organic compounds
Tetrakis(guanidinium) butane-1,2,3,4-tetracarboxylate
aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and bDorna Institute of Science, No 83 Padadshah, 14 St. Ahwaz, Khozestan, Iran
*Correspondence e-mail: v.mckee@lboro.ac.uk
The title compound, 4CH6N3+·C8H6O84−, forms a hydrogen-bonded network, in which each O atom is an acceptor for three hydrogen bonds and each guadinium H atom contributes to a single hydrogen bond. The complete anion is generated by inversion symmetry.
Comment
Guanidinium ions have long been utilized in modelling Arg–Glu or Arg–Asp side-chain interactions in proteins (see, for example, Melo et al., 1999; Fülscher & Mehler, 1988; Singh et al., 1987). More recently, the same types of interaction have been utilized in host–guest and sensor chemistry (see, for example, Houk et al., 2005) and in crystal engineering (see, for example, Holman et al., 2001; Burrows et al., 2003). In this paper, we report the structure of the title compound, (I), the guanidinium salt of 1,2,3,4-butanetetracarboxylic acid. A search of the Cambridge Structural Database (Version 5.27; Allen, 2002; Fletcher et al., 1996) showed that, to date, the only other structurally characterized 1,2,3,4-butanetetracarboxylate salt is [NH4]4[C8H6O8]·H2O (Barnes & Barnes, 1996).
The structure of (I) is shown in Fig. 1. The anion lies on a centre of symmetry so that the contains half a [C8H6O8]4− anion and two independent [CH6N3]+ cations. The anion conformation is very similar to that observed in the previously reported ammonium salt (Barnes & Barnes, 1996), having an extended essentially planar C6 chain. The anions are arranged in parallel stacks perpendicular to b and interact with each other only through hydrogen bonding via the guanidinium cations.
Each carboxylate group is paired with a guanidinium ion to form a conventional R22(9) ring (Etter et al., 1990). There is also one R12(6) ring involving atoms O4, N11 and N12, and one R22(7) ring involving atoms N23, O1vi and O2vi [symmetry code: (vi) 2 − x, y, − z]. Each O atom accepts further hydrogen bonds from neighbouring guanadinium cations so that there is a total of three hydrogen bonds to each O atom (Figs. 1 and 3, Table 1). Each H atom in the guanidinium ions is involved in a single hydrogen bond. The resulting three-dimensional hydrogen-bonding network contains a number of large rings, but graph-set analysis of these is not particularly helpful in understanding the structure.
Experimental
1,2,3,4-Butanetetracarboxylic acid (Merck; 1 mmol, 0.23 g) was added to an aqueous solution (12 ml) of guanidinum carbonate (Merck; 4.1 mmol, 0.74 g). This solution yielded colourless crystals of (I) after 6 d.
Crystal data
|
Refinement
|
Carbon-bound H atoms were placed in calculated positions, with C—H = 0.99–1.00 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C). H atoms bonded to N were located in difference maps and their coordinates refined with a common fixed Uiso value. N—H distances are given in Table 1.
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807000724/hb2255sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807000724/hb2255Isup2.hkl
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.4CH6N3+·C8H6O84− | F(000) = 1000 |
Mr = 470.48 | Dx = 1.439 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3043 reflections |
a = 13.0411 (13) Å | θ = 2.2–23.4° |
b = 8.9177 (9) Å | µ = 0.12 mm−1 |
c = 18.8692 (19) Å | T = 150 K |
β = 98.289 (2)° | Plate, colourless |
V = 2171.5 (4) Å3 | 0.35 × 0.15 × 0.05 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2136 independent reflections |
Radiation source: normal-focus sealed tube | 1741 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −16→16 |
Tmin = 0.876, Tmax = 1.00 | k = −11→11 |
8107 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difmap and geom |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0378P)2 + 1.6442P] where P = (Fo2 + 2Fc2)/3 |
2136 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.69273 (9) | 0.17756 (12) | 0.31000 (6) | 0.0242 (3) | |
O2 | 0.65689 (9) | 0.41895 (12) | 0.28976 (5) | 0.0223 (3) | |
C1 | 0.67633 (11) | 0.30840 (17) | 0.33106 (8) | 0.0164 (3) | |
C2 | 0.67789 (12) | 0.33449 (18) | 0.41112 (8) | 0.0191 (3) | |
H2A | 0.6072 | 0.3180 | 0.4228 | 0.023* | |
H2B | 0.6963 | 0.4406 | 0.4220 | 0.023* | |
C3 | 0.75332 (11) | 0.23416 (17) | 0.45963 (7) | 0.0154 (3) | |
H3 | 0.7347 | 0.1269 | 0.4490 | 0.019* | |
C4 | 0.86530 (12) | 0.26014 (16) | 0.44669 (8) | 0.0152 (3) | |
O3 | 0.92444 (8) | 0.14777 (12) | 0.44635 (6) | 0.0186 (3) | |
O4 | 0.89455 (8) | 0.39294 (12) | 0.43873 (6) | 0.0217 (3) | |
C11 | 0.88420 (12) | 0.74996 (17) | 0.38683 (8) | 0.0184 (3) | |
N11 | 0.89593 (12) | 0.72249 (18) | 0.45713 (8) | 0.0250 (3) | |
N12 | 0.86122 (12) | 0.63807 (16) | 0.34127 (8) | 0.0242 (3) | |
N13 | 0.89573 (11) | 0.88714 (16) | 0.36297 (8) | 0.0229 (3) | |
C21 | 1.09697 (12) | 0.31126 (17) | 0.32844 (8) | 0.0189 (3) | |
N21 | 1.06074 (12) | 0.17722 (16) | 0.34047 (8) | 0.0235 (3) | |
N22 | 1.07380 (12) | 0.42887 (16) | 0.36587 (8) | 0.0254 (3) | |
N23 | 1.15688 (12) | 0.33132 (19) | 0.27746 (8) | 0.0277 (3) | |
H11A | 0.8953 (16) | 0.627 (3) | 0.4689 (11) | 0.040* | |
H11B | 0.9314 (17) | 0.789 (2) | 0.4842 (12) | 0.040* | |
H12A | 0.8474 (16) | 0.660 (2) | 0.2957 (12) | 0.040* | |
H12B | 0.8585 (15) | 0.546 (2) | 0.3588 (11) | 0.040* | |
H13A | 0.9007 (15) | 0.961 (2) | 0.3922 (11) | 0.040* | |
H13B | 0.8822 (16) | 0.901 (2) | 0.3163 (12) | 0.040* | |
H21A | 1.0868 (16) | 0.100 (2) | 0.3232 (11) | 0.040* | |
H21B | 1.0202 (17) | 0.168 (2) | 0.3748 (11) | 0.040* | |
H22A | 1.0241 (17) | 0.420 (2) | 0.3933 (11) | 0.040* | |
H22B | 1.0961 (15) | 0.520 (3) | 0.3547 (11) | 0.040* | |
H23A | 1.1890 (16) | 0.419 (3) | 0.2769 (11) | 0.040* | |
H23B | 1.1784 (17) | 0.251 (2) | 0.2602 (12) | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0386 (7) | 0.0178 (6) | 0.0160 (6) | 0.0017 (5) | 0.0032 (5) | −0.0005 (4) |
O2 | 0.0327 (7) | 0.0192 (6) | 0.0157 (5) | 0.0032 (5) | 0.0055 (5) | 0.0016 (4) |
C1 | 0.0139 (7) | 0.0189 (8) | 0.0164 (7) | −0.0013 (6) | 0.0025 (6) | 0.0010 (6) |
C2 | 0.0196 (8) | 0.0235 (8) | 0.0145 (7) | 0.0036 (6) | 0.0035 (6) | −0.0001 (6) |
C3 | 0.0176 (8) | 0.0163 (7) | 0.0127 (8) | 0.0006 (6) | 0.0034 (6) | −0.0011 (6) |
C4 | 0.0199 (8) | 0.0171 (8) | 0.0087 (7) | 0.0001 (6) | 0.0027 (6) | −0.0005 (5) |
O3 | 0.0190 (5) | 0.0178 (6) | 0.0200 (6) | 0.0018 (4) | 0.0056 (4) | −0.0017 (4) |
O4 | 0.0243 (6) | 0.0165 (6) | 0.0250 (6) | −0.0013 (5) | 0.0064 (5) | 0.0032 (5) |
C11 | 0.0157 (8) | 0.0189 (8) | 0.0203 (8) | 0.0005 (6) | 0.0014 (6) | −0.0005 (6) |
N11 | 0.0326 (8) | 0.0230 (8) | 0.0185 (7) | −0.0053 (6) | 0.0003 (6) | 0.0003 (6) |
N12 | 0.0377 (9) | 0.0153 (7) | 0.0173 (7) | −0.0007 (6) | −0.0034 (6) | 0.0012 (6) |
N13 | 0.0338 (8) | 0.0176 (7) | 0.0165 (7) | −0.0040 (6) | 0.0010 (6) | −0.0020 (6) |
C21 | 0.0152 (7) | 0.0213 (8) | 0.0200 (8) | 0.0021 (6) | 0.0019 (6) | 0.0030 (6) |
N21 | 0.0296 (8) | 0.0184 (7) | 0.0254 (7) | 0.0017 (6) | 0.0140 (6) | 0.0005 (6) |
N22 | 0.0278 (8) | 0.0187 (7) | 0.0314 (8) | −0.0022 (6) | 0.0097 (6) | −0.0004 (6) |
N23 | 0.0251 (8) | 0.0312 (9) | 0.0289 (8) | 0.0022 (7) | 0.0110 (6) | 0.0067 (7) |
C1—O1 | 1.2608 (19) | N11—H11B | 0.87 (2) |
C1—O2 | 1.2596 (18) | N12—H12A | 0.88 (2) |
C1—C2 | 1.526 (2) | N12—H12B | 0.89 (2) |
C2—C3 | 1.532 (2) | N13—H13A | 0.86 (2) |
C2—H2A | 0.9900 | N13—H13B | 0.88 (2) |
C2—H2B | 0.9900 | C21—N21 | 1.317 (2) |
C3—C4 | 1.533 (2) | C21—N22 | 1.324 (2) |
C3—C3i | 1.564 (3) | C21—N23 | 1.336 (2) |
C3—H3 | 1.0000 | N21—H21A | 0.85 (2) |
C4—O4 | 1.2597 (18) | N21—H21B | 0.90 (2) |
C4—O3 | 1.2651 (18) | N22—H22A | 0.89 (2) |
C11—N13 | 1.320 (2) | N22—H22B | 0.89 (2) |
C11—N12 | 1.323 (2) | N23—H23A | 0.89 (2) |
C11—N11 | 1.336 (2) | N23—H23B | 0.85 (2) |
N11—H11A | 0.88 (2) | ||
O2—C1—O1 | 123.88 (14) | C11—N11—H11A | 115.1 (14) |
O2—C1—C2 | 117.78 (13) | C11—N11—H11B | 115.5 (14) |
O1—C1—C2 | 118.33 (13) | H11A—N11—H11B | 123 (2) |
C1—C2—C3 | 114.73 (12) | C11—N12—H12A | 117.5 (14) |
C1—C2—H2A | 108.6 | C11—N12—H12B | 118.2 (13) |
C3—C2—H2A | 108.6 | H12A—N12—H12B | 124.3 (19) |
C1—C2—H2B | 108.6 | C11—N13—H13A | 119.8 (14) |
C3—C2—H2B | 108.6 | C11—N13—H13B | 116.9 (14) |
H2A—C2—H2B | 107.6 | H13A—N13—H13B | 121.5 (19) |
C4—C3—C2 | 111.16 (12) | N21—C21—N22 | 120.80 (15) |
C4—C3—C3i | 108.41 (14) | N21—C21—N23 | 120.48 (15) |
C2—C3—C3i | 110.83 (15) | N22—C21—N23 | 118.71 (15) |
C4—C3—H3 | 108.8 | C21—N21—H21A | 119.7 (14) |
C2—C3—H3 | 108.8 | C21—N21—H21B | 118.1 (13) |
C3i—C3—H3 | 108.8 | H21A—N21—H21B | 120.6 (19) |
O4—C4—O3 | 123.28 (14) | C21—N22—H22A | 118.6 (14) |
O4—C4—C3 | 118.23 (13) | C21—N22—H22B | 118.9 (13) |
O3—C4—C3 | 118.46 (13) | H22A—N22—H22B | 120.6 (19) |
N13—C11—N12 | 120.25 (15) | C21—N23—H23A | 116.9 (14) |
N13—C11—N11 | 120.42 (15) | C21—N23—H23B | 115.0 (15) |
N12—C11—N11 | 119.33 (15) | H23A—N23—H23B | 124 (2) |
Symmetry code: (i) −x+3/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···O4 | 0.88 (2) | 2.17 (2) | 2.9591 (19) | 150.1 (18) |
N11—H11B···O3ii | 0.87 (2) | 2.20 (2) | 2.9854 (18) | 148.8 (19) |
N12—H12A···O1iii | 0.88 (2) | 1.99 (2) | 2.8613 (18) | 171 (2) |
N12—H12B···O4 | 0.89 (2) | 2.04 (2) | 2.8495 (18) | 151.3 (18) |
N13—H13A···O3iv | 0.86 (2) | 1.95 (2) | 2.8013 (18) | 170 (2) |
N13—H13B···O2iii | 0.88 (2) | 2.00 (2) | 2.8788 (18) | 175 (2) |
N21—H21A···O2v | 0.85 (2) | 2.00 (2) | 2.8528 (18) | 175 (2) |
N21—H21B···O3 | 0.90 (2) | 1.97 (2) | 2.8712 (18) | 177.0 (19) |
N22—H22A···O4 | 0.89 (2) | 2.02 (2) | 2.8955 (19) | 169.8 (19) |
N22—H22B···O1vi | 0.89 (2) | 2.14 (2) | 2.9844 (19) | 156.4 (18) |
N23—H23A···O1vi | 0.89 (2) | 2.39 (2) | 3.170 (2) | 147.0 (18) |
N23—H23A···O2vii | 0.89 (2) | 2.52 (2) | 3.0010 (18) | 114.7 (16) |
N23—H23B···O1vii | 0.85 (2) | 2.38 (2) | 3.0632 (19) | 138.1 (19) |
Symmetry codes: (ii) −x+2, −y+1, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x, y+1, z; (v) x+1/2, y−1/2, z; (vi) x+1/2, y+1/2, z; (vii) −x+2, y, −z+1/2. |
Acknowledgements
The authors thank Loughborough University and Dorna Institute of Science for providing facilities. We also wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Barnes, H. A. & Barnes, J. C. (1996). Acta Cryst. C52, 731–736. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 1433–1439, and references therein. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749. CrossRef CAS Web of Science Google Scholar
Fülscher, M. P. & Mehler, E. L. (1988). J. Mol. Struct. Theochem, 165, 319–327. CrossRef Google Scholar
Holman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. (2001). Acc. Chem. Res. 34, 107–118, and references therein. Web of Science CrossRef PubMed CAS Google Scholar
Houk, R. J. T., Tobey, S. G. & Anslyn, E. V. (2005). Top. Curr. Chem. 255, 199–229. CAS Google Scholar
Melo, A., Ramos, M. J., Floriano, W. B., Gomes, J. A. N. F., Leão, J. F. R., Magalhães, A. L., Maigret, B., Nascimento, M. C. & Reuter, N. (1999). J. Mol. Struct. Theochem, 463, 81–90. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2001). SHELXTL. Version 6.12, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Singh, J., Thornton, J. M., Snarey, M. & Campbell, S. F. (1987). FEBS Lett. 224, 161–171. CrossRef CAS PubMed Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.