organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Hy­droxy­methyl-2,3-O-iso­propyl­­idene-D-mannono-1,5-lactam

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: Richard.Bream@pmb.oxon.org

(Received 9 October 2006; accepted 3 January 2007; online 12 January 2007)

The title compound, C10H17NO6, is an inter­mediate, with all the stereocentres in place, for a synthesis of a new class of glycosidase inhibitors with a branched carbon chain. Its relative configuration was determined by X-ray crystallography and the absolute configuration by the use of L-sorbose as the starting material.

Comment

Nitro­gen analogues of carbohydrates, in which the ring oxygen has been replaced by a basic nitro­gen are sugar mimics (Winchester et al., 1992[Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.]) that can act as glycosidase inhibitors. Such compounds, found widely in plants and bacteria, also have potential as chemotherapeutic agents (Asano, Nash et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]; Asano et al., 2005[Asano, N., Yamauchi, T., Kagamifuchi, K., Shimizu, N., Takahashi, S., Takatsuka, H., Ikeda, K., Kizu, H., Chuakul, W., Kettawan, A. & Okamoto, T. (2005). J. Nat. Prod. 68, 1238-1242.]; Watson et al., 2001[Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2001). Phytochemistry, 56, 265-295.]). Two natural products, deoxy­mannojirimycin (DMJ) (1) (Evans et al., 1985[Evans, S. V., Fellows, L. E., Fleet, G. W. J. & Shing, T. K. M. (1985). Phytochemistry, 24, 1953-1956.]) and α-homoDMJ (2) (Asano et al., 2001[Asano, N., Yasuda, K., Kizu, H., Kato, A., Fan, J. Q., Nash, R. J., Fleet, G. W. J. & Molyneux, R. J. (2001). Eur. J. Biochem. 268, 35-41.]; Asano, Nishida et al., 2000[Asano, N., Nishida, M., Miyauchi, M., Ikeda, K., Yamamoto, M., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2000). Phytochemistry, 53, 379-382.]) are both mannosidase and fucosidase inhibitors (Bruce et al., 1992[Bruce, I., Fleet, G. W. J., di Bello, I. C. & Winchester, B. (1992). Tetrahedron, 48, 10191-10200.]; Shilvock et al., 1998[Shilvock, J. P., Nash, R. J., Lloyd, J. D., Winters, A. L., Asano, N. & Fleet, G. W. J. (1998). Tetrahedron Asymmetry, 19, 3505-3516.]).

[Scheme 1]

Iso-α-HomoDMJ (3), an isomer of (2) in which a branching hydroxy­methyl group is attached to C-2, is being synthesized as a potential mannosidase inhibitor. The azido­lactone (5), prepared from L-sorbose, (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]) on hydrogenation gave an amine from which the silyl ether protecting groups were removed by treatment with tetra­butyl ammonium fluoride. Subsequent heating gave the crystalline lactam (4) as a key inter­mediate in the preparation of (3) in which all the stereocentres have been introduced. This paper reports the crystal structure of (4), unequivocally establishing the relative stereochemistry of this late-stage inter­mediate. The absolute configuration of (4) was set by the use of L-sorbose as the synthetic starting material.

In (4), there is a cis junction between the two rings and no unusual geometrical features were observed (Fig. 1[link]). The crystal structure consists of hydrogen-bonded sheets of mol­ecules perpendicular to the c axis. (Fig. 2[link] and Table 1[link]) Within the sheets, hydrogen bonds form a discrete donor chain (N5 to O10 to 017 to 07), with O7 also acting as acceptor for a second hydrogen bond from O9. There are no hydrogen bonds between the sheets.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
A sheet of mol­ecules joined by hydrogen bonds (dashed lines), shown perpendicular to the c axis.

Experimental

Azido­lactam (5) (1.22 g, 2.44 mmol) in 1,4-dioxane (10 ml) was hydrogenated for 5 h in the presence of palladium on carbon (10%, 260 mg). The reaction mixture was filtered and the solvent removed; the crude amine in THF (4.5 ml) was treated with tetra­butyl­ammonium fluoride (5.37 ml, 5.3 mmol, 1 M solution in THF). After 12 h, the solvent was removed, the residue was dissolved in toluene (50 ml) and the reaction mixture refluxed for 6 h; the solvent was removed and the residue partitioned between dichloro­methane (50 ml) and water (2 x 50 ml). The combined aqueous phases were evaporated to dryness and purified by flash column chromatography (15% methanol in ethyl acetate) to give the lactam (4) (472 mg, 78% over 3 steps). Crystals for the X-ray study were grown from acetonitrile; m.p. 437 K; [α]D17+33.3 (c, 0.98 in MeOH); νmax (Ge plate): 3385 (O—H), 1652 (C=O) cm-1; αH (CD3OD, 400 MHz): 1.39, 1.41 (6H, 2 × s, 2 × CCH3), 3.40 (1H, dt, H5, J5,6b 4.6 Hz, J5,6a, J5,4 6.6 Hz), 3.68 (1H, d, H2a, J2a,2b 11.0 Hz), 3.69 (1H, dd, H6a, J6a,6b 11.3 Hz, J6a,5 6.1 Hz), 3.79 (1H, d, H2b, J2b,2a 11.0 Hz), 3.84 (1H, dd, H6b, J6b,6a 11.3 Hz, J6b,5 4.5 Hz), 3.92 (1H, t, H-4, J4,5, J4,3 6.5 Hz), 4.39 (1H, d, H3, J3,4 5.9 Hz); δC (CD3OD, 100.6 MHz): 27.5, 28.1 (2 x C*C*H3), 58.1 (C5), 62.4 (C6), 65.7 (C2), 69.5 (C4), 82.6 (C3), 83.4 (C2), 111.7 (*C*(CH3)2), 173.8 (C1); m/z (ES+): 270.02 ([M + Na]+, 40%), 306.11 ([M + MeCN + NH4]+, 100%); HRMS: C10H17NO6Na ([M + Na]+) calculated 270.0948, found 270.0943.

Crystal data
  • C10H17NO6

  • Mr = 247.25

  • Orthorhombic, P 21 21 21

  • a = 6.3477 (2) Å

  • b = 12.4398 (3) Å

  • c = 14.1469 (5) Å

  • V = 1117.10 (6) Å3

  • Z = 4

  • Dx = 1.470 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • Needle, colourless

  • 0.60 × 0.30 × 0.20 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.761, Tmax = 0.976

  • 6703 measured reflections

  • 1866 independent reflections

  • 1705 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 0.99

  • 1858 reflections

  • 154 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2 + 0.2P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O17i 0.84 1.91 2.7297 (14) 164
O17—H3⋯O7ii 0.85 1.82 2.6712 (16) 176
O9—H4⋯O7iii 0.89 2.04 2.9199 (14) 169
N5—H2⋯O10iv 0.90 2.50 3.321 (2) 152
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z.

Five reflections at sin(θ)/λ <0.01 were eliminated as being partially obscured by the incident beam trap. Reflection 022, with Fo = 27.3 and Fc = 34.6, was manually excluded as an outlier. In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the known starting material. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–98, N—H = 0.86–0.89 and O—H = 0.82 Å) and isotropic displacement parameters [Uiso(H) = 1.2 or 1.5 times Ueq(parent atom)], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-C-Hydroxmethyl-2,3-O-isopropylidene-D-mannono-1,5-lactam top
Crystal data top
C10H17NO6Dx = 1.470 Mg m3
Mr = 247.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1590 reflections
a = 6.3477 (2) Åθ = 1–30°
b = 12.4398 (3) ŵ = 0.12 mm1
c = 14.1469 (5) ÅT = 150 K
V = 1117.10 (6) Å3Needle, colourless
Z = 40.60 × 0.30 × 0.20 mm
F(000) = 528
Data collection top
Nonius Kappa CCD
diffractometer
1705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.761, Tmax = 0.976k = 1717
6703 measured reflectionsl = 1919
1866 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(F2) + (0.04P)2 + 0.2P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.99(Δ/σ)max = 0.000183
1858 reflectionsΔρmax = 0.32 e Å3
154 parametersΔρmin = 0.20 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7247 (2)0.48062 (10)0.25243 (9)0.0135
C20.8285 (2)0.42768 (10)0.33750 (9)0.0141
C30.8234 (2)0.30590 (10)0.33514 (10)0.0145
C40.6020 (2)0.26077 (10)0.31981 (9)0.0157
N50.4765 (2)0.32757 (9)0.25597 (9)0.0188
C60.5244 (2)0.42276 (11)0.21906 (9)0.0143
O70.40987 (18)0.46718 (8)0.15911 (8)0.0205
C80.4821 (3)0.24032 (11)0.41182 (11)0.0212
O90.5776 (2)0.15570 (8)0.46372 (7)0.0237
O100.96288 (17)0.27672 (8)0.25926 (7)0.0195
O110.70317 (18)0.46678 (8)0.41412 (7)0.0182
C120.6407 (3)0.57383 (11)0.39106 (9)0.0173
O130.66274 (18)0.58309 (8)0.28953 (7)0.0171
C140.7858 (3)0.65522 (12)0.43653 (11)0.0264
C150.4115 (3)0.58741 (14)0.41841 (11)0.0263
C160.8685 (2)0.49940 (11)0.16772 (11)0.0173
O171.04251 (18)0.56346 (8)0.19536 (8)0.0257
H210.97430.45040.34440.0163*
H310.87570.27770.39430.0169*
H410.62010.18930.28990.0185*
H810.33350.22140.39570.0256*
H820.48140.30710.45110.0259*
H1410.74650.72560.41570.0386*
H1420.92970.63970.41630.0385*
H1430.77350.64690.50400.0388*
H1510.36080.65810.39910.0393*
H1520.33090.53350.38650.0395*
H1530.39240.57360.48680.0393*
H1610.91690.42900.14560.0204*
H1620.79080.53470.11440.0207*
H10.98120.20990.26550.0299*
H20.34980.30280.23720.0249*
H31.15800.53330.18080.0396*
H40.56890.09480.43140.0381*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0136 (6)0.0111 (5)0.0157 (6)0.0012 (5)0.0012 (6)0.0012 (5)
C20.0124 (6)0.0140 (5)0.0158 (5)0.0002 (5)0.0007 (6)0.0010 (5)
C30.0146 (6)0.0136 (5)0.0154 (5)0.0001 (5)0.0005 (6)0.0004 (5)
C40.0167 (6)0.0127 (5)0.0177 (6)0.0018 (5)0.0006 (6)0.0009 (5)
N50.0151 (6)0.0180 (5)0.0233 (6)0.0043 (5)0.0055 (6)0.0028 (5)
C60.0127 (6)0.0157 (5)0.0146 (5)0.0010 (5)0.0013 (5)0.0009 (5)
O70.0163 (5)0.0232 (5)0.0220 (5)0.0004 (4)0.0050 (5)0.0038 (4)
C80.0236 (7)0.0170 (6)0.0230 (7)0.0008 (6)0.0058 (7)0.0017 (5)
O90.0321 (6)0.0188 (5)0.0201 (5)0.0026 (5)0.0029 (5)0.0015 (4)
O100.0199 (5)0.0138 (4)0.0249 (5)0.0019 (4)0.0076 (5)0.0001 (4)
O110.0252 (5)0.0148 (4)0.0148 (4)0.0033 (4)0.0015 (5)0.0014 (4)
C120.0210 (7)0.0148 (6)0.0161 (6)0.0020 (6)0.0002 (6)0.0023 (5)
O130.0223 (5)0.0127 (4)0.0162 (4)0.0043 (4)0.0003 (4)0.0018 (3)
C140.0368 (9)0.0201 (6)0.0223 (7)0.0062 (7)0.0042 (8)0.0037 (6)
C150.0239 (8)0.0316 (8)0.0235 (7)0.0056 (7)0.0046 (7)0.0008 (6)
C160.0163 (7)0.0151 (5)0.0205 (6)0.0004 (6)0.0026 (6)0.0001 (5)
O170.0162 (5)0.0171 (5)0.0437 (6)0.0042 (4)0.0085 (6)0.0033 (5)
Geometric parameters (Å, º) top
C1—C21.5220 (18)C8—H821.000
C1—C61.535 (2)O9—H40.887
C1—O131.4335 (15)O10—H10.844
C1—C161.525 (2)O11—C121.4271 (17)
C2—C31.5156 (18)C12—O131.4477 (16)
C2—O111.4297 (16)C12—C141.512 (2)
C2—H210.972C12—C151.515 (2)
C3—C41.529 (2)C14—H1410.957
C3—O101.4381 (17)C14—H1420.977
C3—H310.967C14—H1430.963
C4—N51.4633 (18)C15—H1510.976
C4—C81.529 (2)C15—H1520.957
C4—H410.992C15—H1530.990
N5—C61.3295 (17)C16—O171.4170 (17)
N5—H20.901C16—H1610.980
C6—O71.2462 (17)C16—H1621.002
C8—O91.4196 (18)O17—H30.849
C8—H810.998
C2—C1—C6113.50 (11)C4—C8—H82109.7
C2—C1—O13102.35 (10)O9—C8—H82109.3
C6—C1—O13107.60 (11)H81—C8—H82108.6
C2—C1—C16115.37 (12)C8—O9—H4109.9
C6—C1—C16109.04 (11)C3—O10—H1104.8
O13—C1—C16108.41 (10)C2—O11—C12107.38 (10)
C1—C2—C3113.95 (11)O11—C12—O13105.92 (10)
C1—C2—O11102.20 (10)O11—C12—C14111.01 (12)
C3—C2—O11110.18 (11)O13—C12—C14108.07 (12)
C1—C2—H21111.4O11—C12—C15108.20 (13)
C3—C2—H21108.2O13—C12—C15109.70 (12)
O11—C2—H21110.8C14—C12—C15113.66 (12)
C2—C3—C4112.94 (12)C12—O13—C1108.60 (10)
C2—C3—O10104.81 (11)C12—C14—H141108.8
C4—C3—O10111.55 (11)C12—C14—H142108.2
C2—C3—H31109.7H141—C14—H142109.5
C4—C3—H31107.8C12—C14—H143107.5
O10—C3—H31110.1H141—C14—H143112.5
C3—C4—N5112.31 (11)H142—C14—H143110.2
C3—C4—C8113.45 (12)C12—C15—H151110.2
N5—C4—C8110.41 (12)C12—C15—H152108.3
C3—C4—H41106.5H151—C15—H152108.9
N5—C4—H41108.0C12—C15—H153110.4
C8—C4—H41105.8H151—C15—H153112.9
C4—N5—C6128.58 (12)H152—C15—H153105.9
C4—N5—H2118.3C1—C16—O17109.64 (12)
C6—N5—H2113.1C1—C16—H161107.6
C1—C6—N5119.10 (12)O17—C16—H161110.3
C1—C6—O7118.97 (12)C1—C16—H162111.3
N5—C6—O7121.92 (13)O17—C16—H162110.2
C4—C8—O9110.54 (12)H161—C16—H162107.8
C4—C8—H81108.4C16—O17—H3110.9
O9—C8—H81110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O17i0.841.912.7297 (14)164
O17—H3···O7ii0.851.822.6712 (16)176
O9—H4···O7iii0.892.042.9199 (14)169
N5—H2···O10iv0.902.503.321 (2)152
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z.
 

Acknowledgements

Financial support (to SJH) from EPSRC is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationAsano, N., Nishida, M., Miyauchi, M., Ikeda, K., Yamamoto, M., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2000). Phytochemistry, 53, 379–382.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAsano, N., Yamauchi, T., Kagamifuchi, K., Shimizu, N., Takahashi, S., Takatsuka, H., Ikeda, K., Kizu, H., Chuakul, W., Kettawan, A. & Okamoto, T. (2005). J. Nat. Prod. 68, 1238–1242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAsano, N., Yasuda, K., Kizu, H., Kato, A., Fan, J. Q., Nash, R. J., Fleet, G. W. J. & Molyneux, R. J. (2001). Eur. J. Biochem. 268, 35–41.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruce, I., Fleet, G. W. J., di Bello, I. C. & Winchester, B. (1992). Tetrahedron, 48, 10191–10200.  CrossRef CAS Web of Science Google Scholar
First citationEvans, S. V., Fellows, L. E., Fleet, G. W. J. & Shing, T. K. M. (1985). Phytochemistry, 24, 1953–1956.  CrossRef CAS Web of Science Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShilvock, J. P., Nash, R. J., Lloyd, J. D., Winters, A. L., Asano, N. & Fleet, G. W. J. (1998). Tetrahedron Asymmetry, 19, 3505–3516.  Web of Science CrossRef Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Nash, R. J. & Fleet, G. W. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWinchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210.  CrossRef PubMed CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds