10)0.0379 (3)
F40.73747 (15)0.13653 (18)0.11968 (13)0.0648 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.03680 (9)0.02773 (8)0.02618 (8)0.00542 (5)0.00191 (6)0.00851 (5)
P0.02229 (19)0.01627 (17)0.01727 (18)0.00097 (14)0.00198 (14)0.00160 (13)
C10.0230 (7)0.0157 (6)0.0212 (7)0.0002 (5)0.0045 (6)0.0010 (5)
C20.0238 (8)0.0204 (7)0.0247 (8)0.0007 (6)0.0007 (6)0.0018 (6)
C30.0218 (8)0.0209 (7)0.0370 (9)0.0011 (6)0.0014 (7)0.0036 (7)
C40.0288 (9)0.0237 (8)0.0424 (11)0.0015 (7)0.0120 (8)0.0042 (7)
C50.0407 (10)0.0230 (8)0.0309 (9)0.0038 (7)0.0158 (8)0.0005 (7)
C60.0343 (9)0.0191 (7)0.0223 (8)0.0012 (6)0.0065 (6)0.0025 (6)
C110.0251 (8)0.0184 (7)0.0193 (7)0.0001 (6)0.0021 (6)0.0002 (5)
C120.0319 (9)0.0261 (8)0.0231 (8)0.0036 (7)0.0061 (7)0.0019 (6)
C130.0457 (12)0.0359 (10)0.0241 (9)0.0037 (8)0.0094 (8)0.0059 (7)
C140.0528 (13)0.0456 (12)0.0310 (10)0.0101 (10)0.0033 (9)0.0159 (9)
C150.0415 (11)0.0459 (12)0.0396 (11)0.0171 (10)0.0053 (9)0.0150 (9)
C160.0325 (9)0.0307 (9)0.0288 (9)0.0076 (7)0.0068 (7)0.0060 (7)
C210.0217 (7)0.0175 (7)0.0226 (7)0.0010 (5)0.0030 (6)0.0001 (6)
C220.0269 (8)0.0238 (8)0.0361 (10)0.0010 (6)0.0062 (7)0.0020 (7)
C230.0280 (9)0.0303 (9)0.0520 (13)0.0046 (7)0.0056 (8)0.0014 (9)
C240.0303 (9)0.0241 (8)0.0489 (12)0.0064 (7)0.0087 (8)0.0003 (8)
C250.0333 (9)0.0216 (8)0.0333 (9)0.0006 (7)0.0095 (7)0.0040 (7)
C260.0257 (8)0.0206 (7)0.0230 (7)0.0007 (6)0.0031 (6)0.0023 (6)
B0.0291 (10)0.0369 (11)0.0229 (9)0.0034 (8)0.0060 (7)0.0042 (8)
F10.0651 (9)0.0474 (8)0.0270 (6)0.0102 (7)0.0058 (6)0.0015 (5)
F20.0600 (10)0.0889 (14)0.0497 (9)0.0271 (9)0.0101 (8)0.0274 (9)
F30.0452 (7)0.0356 (6)0.0328 (6)0.0025 (5)0.0092 (5)0.0080 (5)
F40.0595 (10)0.0807 (12)0.0543 (9)0.0422 (9)0.0040 (8)0.0117 (8)
Geometric parameters (Å, º) top
Ag—P2.3903 (4)C13—C141.378 (3)
Ag—F12.4242 (13)C13—H130.9500
Ag—C3i2.5706 (18)C14—C151.397 (3)
P—C111.8163 (17)C14—H140.9500
P—C211.8182 (17)C15—C161.385 (3)
P—C11.8219 (17)C15—H150.9500
C1—C61.392 (2)C16—H160.9500
C1—C21.403 (2)C21—C221.390 (2)
C2—C31.394 (2)C21—C261.402 (2)
C2—H20.9500C22—C231.398 (3)
C3—C41.401 (3)C22—H220.9500
C3—Agii2.5706 (18)C23—C241.383 (3)
C3—H30.9500C23—H230.9500
C4—C51.380 (3)C24—C251.391 (3)
C4—H40.9500C24—H240.9500
C5—C61.396 (3)C25—C261.391 (2)
C5—H50.9500C25—H250.9500
C6—H60.9500C26—H260.9500
C11—C121.393 (2)B—F41.367 (3)
C11—C161.398 (2)B—F21.372 (3)
C12—C131.397 (3)B—F31.380 (2)
C12—H120.9500B—F11.411 (3)
Ag···F3iii2.6912 (14)Ag···F22.913 (2)
P—Ag—F1148.19 (4)C14—C13—H13119.8
P—Ag—C3i129.96 (5)C12—C13—H13119.8
F1—Ag—C3i81.56 (6)C13—C14—C15119.86 (19)
C11—P—C21108.03 (8)C13—C14—H14120.1
C11—P—C1103.66 (8)C15—C14—H14120.1
C21—P—C1102.57 (7)C16—C15—C14120.0 (2)
C11—P—Ag109.22 (5)C16—C15—H15120.0
C21—P—Ag113.41 (6)C14—C15—H15120.0
C1—P—Ag119.06 (5)C15—C16—C11120.41 (18)
C6—C1—C2119.71 (15)C15—C16—H16119.8
C6—C1—P118.61 (13)C11—C16—H16119.8
C2—C1—P121.63 (12)C22—C21—C26119.49 (16)
C3—C2—C1120.04 (16)C22—C21—P118.78 (13)
C3—C2—H2120.0C26—C21—P121.51 (13)
C1—C2—H2120.0C21—C22—C23120.27 (18)
C2—C3—C4119.63 (18)C21—C22—H22119.9
C2—C3—Agii85.52 (11)C23—C22—H22119.9
C4—C3—Agii98.12 (12)C24—C23—C22120.00 (19)
C2—C3—H3120.2C24—C23—H23120.0
C4—C3—H3120.2C22—C23—H23120.0
Agii—C3—H386.4C23—C24—C25120.17 (18)
C5—C4—C3120.24 (17)C23—C24—H24119.9
C5—C4—H4119.9C25—C24—H24119.9
C3—C4—H4119.9C24—C25—C26120.16 (18)
C4—C5—C6120.39 (17)C24—C25—H25119.9
C4—C5—H5119.8C26—C25—H25119.9
C6—C5—H5119.8C25—C26—C21119.92 (17)
C1—C6—C5119.98 (18)C25—C26—H26120.0
C1—C6—H6120.0C21—C26—H26120.0
C5—C6—H6120.0F4—B—F2110.9 (2)
C12—C11—C16119.30 (16)F4—B—F3109.72 (17)
C12—C11—P122.79 (14)F2—B—F3110.87 (19)
C16—C11—P117.64 (13)F4—B—F1109.54 (19)
C11—C12—C13119.98 (18)F2—B—F1107.37 (18)
C11—C12—H12120.0F3—B—F1108.32 (17)
C13—C12—H12120.0B—F1—Ag112.70 (12)
C14—C13—C12120.43 (19)
Ag—F1—B—F25.7 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The EPSCR and Royal Society are thanked for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClarke, A. J., Ingleson, M. J., Kociok-Köhn, G., Mahon, M. F., Patmore, N. J., Rourke, J. P., Ruggiero, G. D. & Weller, A. S. (2004). J. Am. Chem. Soc. 126, 1503–1517.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMolinos, E., Kociok-Köhn, G. & Weller, A. S. (2005). Chem. Commun. pp. 3609–3611.  CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatmore, N. J., Hague, C., Cotgreave, J. H., Mahon, M. F., Frost, C. G. & Weller, A. S. (2002). Chem. Eur. J. 8, 2088–2098.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSmith, H. G. & Rundle, R. E. (1958). J. Am. Chem. Soc. 80, 5075–5080.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds