metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Deca­aqua­dioxobis[μ3-N-(phosphono­meth­yl)imino­di­acetato]dimanganesedivanadium dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt

(Received 13 December 2006; accepted 15 December 2006; online 10 January 2007)

The crystal structure of the title compound, [Mn2V2(C5H6NO7P)2O2(H2O)10]·2H2O, contains a centrosymmetric dimeric [V2O2(pmida)2]4− unit [where H4pmida is N-(phosphono­meth­yl)imino­diacetic acid] connecting two neighbouring Mn2+ cations through the phospho­nate groups. The crystal structure is characterized by the presence of an extensive network of strong and highly directional O—H⋯O hydrogen bonds, involving the water mol­ecules (coordinated and uncoordinated) and the functional groups of pmida4−.

Comment

Since the report by Hoskins & Robson (1990[Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546-1554.]), research focused on the structural design and synthesis of novel coordination-based materials, in which the topology is extended from discrete complexes to one, two or three dimensions, has seen a great and exponential growth (for recent reviews see Cheetham et al., 2006[Cheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780-4795.]; Kitagawa & Uemura, 2005[Kitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev. 34, 109-119.]). During the course of our ongoing research on novel multi-dimensional hybrid crystalline materials incorporating N-(phosphono­meth­yl)imino­diacetic acid (H4pmida) residues (Mafra et al., 2006[Mafra, L., Almeida Paz, F. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2006). Chem. Eur. J. 12, 363-375.]; Almeida Paz et al., 2004[Almeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]; Almeida Paz, Shi, Trindade et al., 2005[Almeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247-m2250.]; Almeida Paz, Shi, Mafra et al., 2005[Almeida Paz, F. A., Shi, F.-N., Mafra, L., Makal, A., Wozniak, K., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m1628-m1632.]; Almeida Paz, Rocha, Klinowski et al., 2005[Almeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125.]; Shi et al., 2005[Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Makal, A., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 754, 51-60.]; Shi, Almeida Paz, Trindade & Rocha, 2006[Shi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335-m338.]; Shi, Almeida Paz, Girginova, Amaral et al., 2006[Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Amaral, V. S., Rocha, J., Klinowski, J. & Trindade, T. (2006). Inorg. Chim. Acta, 359, 1147-1158.]; Shi, Almeida Paz, Girginova, Rocha et al., 2006[Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Rocha, J., Amaral, V. S., Klinowski, J. & Trindade, T. (2006). J. Mol. Struct. 789, 200-208.]), we have isolated the crystalline material [Mn2V2O2(pmida)2(H2O)10]·2H2O [where pmida4− is (C5H6NO7P)4−], (I)[link], whose crystal structure at the temperature of 180 (2) K we report here.

[Scheme 1]

The title compound, (I)[link], contains two crystallographically unique metal centres, Mn1 and V1, both exhibiting octa­hedral coordination geometries, {MnO6} and {VO5N} (Fig. 1[link]; Table 1[link]). Mn1 is coordinated by five water mol­ecules plus one O atom from the μ3-bridging phos­phon­ate group of pmida4− (Fig. 1[link]), with a coordination geometry resembling a quasi-regular octa­hedron [Mn—O bond lengths ranging from 2.092 (2) to 2.236 (2) Å; cis and trans O—Mn—O angles found in the 86.85 (10)–93.21 (11)° and 175.14 (10)–178.21 (9)° ranges, respectively; see Table 1[link]]. The inter­metallic Mn1⋯Mn1i distance between exo-coordinated mangan­ese(II) centres (and across the unit depicted in Fig. 1[link]) is of 10.175 (3) Å, while the shortest Mn1⋯V1i distance within the tetranuclear unit is 5.368 (1) Å [symmetry code: (i) 2 − x, −y, −z].

The core of the neutral tetranuclear [Mn2V2O2(pmida)2(H2O)10] mol­ecule is composed of the anionic centrosymmetric [V2O2(pmida)2]4− dimeric unit, first described by Crans et al. (1998[Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645-6655.]). The geometrical aspects of this unit, in particular the highly distorted octa­hedral coordination mode of V1 (Table 1[link]) plus the coordination fashion of the pmida4− ligand (which forms with V1 three five-membered chelate rings; see Fig. 1[link]), are typical and in good agreement with those described in detail in our previous reports (Almeida Paz et al., 2004[Almeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]; Almeida Paz, Shi, Trindade et al., 2005[Almeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247-m2250.]; Almeida Paz, Shi, Mafra et al., 2005[Almeida Paz, F. A., Shi, F.-N., Mafra, L., Makal, A., Wozniak, K., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m1628-m1632.]; Almeida Paz, Rocha, Klinowski et al., 2005[Almeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125.]; Shi et al., 2005[Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Makal, A., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 754, 51-60.]; Shi, Almeida Paz, Trindade & Rocha, 2006[Shi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335-m338.]; Shi, Almeida Paz, Girginova, Amaral et al., 2006[Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Amaral, V. S., Rocha, J., Klinowski, J. & Trindade, T. (2006). Inorg. Chim. Acta, 359, 1147-1158.]; Shi, Almeida Paz, Girginova, Rocha et al., 2006[Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Rocha, J., Amaral, V. S., Klinowski, J. & Trindade, T. (2006). J. Mol. Struct. 789, 200-208.]).

In the extended solid-state [Mn2V2O2(pmida)2(H2O)10] mol­ecular units pack closely in a typical brick-wall-like fashion along the crystallographic [010] direction (Fig. 2[link]a), mediated by an extensive network of strong and highly directional O—H⋯O hydrogen-bonding inter­actions, which also involve the water mol­ecule of crystallization (Fig. 2[link] and Table 3).

[Figure 1]
Figure 1
The structure of the tetranuclear centrosymmetric [Mn2V2O2(pmida)2(H2O)10] complex, showing the labelling scheme for all non-H atoms belonging to the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres. The water mol­ecule of crystallization, O6W, was omitted for clarity. Symmetry transformation used to generate non-labelled atoms: 2 − x, −y, −z.
[Figure 2]
Figure 2
Perspective views of the crystal packing of the title compound, viewed along the (a) [100] and (b) [001] directions of the unit cell. Hydrogen bonds are represented as light-blue dashed lines. H atoms have been omitted for clarity. For details on the hydrogen-bonding geometry see Table 2[link].

Experimental

Chemicals were readily available from commercial sources and were used as received without further purification: N-(phosphono­meth­yl)imino­diacetic acid hydrate (H4pmida, C5H10NO7P, 97% Fluka), vanadium(IV) oxide sulfate penta­hydrate (VOSO4·5H2O, 99% Sigma–Aldrich), manganese(II) acetate tetra­hydrate (MnC4H6O4·4H2O, 99.0% Fluka), 4,4′-trimethyl­enedipyridine (TMD, C13H14N2, 98%, Aldrich).

Synthesis was typically carried out in a PTFE-lined stainless steel reaction vessel (ca 40 ml), under autogeneous pressure and static conditions in a preheated oven at 393 K. The reaction took place over a period of 3 d, after which the vessel was removed from the oven and left to cool to ambient temperature before opening. The title compound proved to be air- and light-stable.

The title compound was synthesized from a mixture containing 0.40 g of VOSO4·5H2O, 0.61 g of MnC4H6O4·4H2O, and 0.40 g of H4pmida, and 0.24 g of TMD in ca 15 g of distilled water. The mixture was stirred thoroughly at ambient temperature for 30 minutes, yielding a suspension with a molar composition of 1.4:1.4:1.0:0.7:473, which was transferred to the reaction vessel. After reacting, a small quantity of green/blue single crystals of the title compound were isolated as a pure phase by vacuum filtering, washed with copious amounts of distilled water (ca 3 × 50 ml), and then air-dried at ambient temperature. The same material can also be isolated as large single crystals by slow evaporation (in the open air) of the autoclave mother liquor over a period of one month. It is of considerable inter­est to note that similar reactions where TMD was not included in the starting reactive mixture failed to lead to the isolation of the title material.

Crystal data
  • [Mn2V2(C5H6NO7P)2O2(H2O)10]·2H2O

  • Mr = 906.11

  • Monoclinic, P 21 /c

  • a = 10.096 (2) Å

  • b = 14.934 (3) Å

  • c = 10.848 (2) Å

  • β = 110.52 (3)°

  • V = 1531.8 (6) Å3

  • Z = 2

  • Dx = 1.965 Mg m−3

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 180 (2) K

  • Prism, brown

  • 0.15 × 0.10 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thin–slice ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.794, Tmax = 0.869

  • 17432 measured reflections

  • 3502 independent reflections

  • 2880 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.05

  • 3502 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0517P)2 + 3.2528P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.092 (2)
Mn1—O1W 2.164 (2)
Mn1—O2W 2.212 (2)
Mn1—O3W 2.152 (2)
Mn1—O4W 2.236 (2)
Mn1—O5W 2.187 (2)
V1—O2i 1.991 (2)
V1—O3 1.988 (2)
V1—O4 2.030 (2)
V1—O6 2.028 (2)
V1—O8 1.598 (2)
V1—N1 2.370 (3)
O1—Mn1—O1W 88.63 (9)
O1—Mn1—O2W 90.18 (9)
O1—Mn1—O3W 175.14 (10)
O1—Mn1—O4W 92.29 (8)
O1—Mn1—O5W 93.12 (9)
O1W—Mn1—O2W 93.21 (11)
O1W—Mn1—O4W 89.40 (9)
O1W—Mn1—O5W 178.21 (9)
O2W—Mn1—O4W 176.45 (9)
O3W—Mn1—O1W 87.68 (10)
O3W—Mn1—O2W 86.85 (10)
O3W—Mn1—O4W 90.85 (9)
O3W—Mn1—O5W 90.58 (9)
O5W—Mn1—O2W 87.12 (10)
O5W—Mn1—O4W 90.21 (9)
O2i—V1—O4 163.79 (9)
O2i—V1—O6 86.89 (9)
O2i—V1—N1 88.32 (9)
O3—V1—O2i 90.96 (9)
O3—V1—O4 87.04 (9)
O3—V1—O6 154.03 (9)
O3—V1—N1 79.41 (9)
O4—V1—N1 75.50 (9)
O6—V1—O4 87.90 (9)
O6—V1—N1 74.66 (9)
O8—V1—O2i 101.24 (11)
O8—V1—O3 103.95 (11)
O8—V1—O4 94.85 (11)
O8—V1—O6 101.86 (11)
O8—V1—N1 169.72 (10)
Symmetry code: (i) -x+2, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1C⋯O4Wii 0.845 (10) 1.982 (12) 2.813 (3) 167 (4)
O1W—H1D⋯O5ii 0.84 (3) 1.92 (3) 2.759 (3) 171 (3)
O2W—H2C⋯O2 0.83 (4) 2.15 (3) 2.847 (3) 142 (4)
O2W—H2D⋯O6Wiii 0.84 (4) 1.880 (17) 2.675 (6) 160 (4)
O3W—H3A⋯O4ii 0.84 (3) 1.920 (16) 2.735 (3) 163 (4)
O3W—H3B⋯O6iv 0.84 (3) 1.93 (3) 2.745 (3) 166 (4)
O4W—H4C⋯O7v 0.844 (10) 1.856 (11) 2.698 (3) 175 (3)
O4W—H4D⋯O3ii 0.85 (3) 1.94 (3) 2.778 (3) 173 (4)
O5W—H5A⋯O5vi 0.84 (3) 1.996 (15) 2.803 (3) 161 (4)
O5W—H5B⋯O7iv 0.841 (10) 1.989 (12) 2.823 (3) 171 (3)
Symmetry codes: (ii) -x+1, -y, -z; (iii) x, y, z-1; (iv) x-1, y, z-1; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

H atoms bound to carbon were placed in idealized positions and allowed to ride on their parent atoms with Uiso fixed at 1.2 times Ueq(C) (C—H = 0.99 Å). H atoms associated with the five crystallographically unique coordinated water mol­ecules were markedly visible in difference Fourier maps, and were included in subsequent least-squares refinement cycles with the O—H and H⋯H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively, to ensure a chemically reasonable geometry of water mol­ecules. These H atoms were also allowed to ride on their parent atoms with Uiso fixed at 1.5 times Ueq(O).

The crystallographically unique water mol­ecule of crystallization was found to be severely affected by disorder, which prevented a sensible refinement using anisotropic displacement parameters. In fact, both the highest peak and deepest hole from the final difference Fourier synthesis were found close to this (0.01 and 0.64 Å, respectively). Therefore, the O atom from this mol­ecule was refined assuming an isotropic displacement parameter. H atoms associated with this water mol­ecule could not be located in difference Fourier maps, and attempts to place them in calculated positions did not lead to a reasonable model for the geometrical aspects of the resulting hydrogen-bonding inter­actions. Therefore, these H atoms were omitted from the present structural model but were included in the chemical formula of the compound.

Data collection: COLLECT (Nonius 1998[Nonius (1998). COLLECT. Nonius BV Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Bruker 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: COLLECT (Nonius 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.

decaaquadioxobis[µ3-N-(phosphonomethyl)iminodiacetato]dimanganesedivanadium dihydrate, [Mn2V2(C5H6NO7P)2O2(H2O)10]·2H2O top
Crystal data top
[Mn2V2(C5H6NO7P)2O2(H2O)10]·2H2OF(000) = 920
Mr = 906.11Dx = 1.965 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9712 reflections
a = 10.096 (2) Åθ = 1.0–27.5°
b = 14.934 (3) ŵ = 1.61 mm1
c = 10.848 (2) ÅT = 180 K
β = 110.52 (3)°Prism, brown
V = 1531.8 (6) Å30.15 × 0.10 × 0.09 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Thin–slice ω and φ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1213
Tmin = 0.794, Tmax = 0.869k = 1919
17432 measured reflectionsl = 1414
3502 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0517P)2 + 3.2528P]
where P = (Fo2 + 2Fc2)/3
3502 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 1.05 e Å3
15 restraintsΔρmin = 0.95 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.47798 (5)0.06629 (3)0.23812 (4)0.01467 (14)
O1W0.5014 (3)0.07031 (16)0.1672 (2)0.0285 (6)
H1C0.531 (4)0.082 (3)0.0859 (12)0.043*
H1D0.438 (3)0.108 (2)0.205 (3)0.043*
O2W0.5853 (3)0.0392 (2)0.3804 (2)0.0316 (6)
H2C0.657 (3)0.009 (3)0.343 (4)0.047*
H2D0.599 (4)0.074 (2)0.435 (4)0.047*
O3W0.2854 (2)0.02509 (18)0.3901 (2)0.0255 (5)
H3A0.239 (3)0.017 (2)0.374 (4)0.038*
H3B0.235 (3)0.052 (2)0.458 (3)0.038*
O4W0.3596 (2)0.09866 (15)0.1040 (2)0.0180 (5)
H4C0.339 (3)0.1530 (8)0.098 (4)0.027*
H4D0.291 (3)0.0673 (17)0.101 (4)0.027*
O5W0.4474 (2)0.20346 (16)0.3136 (2)0.0222 (5)
H5A0.525 (2)0.227 (3)0.308 (3)0.033*
H5B0.391 (3)0.209 (3)0.3914 (16)0.033*
V11.00944 (5)0.02657 (3)0.24106 (5)0.01255 (14)
N10.9881 (2)0.16751 (18)0.1354 (2)0.0144 (5)
P10.82006 (8)0.05841 (5)0.05527 (7)0.01277 (18)
O10.6728 (2)0.09610 (15)0.0929 (2)0.0169 (4)
O20.8417 (2)0.00520 (15)0.1674 (2)0.0171 (5)
O30.8583 (2)0.00015 (14)0.0697 (2)0.0158 (4)
O40.8598 (2)0.09240 (15)0.2912 (2)0.0190 (5)
O50.7024 (2)0.20093 (16)0.2621 (2)0.0236 (5)
O61.1562 (2)0.10601 (15)0.3703 (2)0.0173 (4)
O71.2826 (3)0.23093 (16)0.4190 (2)0.0264 (5)
O81.0113 (2)0.05963 (15)0.3290 (2)0.0222 (5)
C10.9495 (3)0.1494 (2)0.0073 (3)0.0150 (6)
H1A1.03490.13250.02670.018*
H1B0.90880.20400.05820.018*
C20.8752 (3)0.2192 (2)0.1622 (3)0.0184 (6)
H2A0.80170.23600.07740.022*
H2B0.91640.27520.20890.022*
C30.8069 (3)0.1677 (2)0.2439 (3)0.0162 (6)
C41.1288 (3)0.2098 (2)0.1951 (3)0.0187 (6)
H4A1.11920.27570.18900.022*
H4B1.19120.19100.14690.022*
C51.1943 (3)0.1818 (2)0.3395 (3)0.0159 (6)
O6W0.5865 (6)0.1765 (4)0.4618 (6)0.1092 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0117 (2)0.0175 (3)0.0126 (2)0.00012 (17)0.00141 (18)0.00099 (17)
O1W0.0293 (14)0.0205 (13)0.0254 (13)0.0045 (10)0.0033 (11)0.0034 (10)
O2W0.0214 (12)0.0543 (19)0.0194 (13)0.0064 (12)0.0074 (10)0.0002 (11)
O3W0.0173 (11)0.0351 (15)0.0179 (12)0.0091 (10)0.0015 (9)0.0096 (10)
O4W0.0173 (11)0.0169 (11)0.0210 (11)0.0006 (9)0.0080 (9)0.0001 (9)
O5W0.0189 (11)0.0219 (12)0.0221 (12)0.0027 (9)0.0025 (10)0.0047 (10)
V10.0118 (2)0.0132 (3)0.0118 (2)0.00010 (18)0.00294 (19)0.00108 (19)
N10.0120 (11)0.0189 (13)0.0108 (12)0.0015 (10)0.0022 (10)0.0006 (10)
P10.0093 (3)0.0163 (4)0.0110 (4)0.0002 (3)0.0015 (3)0.0009 (3)
O10.0106 (10)0.0207 (12)0.0172 (10)0.0016 (8)0.0022 (8)0.0026 (9)
O20.0109 (10)0.0234 (12)0.0154 (10)0.0003 (9)0.0025 (8)0.0049 (9)
O30.0139 (10)0.0179 (11)0.0136 (10)0.0022 (8)0.0021 (8)0.0001 (8)
O40.0199 (11)0.0193 (12)0.0221 (11)0.0022 (9)0.0125 (9)0.0026 (9)
O50.0194 (11)0.0220 (12)0.0328 (13)0.0016 (9)0.0132 (10)0.0030 (10)
O60.0192 (11)0.0168 (11)0.0135 (10)0.0029 (9)0.0026 (9)0.0021 (8)
O70.0284 (13)0.0232 (13)0.0179 (11)0.0110 (10)0.0039 (10)0.0012 (10)
O80.0244 (12)0.0191 (12)0.0237 (12)0.0017 (9)0.0091 (10)0.0047 (9)
C10.0142 (13)0.0177 (16)0.0121 (14)0.0006 (11)0.0032 (11)0.0003 (11)
C20.0220 (16)0.0165 (16)0.0181 (15)0.0028 (12)0.0088 (13)0.0001 (12)
C30.0159 (14)0.0154 (15)0.0164 (15)0.0021 (12)0.0043 (12)0.0047 (12)
C40.0160 (14)0.0206 (16)0.0160 (15)0.0064 (12)0.0014 (12)0.0034 (12)
C50.0121 (13)0.0188 (16)0.0153 (14)0.0001 (11)0.0029 (12)0.0009 (12)
Geometric parameters (Å, º) top
Mn1—O12.092 (2)V1—N12.370 (3)
Mn1—O1W2.164 (2)N1—C41.480 (4)
Mn1—O2W2.212 (2)N1—C11.482 (4)
Mn1—O3W2.152 (2)N1—C21.488 (4)
Mn1—O4W2.236 (2)P1—O11.506 (2)
Mn1—O5W2.187 (2)P1—O21.531 (2)
O1W—H1C0.845 (10)P1—O31.544 (2)
O1W—H1D0.84 (3)P1—C11.830 (3)
O2W—H2C0.83 (4)O2—V1i1.991 (2)
O2W—H2D0.84 (4)O4—C31.273 (4)
O3W—H3A0.84 (3)O5—C31.243 (4)
O3W—H3B0.84 (3)O6—C51.277 (4)
O4W—H4C0.844 (10)O7—C51.240 (4)
O4W—H4D0.85 (3)C1—H1A0.9900
O5W—H5A0.84 (3)C1—H1B0.9900
O5W—H5B0.841 (10)C2—C31.512 (4)
V1—O2i1.991 (2)C2—H2A0.9900
V1—O31.988 (2)C2—H2B0.9900
V1—O42.030 (2)C4—C51.529 (4)
V1—O62.028 (2)C4—H4A0.9900
V1—O81.598 (2)C4—H4B0.9900
O1—Mn1—O1W88.63 (9)O8—V1—O6101.86 (11)
O1—Mn1—O2W90.18 (9)O8—V1—N1169.72 (10)
O1—Mn1—O3W175.14 (10)C4—N1—C1113.3 (2)
O1—Mn1—O4W92.29 (8)C4—N1—C2112.1 (2)
O1—Mn1—O5W93.12 (9)C1—N1—C2111.1 (2)
O1W—Mn1—O2W93.21 (11)C4—N1—V1104.84 (18)
O1W—Mn1—O4W89.40 (9)C1—N1—V1106.81 (18)
O1W—Mn1—O5W178.21 (9)C2—N1—V1108.21 (17)
O2W—Mn1—O4W176.45 (9)O1—P1—O2112.38 (12)
O3W—Mn1—O1W87.68 (10)O1—P1—O3111.64 (12)
O3W—Mn1—O2W86.85 (10)O2—P1—O3110.01 (12)
O3W—Mn1—O4W90.85 (9)O1—P1—C1109.77 (14)
O3W—Mn1—O5W90.58 (9)O2—P1—C1108.96 (13)
O5W—Mn1—O2W87.12 (10)O3—P1—C1103.71 (13)
O5W—Mn1—O4W90.21 (9)P1—O1—Mn1134.66 (13)
Mn1—O1W—H1C121 (3)P1—O2—V1i141.30 (13)
Mn1—O1W—H1D119 (3)P1—O3—V1125.51 (13)
H1C—O1W—H1D108 (4)C3—O4—V1124.53 (19)
Mn1—O2W—H2C109 (3)C5—O6—V1123.48 (19)
Mn1—O2W—H2D128 (3)N1—C1—P1109.4 (2)
H2C—O2W—H2D111 (4)N1—C1—H1A109.8
Mn1—O3W—H3A118 (2)P1—C1—H1A109.8
Mn1—O3W—H3B130 (2)N1—C1—H1B109.8
H3A—O3W—H3B109.7 (17)P1—C1—H1B109.8
Mn1—O4W—H4C117 (2)H1A—C1—H1B108.2
Mn1—O4W—H4D123 (2)N1—C2—C3112.9 (3)
H4C—O4W—H4D108.0 (16)N1—C2—H2A109.0
Mn1—O5W—H5A112 (3)C3—C2—H2A109.0
Mn1—O5W—H5B115 (3)N1—C2—H2B109.0
H5A—O5W—H5B108.4 (16)C3—C2—H2B109.0
O2i—V1—O4163.79 (9)H2A—C2—H2B107.8
O2i—V1—O686.89 (9)O5—C3—O4123.3 (3)
O2i—V1—N188.32 (9)O5—C3—C2118.5 (3)
O3—V1—O2i90.96 (9)O4—C3—C2118.2 (3)
O3—V1—O487.04 (9)N1—C4—C5109.6 (2)
O3—V1—O6154.03 (9)N1—C4—H4A109.7
O3—V1—N179.41 (9)C5—C4—H4A109.7
O4—V1—N175.50 (9)N1—C4—H4B109.7
O6—V1—O487.90 (9)C5—C4—H4B109.7
O6—V1—N174.66 (9)H4A—C4—H4B108.2
O8—V1—O2i101.24 (11)O7—C5—O6123.4 (3)
O8—V1—O3103.95 (11)O7—C5—C4119.9 (3)
O8—V1—O494.85 (11)O6—C5—C4116.6 (3)
O8—V1—N1—C497.0 (6)N1—V1—O3—P114.95 (15)
O3—V1—N1—C4152.95 (19)O8—V1—O4—C3176.3 (2)
O2i—V1—N1—C461.66 (18)O3—V1—O4—C372.6 (2)
O6—V1—N1—C425.58 (18)O2i—V1—O4—C310.7 (5)
O4—V1—N1—C4117.39 (19)O6—V1—O4—C381.9 (2)
O8—V1—N1—C1142.5 (6)N1—V1—O4—C37.2 (2)
O3—V1—N1—C132.42 (17)O8—V1—O6—C5176.7 (2)
O2i—V1—N1—C158.87 (18)O3—V1—O6—C59.9 (4)
O6—V1—N1—C1146.11 (18)O2i—V1—O6—C575.9 (2)
O4—V1—N1—C1122.08 (18)O4—V1—O6—C588.7 (2)
O8—V1—N1—C222.8 (7)N1—V1—O6—C513.2 (2)
O3—V1—N1—C287.24 (19)C4—N1—C1—P1155.7 (2)
O2i—V1—N1—C2178.53 (19)C2—N1—C1—P177.0 (3)
O6—V1—N1—C294.24 (19)V1—N1—C1—P140.8 (2)
O4—V1—N1—C22.42 (18)O1—P1—C1—N188.4 (2)
O2—P1—O1—Mn120.0 (2)O2—P1—C1—N1148.10 (19)
O3—P1—O1—Mn1104.11 (19)O3—P1—C1—N131.0 (2)
C1—P1—O1—Mn1141.47 (18)C4—N1—C2—C3116.4 (3)
O1W—Mn1—O1—P155.1 (2)C1—N1—C2—C3115.7 (3)
O5W—Mn1—O1—P1125.19 (19)V1—N1—C2—C31.3 (3)
O2W—Mn1—O1—P138.1 (2)V1—O4—C3—O5169.9 (2)
O4W—Mn1—O1—P1144.48 (19)V1—O4—C3—C210.5 (4)
O1—P1—O2—V1i149.0 (2)N1—C2—C3—O5173.4 (3)
O3—P1—O2—V1i86.0 (2)N1—C2—C3—O46.9 (4)
C1—P1—O2—V1i27.1 (3)C1—N1—C4—C5149.8 (3)
O1—P1—O3—V1115.47 (16)C2—N1—C4—C583.5 (3)
O2—P1—O3—V1119.05 (15)V1—N1—C4—C533.7 (3)
C1—P1—O3—V12.65 (18)V1—O6—C5—O7179.0 (2)
O8—V1—O3—P1175.00 (15)V1—O6—C5—C43.1 (4)
O2i—V1—O3—P173.17 (16)N1—C4—C5—O7154.2 (3)
O6—V1—O3—P111.7 (3)N1—C4—C5—O627.8 (4)
O4—V1—O3—P190.74 (16)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O4Wii0.85 (1)1.98 (1)2.813 (3)167 (4)
O1W—H1D···O5ii0.84 (3)1.92 (3)2.759 (3)171 (3)
O2W—H2C···O20.83 (4)2.15 (3)2.847 (3)142 (4)
O2W—H2D···O6Wiii0.84 (4)1.88 (2)2.675 (6)160 (4)
O3W—H3A···O4ii0.84 (3)1.92 (2)2.735 (3)163 (4)
O3W—H3B···O6iv0.84 (3)1.93 (3)2.745 (3)166 (4)
O4W—H4C···O7v0.84 (1)1.86 (1)2.698 (3)175 (3)
O4W—H4D···O3ii0.85 (3)1.94 (3)2.778 (3)173 (4)
O5W—H5A···O5vi0.84 (3)2.00 (2)2.803 (3)161 (4)
O5W—H5B···O7iv0.84 (1)1.99 (1)2.823 (3)171 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z1; (v) x1, y+1/2, z1/2; (vi) x, y+1/2, z1/2.
 

Acknowledgements

We are grateful to Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support (POCI/QUI/58377/2004 supported by FEDER), and also for the postdoctoral research grants Nos. SFRH/BPD/9309/2002 (to FNS) and SFRH/BPD/14410/2003 (to LCS).

References

First citationAlmeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125.  Web of Science CrossRef CAS Google Scholar
First citationAlmeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768.  Web of Science CSD CrossRef Google Scholar
First citationAlmeida Paz, F. A., Shi, F.-N., Mafra, L., Makal, A., Wozniak, K., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m1628–m1632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlmeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247–m2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780–4795.  Web of Science CrossRef Google Scholar
First citationCrans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645–6655.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546–1554.  CSD CrossRef CAS Web of Science Google Scholar
First citationKitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev. 34, 109–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMafra, L., Almeida Paz, F. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2006). Chem. Eur. J. 12, 363–375.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShi, F.-N., Almeida Paz, F. A., Girginova, P. I., Amaral, V. S., Rocha, J., Klinowski, J. & Trindade, T. (2006). Inorg. Chim. Acta, 359, 1147–1158.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Makal, A., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 754, 51–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, F.-N., Almeida Paz, F. A., Girginova, P. I., Rocha, J., Amaral, V. S., Klinowski, J. & Trindade, T. (2006). J. Mol. Struct. 789, 200–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335–m338.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds