metal-organic compounds
Decaaquadioxobis[μ3-N-(phosphonomethyl)iminodiacetato]dimanganesedivanadium dihydrate
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt
The 2V2(C5H6NO7P)2O2(H2O)10]·2H2O, contains a centrosymmetric dimeric [V2O2(pmida)2]4− unit [where H4pmida is N-(phosphonomethyl)iminodiacetic acid] connecting two neighbouring Mn2+ cations through the phosphonate groups. The is characterized by the presence of an extensive network of strong and highly directional O—H⋯O hydrogen bonds, involving the water molecules (coordinated and uncoordinated) and the functional groups of pmida4−.
of the title compound, [MnComment
Since the report by Hoskins & Robson (1990), research focused on the structural design and synthesis of novel coordination-based materials, in which the topology is extended from discrete complexes to one, two or three dimensions, has seen a great and exponential growth (for recent reviews see Cheetham et al., 2006; Kitagawa & Uemura, 2005). During the course of our ongoing research on novel multi-dimensional hybrid crystalline materials incorporating N-(phosphonomethyl)iminodiacetic acid (H4pmida) residues (Mafra et al., 2006; Almeida Paz et al., 2004; Almeida Paz, Shi, Trindade et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Rocha, Klinowski et al., 2005; Shi et al., 2005; Shi, Almeida Paz, Trindade & Rocha, 2006; Shi, Almeida Paz, Girginova, Amaral et al., 2006; Shi, Almeida Paz, Girginova, Rocha et al., 2006), we have isolated the crystalline material [Mn2V2O2(pmida)2(H2O)10]·2H2O [where pmida4− is (C5H6NO7P)4−], (I), whose at the temperature of 180 (2) K we report here.
The title compound, (I), contains two crystallographically unique metal centres, Mn1 and V1, both exhibiting octahedral coordination geometries, {MnO6} and {VO5N} (Fig. 1; Table 1). Mn1 is coordinated by five water molecules plus one O atom from the μ3-bridging phosphonate group of pmida4− (Fig. 1), with a coordination geometry resembling a quasi-regular octahedron [Mn—O bond lengths ranging from 2.092 (2) to 2.236 (2) Å; cis and trans O—Mn—O angles found in the 86.85 (10)–93.21 (11)° and 175.14 (10)–178.21 (9)° ranges, respectively; see Table 1]. The intermetallic Mn1⋯Mn1i distance between exo-coordinated manganese(II) centres (and across the unit depicted in Fig. 1) is of 10.175 (3) Å, while the shortest Mn1⋯V1i distance within the tetranuclear unit is 5.368 (1) Å [symmetry code: (i) 2 − x, −y, −z].
The core of the neutral tetranuclear [Mn2V2O2(pmida)2(H2O)10] molecule is composed of the anionic centrosymmetric [V2O2(pmida)2]4− dimeric unit, first described by Crans et al. (1998). The geometrical aspects of this unit, in particular the highly distorted octahedral coordination mode of V1 (Table 1) plus the coordination fashion of the pmida4− ligand (which forms with V1 three five-membered chelate rings; see Fig. 1), are typical and in good agreement with those described in detail in our previous reports (Almeida Paz et al., 2004; Almeida Paz, Shi, Trindade et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Rocha, Klinowski et al., 2005; Shi et al., 2005; Shi, Almeida Paz, Trindade & Rocha, 2006; Shi, Almeida Paz, Girginova, Amaral et al., 2006; Shi, Almeida Paz, Girginova, Rocha et al., 2006).
In the extended solid-state [Mn2V2O2(pmida)2(H2O)10] molecular units pack closely in a typical brick-wall-like fashion along the crystallographic [010] direction (Fig. 2a), mediated by an extensive network of strong and highly directional O—H⋯O hydrogen-bonding interactions, which also involve the water molecule of crystallization (Fig. 2 and Table 3).
Experimental
Chemicals were readily available from commercial sources and were used as received without further purification: N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, C5H10NO7P, 97% Fluka), vanadium(IV) oxide sulfate pentahydrate (VOSO4·5H2O, 99% Sigma–Aldrich), manganese(II) acetate tetrahydrate (MnC4H6O4·4H2O, 99.0% Fluka), 4,4′-trimethylenedipyridine (TMD, C13H14N2, 98%, Aldrich).
Synthesis was typically carried out in a PTFE-lined stainless steel reaction vessel (ca 40 ml), under autogeneous pressure and static conditions in a preheated oven at 393 K. The reaction took place over a period of 3 d, after which the vessel was removed from the oven and left to cool to ambient temperature before opening. The title compound proved to be air- and light-stable.
The title compound was synthesized from a mixture containing 0.40 g of VOSO4·5H2O, 0.61 g of MnC4H6O4·4H2O, and 0.40 g of H4pmida, and 0.24 g of TMD in ca 15 g of distilled water. The mixture was stirred thoroughly at ambient temperature for 30 minutes, yielding a suspension with a molar composition of 1.4:1.4:1.0:0.7:473, which was transferred to the reaction vessel. After reacting, a small quantity of green/blue single crystals of the title compound were isolated as a pure phase by vacuum filtering, washed with copious amounts of distilled water (ca 3 × 50 ml), and then air-dried at ambient temperature. The same material can also be isolated as large single crystals by slow evaporation (in the open air) of the autoclave mother liquor over a period of one month. It is of considerable interest to note that similar reactions where TMD was not included in the starting reactive mixture failed to lead to the isolation of the title material.
Crystal data
|
Refinement
|
|
H atoms bound to carbon were placed in idealized positions and allowed to ride on their parent atoms with Uiso fixed at 1.2 times Ueq(C) (C—H = 0.99 Å). H atoms associated with the five crystallographically unique coordinated water molecules were markedly visible in difference Fourier maps, and were included in subsequent least-squares cycles with the O—H and H⋯H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively, to ensure a chemically reasonable geometry of water molecules. These H atoms were also allowed to ride on their parent atoms with Uiso fixed at 1.5 times Ueq(O).
The crystallographically unique water molecule of crystallization was found to be severely affected by disorder, which prevented a sensible
using anisotropic displacement parameters. In fact, both the highest peak and deepest hole from the final difference Fourier synthesis were found close to this (0.01 and 0.64 Å, respectively). Therefore, the O atom from this molecule was refined assuming an isotropic displacement parameter. H atoms associated with this water molecule could not be located in difference Fourier maps, and attempts to place them in calculated positions did not lead to a reasonable model for the geometrical aspects of the resulting hydrogen-bonding interactions. Therefore, these H atoms were omitted from the present structural model but were included in the chemical formula of the compound.Data collection: COLLECT (Nonius 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536806054675/gk2046sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806054675/gk2046Isup2.hkl
Data collection: COLLECT (Nonius 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.[Mn2V2(C5H6NO7P)2O2(H2O)10]·2H2O | F(000) = 920 |
Mr = 906.11 | Dx = 1.965 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9712 reflections |
a = 10.096 (2) Å | θ = 1.0–27.5° |
b = 14.934 (3) Å | µ = 1.61 mm−1 |
c = 10.848 (2) Å | T = 180 K |
β = 110.52 (3)° | Prism, brown |
V = 1531.8 (6) Å3 | 0.15 × 0.10 × 0.09 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 2880 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.059 |
Thin–slice ω and φ scans | θmax = 27.5°, θmin = 3.6° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −12→13 |
Tmin = 0.794, Tmax = 0.869 | k = −19→19 |
17432 measured reflections | l = −14→14 |
3502 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0517P)2 + 3.2528P] where P = (Fo2 + 2Fc2)/3 |
3502 reflections | (Δ/σ)max = 0.001 |
233 parameters | Δρmax = 1.05 e Å−3 |
15 restraints | Δρmin = −0.95 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.47798 (5) | 0.06629 (3) | −0.23812 (4) | 0.01467 (14) | |
O1W | 0.5014 (3) | −0.07031 (16) | −0.1672 (2) | 0.0285 (6) | |
H1C | 0.531 (4) | −0.082 (3) | −0.0859 (12) | 0.043* | |
H1D | 0.438 (3) | −0.108 (2) | −0.205 (3) | 0.043* | |
O2W | 0.5853 (3) | 0.0392 (2) | −0.3804 (2) | 0.0316 (6) | |
H2C | 0.657 (3) | 0.009 (3) | −0.343 (4) | 0.047* | |
H2D | 0.599 (4) | 0.074 (2) | −0.435 (4) | 0.047* | |
O3W | 0.2854 (2) | 0.02509 (18) | −0.3901 (2) | 0.0255 (5) | |
H3A | 0.239 (3) | −0.017 (2) | −0.374 (4) | 0.038* | |
H3B | 0.235 (3) | 0.052 (2) | −0.458 (3) | 0.038* | |
O4W | 0.3596 (2) | 0.09866 (15) | −0.1040 (2) | 0.0180 (5) | |
H4C | 0.339 (3) | 0.1530 (8) | −0.098 (4) | 0.027* | |
H4D | 0.291 (3) | 0.0673 (17) | −0.101 (4) | 0.027* | |
O5W | 0.4474 (2) | 0.20346 (16) | −0.3136 (2) | 0.0222 (5) | |
H5A | 0.525 (2) | 0.227 (3) | −0.308 (3) | 0.033* | |
H5B | 0.391 (3) | 0.209 (3) | −0.3914 (16) | 0.033* | |
V1 | 1.00944 (5) | 0.02657 (3) | 0.24106 (5) | 0.01255 (14) | |
N1 | 0.9881 (2) | 0.16751 (18) | 0.1354 (2) | 0.0144 (5) | |
P1 | 0.82006 (8) | 0.05841 (5) | −0.05527 (7) | 0.01277 (18) | |
O1 | 0.6728 (2) | 0.09610 (15) | −0.0929 (2) | 0.0169 (4) | |
O2 | 0.8417 (2) | 0.00520 (15) | −0.1674 (2) | 0.0171 (5) | |
O3 | 0.8583 (2) | −0.00015 (14) | 0.0697 (2) | 0.0158 (4) | |
O4 | 0.8598 (2) | 0.09240 (15) | 0.2912 (2) | 0.0190 (5) | |
O5 | 0.7024 (2) | 0.20093 (16) | 0.2621 (2) | 0.0236 (5) | |
O6 | 1.1562 (2) | 0.10601 (15) | 0.3703 (2) | 0.0173 (4) | |
O7 | 1.2826 (3) | 0.23093 (16) | 0.4190 (2) | 0.0264 (5) | |
O8 | 1.0113 (2) | −0.05963 (15) | 0.3290 (2) | 0.0222 (5) | |
C1 | 0.9495 (3) | 0.1494 (2) | −0.0073 (3) | 0.0150 (6) | |
H1A | 1.0349 | 0.1325 | −0.0267 | 0.018* | |
H1B | 0.9088 | 0.2040 | −0.0582 | 0.018* | |
C2 | 0.8752 (3) | 0.2192 (2) | 0.1622 (3) | 0.0184 (6) | |
H2A | 0.8017 | 0.2360 | 0.0774 | 0.022* | |
H2B | 0.9164 | 0.2752 | 0.2089 | 0.022* | |
C3 | 0.8069 (3) | 0.1677 (2) | 0.2439 (3) | 0.0162 (6) | |
C4 | 1.1288 (3) | 0.2098 (2) | 0.1951 (3) | 0.0187 (6) | |
H4A | 1.1192 | 0.2757 | 0.1890 | 0.022* | |
H4B | 1.1912 | 0.1910 | 0.1469 | 0.022* | |
C5 | 1.1943 (3) | 0.1818 (2) | 0.3395 (3) | 0.0159 (6) | |
O6W | 0.5865 (6) | 0.1765 (4) | 0.4618 (6) | 0.1092 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0117 (2) | 0.0175 (3) | 0.0126 (2) | −0.00012 (17) | 0.00141 (18) | 0.00099 (17) |
O1W | 0.0293 (14) | 0.0205 (13) | 0.0254 (13) | −0.0045 (10) | −0.0033 (11) | 0.0034 (10) |
O2W | 0.0214 (12) | 0.0543 (19) | 0.0194 (13) | 0.0064 (12) | 0.0074 (10) | −0.0002 (11) |
O3W | 0.0173 (11) | 0.0351 (15) | 0.0179 (12) | −0.0091 (10) | −0.0015 (9) | 0.0096 (10) |
O4W | 0.0173 (11) | 0.0169 (11) | 0.0210 (11) | −0.0006 (9) | 0.0080 (9) | −0.0001 (9) |
O5W | 0.0189 (11) | 0.0219 (12) | 0.0221 (12) | −0.0027 (9) | 0.0025 (10) | 0.0047 (10) |
V1 | 0.0118 (2) | 0.0132 (3) | 0.0118 (2) | −0.00010 (18) | 0.00294 (19) | 0.00108 (19) |
N1 | 0.0120 (11) | 0.0189 (13) | 0.0108 (12) | −0.0015 (10) | 0.0022 (10) | −0.0006 (10) |
P1 | 0.0093 (3) | 0.0163 (4) | 0.0110 (4) | −0.0002 (3) | 0.0015 (3) | −0.0009 (3) |
O1 | 0.0106 (10) | 0.0207 (12) | 0.0172 (10) | 0.0016 (8) | 0.0022 (8) | −0.0026 (9) |
O2 | 0.0109 (10) | 0.0234 (12) | 0.0154 (10) | −0.0003 (9) | 0.0025 (8) | −0.0049 (9) |
O3 | 0.0139 (10) | 0.0179 (11) | 0.0136 (10) | −0.0022 (8) | 0.0021 (8) | −0.0001 (8) |
O4 | 0.0199 (11) | 0.0193 (12) | 0.0221 (11) | 0.0022 (9) | 0.0125 (9) | 0.0026 (9) |
O5 | 0.0194 (11) | 0.0220 (12) | 0.0328 (13) | 0.0016 (9) | 0.0132 (10) | −0.0030 (10) |
O6 | 0.0192 (11) | 0.0168 (11) | 0.0135 (10) | −0.0029 (9) | 0.0026 (9) | 0.0021 (8) |
O7 | 0.0284 (13) | 0.0232 (13) | 0.0179 (11) | −0.0110 (10) | −0.0039 (10) | 0.0012 (10) |
O8 | 0.0244 (12) | 0.0191 (12) | 0.0237 (12) | 0.0017 (9) | 0.0091 (10) | 0.0047 (9) |
C1 | 0.0142 (13) | 0.0177 (16) | 0.0121 (14) | 0.0006 (11) | 0.0032 (11) | 0.0003 (11) |
C2 | 0.0220 (16) | 0.0165 (16) | 0.0181 (15) | 0.0028 (12) | 0.0088 (13) | 0.0001 (12) |
C3 | 0.0159 (14) | 0.0154 (15) | 0.0164 (15) | −0.0021 (12) | 0.0043 (12) | −0.0047 (12) |
C4 | 0.0160 (14) | 0.0206 (16) | 0.0160 (15) | −0.0064 (12) | 0.0014 (12) | 0.0034 (12) |
C5 | 0.0121 (13) | 0.0188 (16) | 0.0153 (14) | 0.0001 (11) | 0.0029 (12) | 0.0009 (12) |
Mn1—O1 | 2.092 (2) | V1—N1 | 2.370 (3) |
Mn1—O1W | 2.164 (2) | N1—C4 | 1.480 (4) |
Mn1—O2W | 2.212 (2) | N1—C1 | 1.482 (4) |
Mn1—O3W | 2.152 (2) | N1—C2 | 1.488 (4) |
Mn1—O4W | 2.236 (2) | P1—O1 | 1.506 (2) |
Mn1—O5W | 2.187 (2) | P1—O2 | 1.531 (2) |
O1W—H1C | 0.845 (10) | P1—O3 | 1.544 (2) |
O1W—H1D | 0.84 (3) | P1—C1 | 1.830 (3) |
O2W—H2C | 0.83 (4) | O2—V1i | 1.991 (2) |
O2W—H2D | 0.84 (4) | O4—C3 | 1.273 (4) |
O3W—H3A | 0.84 (3) | O5—C3 | 1.243 (4) |
O3W—H3B | 0.84 (3) | O6—C5 | 1.277 (4) |
O4W—H4C | 0.844 (10) | O7—C5 | 1.240 (4) |
O4W—H4D | 0.85 (3) | C1—H1A | 0.9900 |
O5W—H5A | 0.84 (3) | C1—H1B | 0.9900 |
O5W—H5B | 0.841 (10) | C2—C3 | 1.512 (4) |
V1—O2i | 1.991 (2) | C2—H2A | 0.9900 |
V1—O3 | 1.988 (2) | C2—H2B | 0.9900 |
V1—O4 | 2.030 (2) | C4—C5 | 1.529 (4) |
V1—O6 | 2.028 (2) | C4—H4A | 0.9900 |
V1—O8 | 1.598 (2) | C4—H4B | 0.9900 |
O1—Mn1—O1W | 88.63 (9) | O8—V1—O6 | 101.86 (11) |
O1—Mn1—O2W | 90.18 (9) | O8—V1—N1 | 169.72 (10) |
O1—Mn1—O3W | 175.14 (10) | C4—N1—C1 | 113.3 (2) |
O1—Mn1—O4W | 92.29 (8) | C4—N1—C2 | 112.1 (2) |
O1—Mn1—O5W | 93.12 (9) | C1—N1—C2 | 111.1 (2) |
O1W—Mn1—O2W | 93.21 (11) | C4—N1—V1 | 104.84 (18) |
O1W—Mn1—O4W | 89.40 (9) | C1—N1—V1 | 106.81 (18) |
O1W—Mn1—O5W | 178.21 (9) | C2—N1—V1 | 108.21 (17) |
O2W—Mn1—O4W | 176.45 (9) | O1—P1—O2 | 112.38 (12) |
O3W—Mn1—O1W | 87.68 (10) | O1—P1—O3 | 111.64 (12) |
O3W—Mn1—O2W | 86.85 (10) | O2—P1—O3 | 110.01 (12) |
O3W—Mn1—O4W | 90.85 (9) | O1—P1—C1 | 109.77 (14) |
O3W—Mn1—O5W | 90.58 (9) | O2—P1—C1 | 108.96 (13) |
O5W—Mn1—O2W | 87.12 (10) | O3—P1—C1 | 103.71 (13) |
O5W—Mn1—O4W | 90.21 (9) | P1—O1—Mn1 | 134.66 (13) |
Mn1—O1W—H1C | 121 (3) | P1—O2—V1i | 141.30 (13) |
Mn1—O1W—H1D | 119 (3) | P1—O3—V1 | 125.51 (13) |
H1C—O1W—H1D | 108 (4) | C3—O4—V1 | 124.53 (19) |
Mn1—O2W—H2C | 109 (3) | C5—O6—V1 | 123.48 (19) |
Mn1—O2W—H2D | 128 (3) | N1—C1—P1 | 109.4 (2) |
H2C—O2W—H2D | 111 (4) | N1—C1—H1A | 109.8 |
Mn1—O3W—H3A | 118 (2) | P1—C1—H1A | 109.8 |
Mn1—O3W—H3B | 130 (2) | N1—C1—H1B | 109.8 |
H3A—O3W—H3B | 109.7 (17) | P1—C1—H1B | 109.8 |
Mn1—O4W—H4C | 117 (2) | H1A—C1—H1B | 108.2 |
Mn1—O4W—H4D | 123 (2) | N1—C2—C3 | 112.9 (3) |
H4C—O4W—H4D | 108.0 (16) | N1—C2—H2A | 109.0 |
Mn1—O5W—H5A | 112 (3) | C3—C2—H2A | 109.0 |
Mn1—O5W—H5B | 115 (3) | N1—C2—H2B | 109.0 |
H5A—O5W—H5B | 108.4 (16) | C3—C2—H2B | 109.0 |
O2i—V1—O4 | 163.79 (9) | H2A—C2—H2B | 107.8 |
O2i—V1—O6 | 86.89 (9) | O5—C3—O4 | 123.3 (3) |
O2i—V1—N1 | 88.32 (9) | O5—C3—C2 | 118.5 (3) |
O3—V1—O2i | 90.96 (9) | O4—C3—C2 | 118.2 (3) |
O3—V1—O4 | 87.04 (9) | N1—C4—C5 | 109.6 (2) |
O3—V1—O6 | 154.03 (9) | N1—C4—H4A | 109.7 |
O3—V1—N1 | 79.41 (9) | C5—C4—H4A | 109.7 |
O4—V1—N1 | 75.50 (9) | N1—C4—H4B | 109.7 |
O6—V1—O4 | 87.90 (9) | C5—C4—H4B | 109.7 |
O6—V1—N1 | 74.66 (9) | H4A—C4—H4B | 108.2 |
O8—V1—O2i | 101.24 (11) | O7—C5—O6 | 123.4 (3) |
O8—V1—O3 | 103.95 (11) | O7—C5—C4 | 119.9 (3) |
O8—V1—O4 | 94.85 (11) | O6—C5—C4 | 116.6 (3) |
O8—V1—N1—C4 | 97.0 (6) | N1—V1—O3—P1 | 14.95 (15) |
O3—V1—N1—C4 | −152.95 (19) | O8—V1—O4—C3 | −176.3 (2) |
O2i—V1—N1—C4 | −61.66 (18) | O3—V1—O4—C3 | −72.6 (2) |
O6—V1—N1—C4 | 25.58 (18) | O2i—V1—O4—C3 | 10.7 (5) |
O4—V1—N1—C4 | 117.39 (19) | O6—V1—O4—C3 | 81.9 (2) |
O8—V1—N1—C1 | −142.5 (6) | N1—V1—O4—C3 | 7.2 (2) |
O3—V1—N1—C1 | −32.42 (17) | O8—V1—O6—C5 | 176.7 (2) |
O2i—V1—N1—C1 | 58.87 (18) | O3—V1—O6—C5 | −9.9 (4) |
O6—V1—N1—C1 | 146.11 (18) | O2i—V1—O6—C5 | 75.9 (2) |
O4—V1—N1—C1 | −122.08 (18) | O4—V1—O6—C5 | −88.7 (2) |
O8—V1—N1—C2 | −22.8 (7) | N1—V1—O6—C5 | −13.2 (2) |
O3—V1—N1—C2 | 87.24 (19) | C4—N1—C1—P1 | 155.7 (2) |
O2i—V1—N1—C2 | 178.53 (19) | C2—N1—C1—P1 | −77.0 (3) |
O6—V1—N1—C2 | −94.24 (19) | V1—N1—C1—P1 | 40.8 (2) |
O4—V1—N1—C2 | −2.42 (18) | O1—P1—C1—N1 | 88.4 (2) |
O2—P1—O1—Mn1 | 20.0 (2) | O2—P1—C1—N1 | −148.10 (19) |
O3—P1—O1—Mn1 | −104.11 (19) | O3—P1—C1—N1 | −31.0 (2) |
C1—P1—O1—Mn1 | 141.47 (18) | C4—N1—C2—C3 | −116.4 (3) |
O1W—Mn1—O1—P1 | 55.1 (2) | C1—N1—C2—C3 | 115.7 (3) |
O5W—Mn1—O1—P1 | −125.19 (19) | V1—N1—C2—C3 | −1.3 (3) |
O2W—Mn1—O1—P1 | −38.1 (2) | V1—O4—C3—O5 | 169.9 (2) |
O4W—Mn1—O1—P1 | 144.48 (19) | V1—O4—C3—C2 | −10.5 (4) |
O1—P1—O2—V1i | 149.0 (2) | N1—C2—C3—O5 | −173.4 (3) |
O3—P1—O2—V1i | −86.0 (2) | N1—C2—C3—O4 | 6.9 (4) |
C1—P1—O2—V1i | 27.1 (3) | C1—N1—C4—C5 | −149.8 (3) |
O1—P1—O3—V1 | −115.47 (16) | C2—N1—C4—C5 | 83.5 (3) |
O2—P1—O3—V1 | 119.05 (15) | V1—N1—C4—C5 | −33.7 (3) |
C1—P1—O3—V1 | 2.65 (18) | V1—O6—C5—O7 | 179.0 (2) |
O8—V1—O3—P1 | −175.00 (15) | V1—O6—C5—C4 | −3.1 (4) |
O2i—V1—O3—P1 | −73.17 (16) | N1—C4—C5—O7 | −154.2 (3) |
O6—V1—O3—P1 | 11.7 (3) | N1—C4—C5—O6 | 27.8 (4) |
O4—V1—O3—P1 | 90.74 (16) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1C···O4Wii | 0.85 (1) | 1.98 (1) | 2.813 (3) | 167 (4) |
O1W—H1D···O5ii | 0.84 (3) | 1.92 (3) | 2.759 (3) | 171 (3) |
O2W—H2C···O2 | 0.83 (4) | 2.15 (3) | 2.847 (3) | 142 (4) |
O2W—H2D···O6Wiii | 0.84 (4) | 1.88 (2) | 2.675 (6) | 160 (4) |
O3W—H3A···O4ii | 0.84 (3) | 1.92 (2) | 2.735 (3) | 163 (4) |
O3W—H3B···O6iv | 0.84 (3) | 1.93 (3) | 2.745 (3) | 166 (4) |
O4W—H4C···O7v | 0.84 (1) | 1.86 (1) | 2.698 (3) | 175 (3) |
O4W—H4D···O3ii | 0.85 (3) | 1.94 (3) | 2.778 (3) | 173 (4) |
O5W—H5A···O5vi | 0.84 (3) | 2.00 (2) | 2.803 (3) | 161 (4) |
O5W—H5B···O7iv | 0.84 (1) | 1.99 (1) | 2.823 (3) | 171 (3) |
Symmetry codes: (ii) −x+1, −y, −z; (iii) x, y, z−1; (iv) x−1, y, z−1; (v) x−1, −y+1/2, z−1/2; (vi) x, −y+1/2, z−1/2. |
Acknowledgements
We are grateful to Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support (POCI/QUI/58377/2004 supported by FEDER), and also for the postdoctoral research grants Nos. SFRH/BPD/9309/2002 (to FNS) and SFRH/BPD/14410/2003 (to LCS).
References
Almeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125. Web of Science CrossRef CAS Google Scholar
Almeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768. Web of Science CSD CrossRef Google Scholar
Almeida Paz, F. A., Shi, F.-N., Mafra, L., Makal, A., Wozniak, K., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m1628–m1632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Almeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247–m2250. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780–4795. Web of Science CrossRef Google Scholar
Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645–6655. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546–1554. CSD CrossRef CAS Web of Science Google Scholar
Kitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev. 34, 109–119. Web of Science CrossRef PubMed CAS Google Scholar
Mafra, L., Almeida Paz, F. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2006). Chem. Eur. J. 12, 363–375. Web of Science CSD CrossRef Google Scholar
Nonius (1998). COLLECT. Nonius BV Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Amaral, V. S., Rocha, J., Klinowski, J. & Trindade, T. (2006). Inorg. Chim. Acta, 359, 1147–1158. Web of Science CSD CrossRef CAS Google Scholar
Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Makal, A., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 754, 51–60. Web of Science CSD CrossRef CAS Google Scholar
Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Rocha, J., Amaral, V. S., Klinowski, J. & Trindade, T. (2006). J. Mol. Struct. 789, 200–208. Web of Science CSD CrossRef CAS Google Scholar
Shi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335–m338. Web of Science CSD CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.