organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Anhydro-2,3-O-iso­propyl­­idene-L-lyxo­furan­ose [(1S,4S,5S,6R)-5,6-O-iso­propyl­idene-2,7-dioxabi­cyclo­[2.2.1]heptane-5,6-diol]

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: michela_simone@yahoo.co.uk

(Received 14 December 2006; accepted 19 January 2007; online 24 January 2007)

The tricyclic title compound, C8H12O4, was formed in the reduction by diisobutyl­aluminium hydride of a 5-O-trifluromethane­sulfonyl lactone and is likely to be useful as a chiral inter­mediate for the synthesis of bioactive compounds. The absolute configuration was determined by the use of 2,3-O-isopropyl­idene-L-lyxono-1,4-lactone as the starting material.

Comment

Branched sugar lactones may be useful as versatile inter­mediates in the synthesis of novel branched biologically important mol­ecules and biopolymeric materials (Asano et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]; Ichikawa & Igarashi, 1995[Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4585-4586.]; Ichikawa et al., 1998[Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007-3018.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]; Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.], 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]). The Ho crossed-aldol reaction (Ho, 1979[Ho, P.-T. (1979). Can. J. Chem. 57, 381-381.], 1985[Ho, P.-T. (1985). Can. J. Chem. 63, 2221-2224.]) of lactols with formaldehyde is one of the most powerful strategies for the synthesis of these compounds. In the course of the synthesis of a branched sugar lactone by a Ho procedure (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]), the trifluoro­methane­sulfonate, (2), derived from the 2,3-O-isopropyl­idene-L-lyxono-1,4-lactone, (1) (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]), was treated with diisobutyl­aluminium hydride (DIBAL-H). A rationalization for the formation of the title compound, (4), is that initial reduction afforded the β-lyxose, (3), which spontaneously cyclized to (4) by SN2 displacement of the trifluoro­methane­sulfonate. The value of such highly oxygen­ated bicyclic inter­mediates as (4) is well established (Cossy et al., 1995[Cossy, J., Ranaivosata, J. L., Bellosta, V., Ancerewicz, J., Ferritto, R. & Vogel, P. (1995). J. Org. Chem. 60, 8351-8359.]; Pechy et al., 1993[Pechy, P., Gasparini, F. & Vogel, P. (1993). Synlett, pp. 676-678.]), and the unexpected formation of (4) may provide another valuable chiron.

[Scheme 1]

The structure of (4) has been determined by X-ray diffraction (Fig. 1[link]), which showed that it is formed by a six-membered ring fused to a five-membered ring (the acetonide protecting group). The five-membered ring adopts an envelope conformation. The six-membered ring is a B2,5-type conformationally constrained structure, due to the existence of the oxygen bridge linking the 1- and 4-positions.

[Figure 1]
Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Experimental

1,5-Anhydro-2,3-O-isopropyl­idene-L-lyxofuran­ose, (4), was obtained in 28% yield upon overnight reduction of the trifluoro­methane­sulfonate (2) with DIBAL-H in tetra­hydro­furan at low concentration (16 mg ml−1). The title material, (4), isolated as a crystalline but volatile product, was recrystallized via solvent evaporation (ethyl acetate–cyclo­hexane) (Rf 0.57; m.p. 338–339 K). HRMS (FI+), found: 172.0732 [M]+; C8H12O4 requires: 172.0736; [α]D21 106.8 (c, 0.72 in methanol); IR (thin film, νmax, cm−1): 2992, 2955, 2906 (s, C—H), 1378 (–O—CO—CH), 1291 (C—O); 1H NMR (CDCl3, 400 MHz): δ 1.34, 1.60 [2 × 3H, 2 × s, C(CH3)2], 3.55 (1H, ddd, JH5,H5′ = 6.6 Hz, JH5,H4 = 3.5 Hz, JH5,H3 = 1.3 Hz, H5), 4.31 (1H, ad, J = 6.8 Hz, H5′), 4.45 (1H, add, J = 8.2 and 2.3 Hz, H2), 4.64 (1H, dd, JH3,H2 = 8.1 Hz, JH3,H4 = 4.6 Hz, H3), 4.72–4.77 (1H, m, H4), 5.45 (1H, d, JH1,H2 = 2.2 Hz, H1); 13C NMR (CDCl3, 100 MHz): δ 25.6, 26.1 [C(CH3)2], 63.7 (C5), 76.5 (C3), 78.8 (C4), 81.6 (C2), 100.1 (C1), 119.7 [C(CH3)2].

Crystal data
  • C8H12O4

  • Mr = 172.18

  • Orthorhombic, P 21 21 21

  • a = 8.1279 (3) Å

  • b = 9.4993 (4) Å

  • c = 10.8126 (4) Å

  • V = 834.83 (6) Å3

  • Z = 4

  • Dx = 1.370 Mg m−3

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • Fragment, colourless

  • 0.38 × 0.32 × 0.14 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.96, Tmax = 0.98

  • 5825 measured reflections

  • 1111 independent reflections

  • 834 reflections with I > 3σ(I)

  • Rint = 0.037

  • θmax = 27.4°

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.031

  • S = 1.15

  • 834 reflections

  • 109 parameters

  • H-atom parameters constrained

  • w = [1 − (FoFc)2/36σ2(F)]2/[0.275T0(x) + 0.0396T1(x) + 0.0219T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]; Watkin, 1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.])

  • (Δ/σ)max = 0.005

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

A large single-crystal was cut to give a small fragment. This was mounted on a glass fibre using perfluoro­polyether oil and cooled rapidly to 150 K in a stream of cold N2 using an Oxford Cryosystems CRYOSTREAM unit. H atoms were positioned geometrically after each cycle of refinement, with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZOand SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(1S,4S,5S,6R)-5,6-O-isopropylidene-2,7-dioxabicyclo[2.2.1]heptane-5,6-diol top
Crystal data top
C8H12O4Dx = 1.370 Mg m3
Mr = 172.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5825 reflections
a = 8.1279 (3) Åθ = 5–28°
b = 9.4993 (4) ŵ = 0.11 mm1
c = 10.8126 (4) ÅT = 150 K
V = 834.83 (6) Å3Fragment, colourless
Z = 40.38 × 0.32 × 0.14 mm
F(000) = 368
Data collection top
Nonius KappaCCD area-detector
diffractometer
834 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.4°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.96, Tmax = 0.98k = 1212
5825 measured reflectionsl = 1414
1111 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.031 Method, Part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)],
where Ai are the Chebychev coefficients listed below and x = F /Fmax Ai are: 0.275 0.396E-01 0.219E-01. Part 2 robust weighting (Prince, 1982) W = [weight]*[1-(δF/6*σF)2]2
S = 1.15(Δ/σ)max = 0.005
834 reflectionsΔρmax = 0.14 e Å3
109 parametersΔρmin = 0.14 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1736 (3)0.6521 (2)0.62753 (19)0.0262
C20.3607 (2)0.6634 (2)0.64715 (18)0.0235
C30.3853 (3)0.5599 (2)0.75558 (18)0.0264
C40.2093 (3)0.5067 (2)0.77520 (19)0.0298
C50.1561 (3)0.4181 (2)0.6659 (2)0.0358
O10.13420 (19)0.52285 (17)0.56943 (13)0.0325
O20.45774 (16)0.60634 (15)0.54954 (12)0.0246
O30.49639 (19)0.45713 (16)0.71003 (12)0.0306
O40.11892 (18)0.63636 (16)0.75191 (13)0.0316
C60.5795 (2)0.5186 (2)0.60626 (18)0.0268
C70.6269 (3)0.4035 (3)0.5179 (2)0.0431
C80.7237 (3)0.6058 (3)0.6504 (2)0.0447
H110.12730.73170.57810.0314*
H210.39380.76420.65680.0282*
H310.43190.59550.83520.0317*
H410.19530.45510.85510.0358*
H510.05080.36760.68370.0429*
H520.24290.34830.64290.0429*
H710.71200.34190.55710.0517*
H720.67270.44600.44060.0517*
H730.52760.34600.49720.0517*
H810.80730.54290.68970.0536*
H820.68460.67650.71230.0536*
H830.77440.65570.57850.0536*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (10)0.0306 (11)0.0243 (10)0.0031 (9)0.0010 (8)0.0031 (10)
C20.0241 (10)0.0220 (9)0.0243 (10)0.0003 (9)0.0012 (8)0.0025 (8)
C30.0275 (10)0.0338 (11)0.0178 (9)0.0083 (9)0.0009 (9)0.0026 (9)
C40.0298 (11)0.0348 (12)0.0248 (10)0.0072 (10)0.0047 (8)0.0073 (10)
C50.0346 (12)0.0297 (12)0.0430 (13)0.0075 (10)0.0055 (11)0.0029 (10)
O10.0265 (8)0.0433 (9)0.0277 (8)0.0068 (8)0.0028 (6)0.0017 (7)
O20.0215 (7)0.0308 (7)0.0215 (7)0.0012 (6)0.0001 (6)0.0031 (6)
O30.0313 (7)0.0344 (8)0.0259 (7)0.0118 (7)0.0052 (6)0.0080 (7)
O40.0293 (7)0.0390 (9)0.0265 (7)0.0094 (7)0.0047 (7)0.0008 (7)
C60.0225 (10)0.0370 (12)0.0209 (9)0.0048 (9)0.0004 (7)0.0060 (10)
C70.0461 (14)0.0475 (14)0.0358 (13)0.0176 (13)0.0073 (12)0.0046 (12)
C80.0236 (11)0.0646 (18)0.0457 (14)0.0058 (12)0.0070 (10)0.0042 (15)
Geometric parameters (Å, º) top
C1—C21.539 (3)C5—O11.453 (3)
C1—O11.416 (3)C5—H511.000
C1—O41.424 (2)C5—H521.000
C1—H111.000O2—C61.432 (2)
C2—C31.543 (3)O3—C61.434 (2)
C2—O21.425 (2)C6—C71.503 (3)
C2—H211.000C6—C81.512 (3)
C3—C41.532 (3)C7—H711.000
C3—O31.418 (2)C7—H721.000
C3—H311.000C7—H731.000
C4—C51.514 (3)C8—H811.000
C4—O41.456 (3)C8—H821.000
C4—H411.000C8—H831.000
C2—C1—O1110.19 (17)O1—C5—H51111.212
C2—C1—O4100.70 (16)C4—C5—H52111.212
O1—C1—O4104.89 (17)O1—C5—H52111.211
C2—C1—H11113.145H51—C5—H52109.466
O1—C1—H11109.473C1—O1—C5104.34 (15)
O4—C1—H11117.841C2—O2—C6106.66 (14)
C1—C2—C3100.84 (17)C3—O3—C6106.94 (15)
C1—C2—O2114.72 (17)C1—O4—C495.43 (15)
C3—C2—O2104.40 (15)O2—C6—O3104.26 (15)
C1—C2—H21110.280O2—C6—C7109.17 (17)
C3—C2—H21119.725O3—C6—C7108.77 (18)
O2—C2—H21107.052O2—C6—C8110.63 (18)
C2—C3—C4101.21 (16)O3—C6—C8109.94 (17)
C2—C3—O3104.90 (15)C7—C6—C8113.64 (19)
C4—C3—O3114.58 (17)C6—C7—H71109.467
C2—C3—H31119.186C6—C7—H72109.467
C4—C3—H31110.269H71—C7—H72109.476
O3—C3—H31106.897C6—C7—H73109.467
C3—C4—C5109.99 (17)H71—C7—H73109.476
C3—C4—O499.71 (16)H72—C7—H73109.476
C5—C4—O4101.03 (16)C6—C8—H81109.467
C3—C4—H41112.794C6—C8—H82109.467
C5—C4—H41111.682H81—C8—H82109.476
O4—C4—H41120.440C6—C8—H83109.467
C4—C5—O1102.39 (16)H81—C8—H83109.475
C4—C5—H51111.212H82—C8—H83109.475
 

Acknowledgements

Financial support to MS provided through the European Community's Human Potential Programme under contract No. HPRN-CT-2002–00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCossy, J., Ranaivosata, J. L., Bellosta, V., Ancerewicz, J., Ferritto, R. & Vogel, P. (1995). J. Org. Chem. 60, 8351–8359.  CrossRef CAS Web of Science Google Scholar
First citationHo, P.-T. (1979). Can. J. Chem. 57, 381–381.  CrossRef CAS Web of Science Google Scholar
First citationHo, P.-T. (1985). Can. J. Chem. 63, 2221–2224.  CrossRef CAS Web of Science Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationIchikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4585–4586.  CrossRef CAS Web of Science Google Scholar
First citationIchikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007–3018.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPechy, P., Gasparini, F. & Vogel, P. (1993). Synlett, pp. 676–678.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds