organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(guanidinium) butane-1,2,3,4-tetra­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and bDorna Institute of Science, No 83 Padadshah, 14 St. Ahwaz, Khozestan, Iran
*Correspondence e-mail: v.mckee@lboro.ac.uk

(Received 3 January 2007; accepted 7 January 2007; online 17 January 2007)

The title compound, 4CH6N3+·C8H6O84−, forms a hydrogen-bonded network, in which each O atom is an acceptor for three hydrogen bonds and each guadinium H atom contributes to a single hydrogen bond. The complete anion is generated by inversion symmetry.

Comment

Guanidinium ions have long been utilized in modelling Arg–Glu or Arg–Asp side-chain inter­actions in proteins (see, for example, Melo et al., 1999[Melo, A., Ramos, M. J., Floriano, W. B., Gomes, J. A. N. F., Leão, J. F. R., Magalhães, A. L., Maigret, B., Nascimento, M. C. & Reuter, N. (1999). J. Mol. Struct. Theochem, 463, 81-90.]; Fülscher & Mehler, 1988[Fülscher, M. P. & Mehler, E. L. (1988). J. Mol. Struct. Theochem, 165, 319-327.]; Singh et al., 1987[Singh, J., Thornton, J. M., Snarey, M. & Campbell, S. F. (1987). FEBS Lett. 224, 161-171.]). More recently, the same types of inter­action have been utilized in host–guest and sensor chemistry (see, for example, Houk et al., 2005[Houk, R. J. T., Tobey, S. G. & Anslyn, E. V. (2005). Top. Curr. Chem. 255, 199-229.]) and in crystal engineering (see, for example, Holman et al., 2001[Holman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. (2001). Acc. Chem. Res. 34, 107-118, and references therein.]; Burrows et al., 2003[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 1433-1439, and references therein.]). In this paper, we report the structure of the title compound, (I)[link], the guanidinium salt of 1,2,3,4-butane­tetra­carboxylic acid. A search of the Cambridge Structural Database (Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) showed that, to date, the only other structurally characterized 1,2,3,4-butane­tetra­carboxyl­ate salt is [NH4]4[C8H6O8]·H2O (Barnes & Barnes, 1996[Barnes, H. A. & Barnes, J. C. (1996). Acta Cryst. C52, 731-736.]).

[Scheme 1]

The structure of (I)[link] is shown in Fig. 1[link]. The anion lies on a centre of symmetry so that the asymmetric unit contains half a [C8H6O8]4− anion and two independent [CH6N3]+ cations. The anion conformation is very similar to that observed in the previously reported ammonium salt (Barnes & Barnes, 1996[Barnes, H. A. & Barnes, J. C. (1996). Acta Cryst. C52, 731-736.]), having an extended essentially planar C6 chain. The anions are arranged in parallel stacks perpendicular to b and inter­act with each other only through hydrogen bonding via the guanidinium cations.

Each carboxyl­ate group is paired with a guanidinium ion to form a conventional R22(9) ring (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). There is also one R12(6) ring involving atoms O4, N11 and N12, and one R22(7) ring involving atoms N23, O1vi and O2vi [symmetry code: (vi) 2 − x, y, [{1\over 2}] − z]. Each O atom accepts further hydrogen bonds from neighbouring guanadinium cations so that there is a total of three hydrogen bonds to each O atom (Figs. 1[link] and 3[link], Table 1[link]). Each H atom in the guanidinium ions is involved in a single hydrogen bond. The resulting three-dimensional hydrogen-bonding network contains a number of large rings, but graph-set analysis of these is not particularly helpful in understanding the structure.

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for H atoms). Hydrogen bonds are shown as double dashed lines. [Symmetry code: (i) [{3\over 2}] − x, [{1\over 2}] − y, 1 − z.]
[Figure 2]
Figure 2
A packing diagram for (I)[link], viewed perpendicular to b. Guanidinium ions are shown with white bonds and anions with black bonds, and H atoms have been omitted for clarity. The N⋯O contacts for the hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Detail of (I)[link], showing the hydrogen bonding to one unique half of the anion. H atoms have been omitted for clarity and the N⋯O contacts for the hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z; (vi) 2 − x, y, [{1\over 2}] − z; (vii) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (viii) −[{1\over 2}] + x, −[{1\over 2}] + y, z; (ix)-1/2, 1 − y, −1z; (x) x, −1 + y, z.]

Experimental

1,2,3,4-Butane­tetra­carboxylic acid (Merck; 1 mmol, 0.23 g) was added to an aqueous solution (12 ml) of guanidinum carbonate (Merck; 4.1 mmol, 0.74 g). This solution yielded colourless crystals of (I)[link] after 6 d.

Crystal data
  • 4CH6N3+·C8H6O84−

  • Mr = 470.48

  • Monoclinic, C 2/c

  • a = 13.0411 (13) Å

  • b = 8.9177 (9) Å

  • c = 18.8692 (19) Å

  • β = 98.289 (2)°

  • V = 2171.5 (4) Å3

  • Z = 4

  • Dx = 1.439 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 (2) K

  • Plate, colourless

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 1.00

  • 8107 measured reflections

  • 2136 independent reflections

  • 1741 reflections with I > 2σ(I)

  • Rint = 0.026

  • θmax = 26.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.11

  • 2136 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0378P)2 + 1.6442P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O4 0.88 (2) 2.17 (2) 2.9591 (19) 150.1 (18)
N11—H11B⋯O3i 0.87 (2) 2.20 (2) 2.9854 (18) 148.8 (19)
N12—H12A⋯O1ii 0.88 (2) 1.99 (2) 2.8613 (18) 171 (2)
N12—H12B⋯O4 0.89 (2) 2.04 (2) 2.8495 (18) 151.3 (18)
N13—H13A⋯O3iii 0.86 (2) 1.95 (2) 2.8013 (18) 170 (2)
N13—H13B⋯O2ii 0.88 (2) 2.00 (2) 2.8788 (18) 175 (2)
N21—H21A⋯O2iv 0.85 (2) 2.00 (2) 2.8528 (18) 175 (2)
N21—H21B⋯O3 0.90 (2) 1.97 (2) 2.8712 (18) 177.0 (19)
N22—H22A⋯O4 0.89 (2) 2.02 (2) 2.8955 (19) 169.8 (19)
N22—H22B⋯O1v 0.89 (2) 2.14 (2) 2.9844 (19) 156.4 (18)
N23—H23A⋯O1v 0.89 (2) 2.39 (2) 3.170 (2) 147.0 (18)
N23—H23A⋯O2vi 0.89 (2) 2.52 (2) 3.0010 (18) 114.7 (16)
N23—H23B⋯O1vi 0.85 (2) 2.38 (2) 3.0632 (19) 138.1 (19)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) [-x+2, y, -z+{\script{1\over 2}}].

Carbon-bound H atoms were placed in calculated positions, with C—H = 0.99–1.00 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C). H atoms bonded to N were located in difference maps and their coordinates refined with a common fixed Uiso value. N—H distances are given in Table 1[link].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.12, Bruker AXS Inc., Madison, Wisconsin, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

Tetrakis(guanidinium) butane-1,2,3,4-tetracarboxylate top
Crystal data top
4CH6N3+·C8H6O84F(000) = 1000
Mr = 470.48Dx = 1.439 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3043 reflections
a = 13.0411 (13) Åθ = 2.2–23.4°
b = 8.9177 (9) ŵ = 0.12 mm1
c = 18.8692 (19) ÅT = 150 K
β = 98.289 (2)°Plate, colourless
V = 2171.5 (4) Å30.35 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2136 independent reflections
Radiation source: normal-focus sealed tube1741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.876, Tmax = 1.00k = 1111
8107 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difmap and geom
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0378P)2 + 1.6442P]
where P = (Fo2 + 2Fc2)/3
2136 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69273 (9)0.17756 (12)0.31000 (6)0.0242 (3)
O20.65689 (9)0.41895 (12)0.28976 (5)0.0223 (3)
C10.67633 (11)0.30840 (17)0.33106 (8)0.0164 (3)
C20.67789 (12)0.33449 (18)0.41112 (8)0.0191 (3)
H2A0.60720.31800.42280.023*
H2B0.69630.44060.42200.023*
C30.75332 (11)0.23416 (17)0.45963 (7)0.0154 (3)
H30.73470.12690.44900.019*
C40.86530 (12)0.26014 (16)0.44669 (8)0.0152 (3)
O30.92444 (8)0.14777 (12)0.44635 (6)0.0186 (3)
O40.89455 (8)0.39294 (12)0.43873 (6)0.0217 (3)
C110.88420 (12)0.74996 (17)0.38683 (8)0.0184 (3)
N110.89593 (12)0.72249 (18)0.45713 (8)0.0250 (3)
N120.86122 (12)0.63807 (16)0.34127 (8)0.0242 (3)
N130.89573 (11)0.88714 (16)0.36297 (8)0.0229 (3)
C211.09697 (12)0.31126 (17)0.32844 (8)0.0189 (3)
N211.06074 (12)0.17722 (16)0.34047 (8)0.0235 (3)
N221.07380 (12)0.42887 (16)0.36587 (8)0.0254 (3)
N231.15688 (12)0.33132 (19)0.27746 (8)0.0277 (3)
H11A0.8953 (16)0.627 (3)0.4689 (11)0.040*
H11B0.9314 (17)0.789 (2)0.4842 (12)0.040*
H12A0.8474 (16)0.660 (2)0.2957 (12)0.040*
H12B0.8585 (15)0.546 (2)0.3588 (11)0.040*
H13A0.9007 (15)0.961 (2)0.3922 (11)0.040*
H13B0.8822 (16)0.901 (2)0.3163 (12)0.040*
H21A1.0868 (16)0.100 (2)0.3232 (11)0.040*
H21B1.0202 (17)0.168 (2)0.3748 (11)0.040*
H22A1.0241 (17)0.420 (2)0.3933 (11)0.040*
H22B1.0961 (15)0.520 (3)0.3547 (11)0.040*
H23A1.1890 (16)0.419 (3)0.2769 (11)0.040*
H23B1.1784 (17)0.251 (2)0.2602 (12)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0386 (7)0.0178 (6)0.0160 (6)0.0017 (5)0.0032 (5)0.0005 (4)
O20.0327 (7)0.0192 (6)0.0157 (5)0.0032 (5)0.0055 (5)0.0016 (4)
C10.0139 (7)0.0189 (8)0.0164 (7)0.0013 (6)0.0025 (6)0.0010 (6)
C20.0196 (8)0.0235 (8)0.0145 (7)0.0036 (6)0.0035 (6)0.0001 (6)
C30.0176 (8)0.0163 (7)0.0127 (8)0.0006 (6)0.0034 (6)0.0011 (6)
C40.0199 (8)0.0171 (8)0.0087 (7)0.0001 (6)0.0027 (6)0.0005 (5)
O30.0190 (5)0.0178 (6)0.0200 (6)0.0018 (4)0.0056 (4)0.0017 (4)
O40.0243 (6)0.0165 (6)0.0250 (6)0.0013 (5)0.0064 (5)0.0032 (5)
C110.0157 (8)0.0189 (8)0.0203 (8)0.0005 (6)0.0014 (6)0.0005 (6)
N110.0326 (8)0.0230 (8)0.0185 (7)0.0053 (6)0.0003 (6)0.0003 (6)
N120.0377 (9)0.0153 (7)0.0173 (7)0.0007 (6)0.0034 (6)0.0012 (6)
N130.0338 (8)0.0176 (7)0.0165 (7)0.0040 (6)0.0010 (6)0.0020 (6)
C210.0152 (7)0.0213 (8)0.0200 (8)0.0021 (6)0.0019 (6)0.0030 (6)
N210.0296 (8)0.0184 (7)0.0254 (7)0.0017 (6)0.0140 (6)0.0005 (6)
N220.0278 (8)0.0187 (7)0.0314 (8)0.0022 (6)0.0097 (6)0.0004 (6)
N230.0251 (8)0.0312 (9)0.0289 (8)0.0022 (7)0.0110 (6)0.0067 (7)
Geometric parameters (Å, º) top
C1—O11.2608 (19)N11—H11B0.87 (2)
C1—O21.2596 (18)N12—H12A0.88 (2)
C1—C21.526 (2)N12—H12B0.89 (2)
C2—C31.532 (2)N13—H13A0.86 (2)
C2—H2A0.9900N13—H13B0.88 (2)
C2—H2B0.9900C21—N211.317 (2)
C3—C41.533 (2)C21—N221.324 (2)
C3—C3i1.564 (3)C21—N231.336 (2)
C3—H31.0000N21—H21A0.85 (2)
C4—O41.2597 (18)N21—H21B0.90 (2)
C4—O31.2651 (18)N22—H22A0.89 (2)
C11—N131.320 (2)N22—H22B0.89 (2)
C11—N121.323 (2)N23—H23A0.89 (2)
C11—N111.336 (2)N23—H23B0.85 (2)
N11—H11A0.88 (2)
O2—C1—O1123.88 (14)C11—N11—H11A115.1 (14)
O2—C1—C2117.78 (13)C11—N11—H11B115.5 (14)
O1—C1—C2118.33 (13)H11A—N11—H11B123 (2)
C1—C2—C3114.73 (12)C11—N12—H12A117.5 (14)
C1—C2—H2A108.6C11—N12—H12B118.2 (13)
C3—C2—H2A108.6H12A—N12—H12B124.3 (19)
C1—C2—H2B108.6C11—N13—H13A119.8 (14)
C3—C2—H2B108.6C11—N13—H13B116.9 (14)
H2A—C2—H2B107.6H13A—N13—H13B121.5 (19)
C4—C3—C2111.16 (12)N21—C21—N22120.80 (15)
C4—C3—C3i108.41 (14)N21—C21—N23120.48 (15)
C2—C3—C3i110.83 (15)N22—C21—N23118.71 (15)
C4—C3—H3108.8C21—N21—H21A119.7 (14)
C2—C3—H3108.8C21—N21—H21B118.1 (13)
C3i—C3—H3108.8H21A—N21—H21B120.6 (19)
O4—C4—O3123.28 (14)C21—N22—H22A118.6 (14)
O4—C4—C3118.23 (13)C21—N22—H22B118.9 (13)
O3—C4—C3118.46 (13)H22A—N22—H22B120.6 (19)
N13—C11—N12120.25 (15)C21—N23—H23A116.9 (14)
N13—C11—N11120.42 (15)C21—N23—H23B115.0 (15)
N12—C11—N11119.33 (15)H23A—N23—H23B124 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O40.88 (2)2.17 (2)2.9591 (19)150.1 (18)
N11—H11B···O3ii0.87 (2)2.20 (2)2.9854 (18)148.8 (19)
N12—H12A···O1iii0.88 (2)1.99 (2)2.8613 (18)171 (2)
N12—H12B···O40.89 (2)2.04 (2)2.8495 (18)151.3 (18)
N13—H13A···O3iv0.86 (2)1.95 (2)2.8013 (18)170 (2)
N13—H13B···O2iii0.88 (2)2.00 (2)2.8788 (18)175 (2)
N21—H21A···O2v0.85 (2)2.00 (2)2.8528 (18)175 (2)
N21—H21B···O30.90 (2)1.97 (2)2.8712 (18)177.0 (19)
N22—H22A···O40.89 (2)2.02 (2)2.8955 (19)169.8 (19)
N22—H22B···O1vi0.89 (2)2.14 (2)2.9844 (19)156.4 (18)
N23—H23A···O1vi0.89 (2)2.39 (2)3.170 (2)147.0 (18)
N23—H23A···O2vii0.89 (2)2.52 (2)3.0010 (18)114.7 (16)
N23—H23B···O1vii0.85 (2)2.38 (2)3.0632 (19)138.1 (19)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, y1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+2, y, z+1/2.
 

Acknowledgements

The authors thank Loughborough University and Dorna Institute of Science for providing facilities. We also wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarnes, H. A. & Barnes, J. C. (1996). Acta Cryst. C52, 731–736.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 1433–1439, and references therein.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationFülscher, M. P. & Mehler, E. L. (1988). J. Mol. Struct. Theochem, 165, 319–327.  CrossRef Google Scholar
First citationHolman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. (2001). Acc. Chem. Res. 34, 107–118, and references therein.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHouk, R. J. T., Tobey, S. G. & Anslyn, E. V. (2005). Top. Curr. Chem. 255, 199–229.  CAS Google Scholar
First citationMelo, A., Ramos, M. J., Floriano, W. B., Gomes, J. A. N. F., Leão, J. F. R., Magalhães, A. L., Maigret, B., Nascimento, M. C. & Reuter, N. (1999). J. Mol. Struct. Theochem, 463, 81–90.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.12, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSingh, J., Thornton, J. M., Snarey, M. & Campbell, S. F. (1987). FEBS Lett. 224, 161–171.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds