organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Anhydro-N-benzyl-2-C-methyl-D-arabinona­mide [(2S,3R,4R)-N-benzyl-3,4-dihydr­­oxy-2-methyl­tetra­hydro­furan-2-carboxamide]

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: anderseh@hotmail.com

(Received 15 December 2006; accepted 19 December 2006; online 10 January 2007)

The size of the ring and relative configuration of the chiral centres in the title compound, C13H17NO4, formed by the preferential formation of the hindered five-membered ring tetra­hydro­furan rather than the expected three-membered ring epoxide, was established by X-ray crystallographic analysis; the absolute configuration was determined by the use of 2-C-methyl-D-arabinono-lactone as the starting material. The crystal structure consists of hydrogen-bonded layers lying with their hydro­phobic surfaces in contact.

Comment

Carbohydrate lactones are among the most powerful chirons (Lundt & Madsen, 2001[Lundt, I. & Madsen, R. (2001). Top. Curr. Chem. 215, 177-191.]), being ideal scaffolds for the synthesis of optically pure complex natural products (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.]; Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.]). Epimerization at C4 of the lactone is usually a very efficient reaction, which effectively doubles the number of lactones that are readily available (Kold et al., 1994[Kold, H., Lundt, I. & Pedersen, C. (1994). Acta Chem. Scand. 48, 675-678.]; Frank & Lundt, 1995[Frank, H. & Lundt, I. (1995). Tetrahedron, 51, 5397-5402.]); the transformation can be conducted on a multikilogram scale (Batra et al., 2006[Batra, H., Moriarty, R. M., Penmasta, R., Sharma, V., Stanciuc, G., Staszewski, J. P., Tuladhar, S. M. & Walsh, D. A. (2006). Org. Process. Res. Dev. 10, 484-486.]). Among other recent examples (Håkansson et al., 2006[Håkansson, A. E., van Ameijde, J., Horne, G., Guglielmini, L., Nash, R. J., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o3890-o3892.]; Van Ameijde et al., 2004[Ameijde, J., Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140-o2141.]; Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]), the treatment of the 2-C-methyl-D-ribonolactone tosyl­ate (1) with base allows access to the L-lyxono-epimer (2) in very high yield (Hotchkiss et al., 2007[Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, doi:10.1016/j.tetlet.2006.11.137.]).

[Scheme 1]

It was thus expected that treatment of the tosyl­ate (3) of 2-C-methyl-D-arabinonolactone (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]) would give the L-xylono epimer (6); however, a complex mixture of products was obtained. Accordingly the reaction sequence treatment of (3) with benzyl­amine was expected to give ring opening of the lactone unit to (4) which would be followed by formation of the epoxide (5) from attack of the C4 hydroxyl group; (5) could be subsequently closed to the target (6). A product was isolated from the reaction of benzyl­amine with (3) in 61% yield. X-ray crystallographic analysis showed that the much hindered tertiary alcohol at C2 of (4) had closed to form the tetra­hydro­furan (7). The connectivity of the C and H atoms is the same in both (5) and (7), and the X-ray experiment unequivocally established that the five-membered ring THF (7) was formed in preference to the three-membered ring epoxide (5); the absolute configuration of (7) is determined by the use of 2-C-methyl-D-arabinonolactone as the starting material.

The mol­ecular structure (Fig. 1[link]) shows no abnormal features, even a short inter­nal N—H⋯O contact (Table 1[link]) having no visible influence [largest distance deviation from the MOGUL norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) is C1—O5 (1.46 vs 1.43 Å), largest angle deviation is C11—C16—C10 (122.8 vs 120.8°)]. The crystal structure consists of hydrogen-bonded sheets (Fig. 2[link]). Both faces of the sheets are composed largely of phenyl groups which lie in contact in the crystal structure (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
Partial packing diagram of the title compound showing a single hydrogen-bonded (dotted lines) layer lying perpendicular to the c axis. Each mol­ecule is involved in only two hydrogen bonds.
[Figure 3]
Figure 3
Partial packing diagram viewed perpendicular to the plane of the mol­ecular sheets showing hydro­phobic (largely aromatic) plane-to-plane contacts at (x, y, [1\over2]). Hydrogen bonds are shown as dotted lines.

Experimental

The synthesis of (3) is described in the Comment and shown in the scheme; full details will be reported elsewhere. The sample for analysis was crystallized from a 2:1 mixture of ethanol and methanol to yield colourless needles with m.p. 402–404 K and [α]D19 = −18.5 (c =1.00, CH3OH).

Crystal data
  • C13H17NO4

  • Mr = 251.28

  • Orthorhombic, P 21 21 21

  • a = 5.6899 (2) Å

  • b = 11.3507 (4) Å

  • c = 18.5291 (9) Å

  • V = 1196.69 (8) Å3

  • Z = 4

  • Dx = 1.395 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 190 K

  • Needle, colourless

  • 0.40 × 0.06 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.96, Tmax = 0.99

  • 5880 measured reflections

  • 1575 independent reflections

  • 1249 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 0.93

  • 1575 reflections

  • 163 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.15P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H1⋯O5 0.88 2.15 2.606 (2) 112
O7—H15⋯O5i 0.86 2.15 2.878 (2) 142
O6—H19⋯O17ii 0.85 1.96 2.816 (2) 179
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned on the basis of the starting material.

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H to 0.86, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(2S,3R,4R)-N-benzyl-3,4-dihydroxy-2-methyltetrahydrofuran-2-carboxamide top
Crystal data top
C13H17NO4F(000) = 536
Mr = 251.28Dx = 1.395 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1482 reflections
a = 5.6899 (2) Åθ = 5–27°
b = 11.3507 (4) ŵ = 0.10 mm1
c = 18.5291 (9) ÅT = 190 K
V = 1196.69 (8) Å3Needle, colourless
Z = 40.40 × 0.06 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
1249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.96, Tmax = 0.99k = 1414
5880 measured reflectionsl = 2324
1575 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(F2) + (0.03P)2 + 0.15P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.93(Δ/σ)max = 0.000314
1575 reflectionsΔρmax = 0.26 e Å3
163 parametersΔρmin = 0.29 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3695 (4)0.87162 (16)0.68888 (11)0.0238
C20.1269 (4)0.92388 (17)0.70375 (12)0.0232
C30.1815 (4)1.05659 (17)0.70497 (12)0.0263
C40.3572 (4)1.06701 (17)0.64355 (12)0.0276
O50.4874 (3)0.95765 (11)0.64303 (8)0.0252
O60.0177 (3)1.12786 (12)0.69160 (8)0.0350
O70.0220 (3)0.89610 (12)0.64455 (8)0.0285
C80.3483 (4)0.75530 (17)0.64905 (11)0.0234
N90.4204 (4)0.75485 (14)0.58042 (9)0.0251
C100.4019 (4)0.65227 (17)0.53332 (11)0.0270
C110.5649 (4)0.55154 (18)0.55273 (11)0.0237
C120.5025 (5)0.43760 (18)0.53198 (11)0.0298
C130.6467 (5)0.34319 (19)0.54704 (13)0.0336
C140.8585 (5)0.36011 (19)0.58300 (12)0.0325
C150.9219 (5)0.47346 (18)0.60362 (12)0.0294
C160.7760 (4)0.56814 (18)0.58866 (11)0.0265
O170.2690 (3)0.66711 (11)0.67971 (8)0.0310
C180.5116 (5)0.85472 (17)0.75818 (12)0.0291
H210.06450.89600.75020.0298*
H310.25471.07600.75220.0332*
H410.46481.13410.65130.0358*
H420.27111.07560.59710.0353*
H1010.23630.62240.53550.0336*
H1020.43780.67910.48310.0332*
H1210.35540.42570.50670.0376*
H1310.60450.26490.53290.0439*
H1410.95730.29310.59300.0413*
H1511.07010.48550.62770.0365*
H1610.82040.64630.60320.0324*
H1810.66740.82040.74700.0452*
H1820.53320.93220.78260.0449*
H1830.42340.80150.79160.0450*
H10.48360.82020.56350.0321*
H150.13670.94370.65160.0451*
H190.09601.13940.73020.0551*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0249 (12)0.0234 (9)0.0231 (11)0.0022 (10)0.0022 (10)0.0027 (9)
C20.0201 (12)0.0275 (10)0.0220 (10)0.0004 (10)0.0014 (10)0.0018 (9)
C30.0299 (14)0.0234 (9)0.0255 (11)0.0064 (11)0.0004 (10)0.0002 (9)
C40.0276 (13)0.0217 (9)0.0334 (12)0.0015 (11)0.0030 (11)0.0003 (9)
O50.0226 (8)0.0209 (6)0.0319 (8)0.0002 (8)0.0055 (8)0.0037 (6)
O60.0369 (10)0.0352 (7)0.0328 (8)0.0166 (9)0.0048 (9)0.0012 (7)
O70.0221 (9)0.0337 (7)0.0297 (8)0.0038 (8)0.0020 (8)0.0065 (7)
C80.0197 (11)0.0243 (9)0.0262 (10)0.0032 (10)0.0011 (10)0.0026 (9)
N90.0283 (10)0.0223 (7)0.0248 (9)0.0013 (9)0.0066 (9)0.0005 (7)
C100.0279 (13)0.0282 (10)0.0248 (11)0.0020 (11)0.0003 (10)0.0030 (9)
C110.0235 (13)0.0264 (9)0.0210 (10)0.0008 (10)0.0039 (10)0.0012 (9)
C120.0315 (14)0.0310 (10)0.0268 (11)0.0017 (13)0.0014 (12)0.0046 (9)
C130.0436 (16)0.0259 (10)0.0313 (12)0.0021 (12)0.0050 (12)0.0026 (10)
C140.0400 (16)0.0290 (10)0.0285 (12)0.0078 (12)0.0057 (12)0.0023 (10)
C150.0278 (14)0.0347 (11)0.0257 (12)0.0019 (11)0.0007 (11)0.0025 (9)
C160.0268 (13)0.0266 (10)0.0260 (11)0.0028 (11)0.0049 (11)0.0017 (10)
O170.0375 (10)0.0241 (6)0.0314 (8)0.0043 (8)0.0063 (8)0.0010 (6)
C180.0283 (12)0.0299 (10)0.0292 (11)0.0018 (12)0.0026 (11)0.0002 (9)
Geometric parameters (Å, º) top
C1—C21.528 (3)N9—H10.882
C1—O51.458 (2)C10—C111.515 (3)
C1—C81.517 (3)C10—H1011.002
C1—C181.529 (3)C10—H1021.001
C2—C31.538 (3)C11—C121.395 (3)
C2—O71.422 (2)C11—C161.386 (3)
C2—H210.983C12—C131.378 (3)
C3—C41.520 (3)C12—H1210.968
C3—O61.414 (3)C13—C141.391 (4)
C3—H310.995C13—H1310.957
C4—O51.445 (2)C14—C151.390 (3)
C4—H410.987C14—H1410.964
C4—H420.995C15—C161.386 (3)
O6—H190.852C15—H1510.963
O7—H150.857C16—H1610.961
C8—N91.336 (3)C18—H1810.990
C8—O171.236 (2)C18—H1820.997
N9—C101.459 (2)C18—H1831.001
C2—C1—O5105.11 (15)C10—N9—H1119.3
C2—C1—C8110.72 (18)N9—C10—C11114.59 (17)
O5—C1—C8109.64 (16)N9—C10—H101108.3
C2—C1—C18112.01 (18)C11—C10—H101108.1
O5—C1—C18109.28 (18)N9—C10—H102107.4
C8—C1—C18109.96 (16)C11—C10—H102109.0
C1—C2—C3101.57 (17)H101—C10—H102109.4
C1—C2—O7108.26 (16)C10—C11—C12118.6 (2)
C3—C2—O7110.41 (17)C10—C11—C16122.80 (19)
C1—C2—H21111.1C12—C11—C16118.6 (2)
C3—C2—H21112.0C11—C12—C13120.9 (2)
O7—C2—H21112.9C11—C12—H121118.8
C2—C3—C4101.42 (17)C13—C12—H121120.3
C2—C3—O6113.31 (19)C12—C13—C14120.4 (2)
C4—C3—O6110.59 (17)C12—C13—H131121.1
C2—C3—H31108.4C14—C13—H131118.5
C4—C3—H31111.5C13—C14—C15119.0 (2)
O6—C3—H31111.3C13—C14—H141119.2
C3—C4—O5105.97 (16)C15—C14—H141121.8
C3—C4—H41111.0C14—C15—C16120.5 (2)
O5—C4—H41110.2C14—C15—H151119.0
C3—C4—H42109.3C16—C15—H151120.5
O5—C4—H42109.3C11—C16—C15120.6 (2)
H41—C4—H42110.9C11—C16—H161119.2
C1—O5—C4109.63 (15)C15—C16—H161120.1
C3—O6—H19111.1C1—C18—H181110.3
C2—O7—H15101.4C1—C18—H182109.6
C1—C8—N9116.22 (17)H181—C18—H182109.4
C1—C8—O17120.67 (18)C1—C18—H183109.3
N9—C8—O17123.11 (18)H181—C18—H183109.9
C8—N9—C10123.38 (17)H182—C18—H183108.3
C8—N9—H1117.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H1···O50.882.152.606 (2)112
O7—H15···O5i0.862.152.878 (2)142
O6—H19···O17ii0.851.962.816 (2)179
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

Financial support to AEH provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmeijde, J., Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140–o2141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBatra, H., Moriarty, R. M., Penmasta, R., Sharma, V., Stanciuc, G., Staszewski, J. P., Tuladhar, S. M. & Walsh, D. A. (2006). Org. Process. Res. Dev. 10, 484–486.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFrank, H. & Lundt, I. (1995). Tetrahedron, 51, 5397–5402.  CrossRef CAS Web of Science Google Scholar
First citationHåkansson, A. E., van Ameijde, J., Horne, G., Guglielmini, L., Nash, R. J., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o3890–o3892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, doi:10.1016/j.tetlet.2006.11.137.  CrossRef Google Scholar
First citationKold, H., Lundt, I. & Pedersen, C. (1994). Acta Chem. Scand. 48, 675–678.  CrossRef CAS Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationLundt, I. & Madsen, R. (2001). Top. Curr. Chem. 215, 177–191.  CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds