organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10,11-Di­hydro­carbamazepine (form III)

CROSSMARK_Color_square_no_text.svg

aISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and bSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 25 October 2006; accepted 9 December 2006; online 17 January 2007)

The title compound (systematic name: 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide), C15H14N2O, is shown to crystallize as a triclinic polymorph with Z′ = 2. N—H⋯O and N—H⋯π inter­actions combine to create a catemeric motif. The robustness of this motif is reflected in the fact that it is also observed in the previously published monoclinic and ortho­rhom­bic forms of the compound.

Comment

Dihydro­carbamazepine (DHC), (I)[link], is a recognized impurity in carbamazepine, a dibenzazepine drug used to control seizures (Cyr et al., 1987[Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836-840.]). DHC is known to crystallize in three polymorphic forms: monoclinic form I [P21/c; a = 5.505 (1) Å, b = 9.158 (2) Å, c = 24.266 (7) Å, β = 95.95 (2)° at T = 294 K; Bandoli et al., 1992[Bandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.]], ortho­rhom­bic form II [Pbca; a = 9.0592 (4) Å, b = 10.3156 (5) Å, c = 25.0534 (12) Å at T = 120 K; Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.]] and triclinic form III (present work). It also forms a 1:1 solvate with acetic acid (Johnston et al., 2006[Johnston, A., Florence, A. J., Fernandes, P., Shankland, N. & Kennedy, A. R. (2006). Acta Cryst. E62, o5361-o5362.]). The work reported here forms part of a wider investigation that couples automated parallel crystallization (Florence, Johnston, Fernandes et al., 2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]) with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of carbamazepine and its analogues (Florence, Johnston, Price et al., 2006[Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918-1930.]).

[Scheme 1]

There are two independent mol­ecules in DHC form III (Fig. 1[link]). The inter­molecular inter­actions combine to create the catemeric motif shown in Fig. 2[link], with the geometric parameters listed in Table 1[link]. Infinite [0[\overline{1}]0] chains of DHC mol­ecules are linked by hydrogen bonds N4—H4B⋯O1 and N2—H2B⋯O2i [symmetry code: (i) x, y − 1, z], supplemented by N—H⋯π inter­actions, N2—H2ACg4 and N4—H4ACg2ii [symmetry code: (ii) x, y + 1, z], where Cg4 is the centroid of ring R4 (C29–C34) and Cg2 is the centroid of ring R2 (C9–C14). The robustness of this motif is reflected in the fact that it is observed in DHC form II [Fig. 2[link] of Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.])], DHC form I [Fig. 3[link] of Bandoli et al. (1992[Bandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.])] and in a predicted carbamazepine crystal structure that is isostructural with DHC form II [Fig. 2[link] of Florence, Leech et al. (2006[Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746-747.])]. This motif is also observed in the crystal structure of cyhepta­mide (Leech et al., 2007[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o205-o206.]), an analogue of DHC.

The structures of DHC forms I and III are closely related, but certainly distinct, and there is no evidence of missing symmetry in the form III structure [using the ADDSYM algorithm in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.])]. Powder patterns calculated from single-crystal structures offer an effective means of distinguishing polymorphs (Karami et al., 2006[Karami, S., Li, Y., Hughes, D. S., Hursthouse, M. B., Russell, A. E., Threlfall, T. L., Claybourn, M. & Roberts, R. (2006). Acta Cryst. B62, 689-691.]) and, in this case, the calculated patterns are quite different, reflecting the small but significant differences in both the lattice parameters and the atomic positions (Fig. 3[link]).

[Figure 1]
Figure 1
The asymmetric unit of DHC form III with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The DHC catemer in form III. Dashed and dotted lines indicate N—H⋯O and N—H⋯π inter­actions, respectively.
[Figure 3]
Figure 3
Calculated powder diffraction patterns (λ = 1.54 Å) for DHC form I (blue solid line) and form III (red dashed line).

Experimental

DHC was recrystallized from methanol solution by slow evaporation at room temperature to yield single crystals of form I (blocks), form II (hexa­gonal plates) and form III (needles).

Crystal data
  • C15H14N2O

  • Mr = 238.28

  • Triclinic, [P \overline 1]

  • a = 5.4233 (12) Å

  • b = 9.200 (5) Å

  • c = 24.189 (6) Å

  • α = 87.59 (3)°

  • β = 84.23 (2)°

  • γ = 88.93 (3)°

  • V = 1199.6 (8) Å3

  • Z = 4

  • Dx = 1.319 Mg m−3

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 150 (2) K

  • Needle, colourless

  • 0.22 × 0.07 × 0.07 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.867, Tmax = 0.955

  • 12410 measured reflections

  • 4297 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 67.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 0.84

  • 4297 reflections

  • 341 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0472P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.92 (2) 2.02 (3) 2.800 (3) 142.7 (19)
N4—H4B⋯O1 0.86 (2) 2.11 (3) 2.801 (3) 137.4 (19)
N2—H2ACg4 0.89 (3) 3.01 (3) 3.862 (3) 162 (2)
N4—H4ACg2ii 0.90 (3) 2.89 (3) 3.765 (3) 166 (2)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

The amide H atoms were located in difference maps and their coordinates and Uiso parameters refined freely. All other H atoms were constrained to geometrically sensible positions in a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C).

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

10,11-Dihydrocarbamazepine top
Crystal data top
C15H14N2OZ = 4
Mr = 238.28F(000) = 504
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.4233 (12) ÅCell parameters from 2529 reflections
b = 9.200 (5) Åθ = 3.7–72.8°
c = 24.189 (6) ŵ = 0.67 mm1
α = 87.59 (3)°T = 150 K
β = 84.23 (2)°Needle, colourless
γ = 88.93 (3)°0.22 × 0.07 × 0.07 mm
V = 1199.6 (8) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
4297 independent reflections
Radiation source: Enhance (Cu) X-ray Source2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 15.9745 pixels mm-1θmax = 67.5°, θmin = 3.7°
ω and φ scansh = 56
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1110
Tmin = 0.867, Tmax = 0.955l = 2828
12410 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
4297 reflections(Δ/σ)max < 0.001
341 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1609 (3)0.31475 (16)0.28334 (6)0.0399 (4)
N10.3307 (4)0.11654 (19)0.33152 (7)0.0324 (4)
N20.0524 (4)0.0916 (2)0.25291 (8)0.0426 (5)
H2A0.060 (6)0.131 (3)0.2277 (12)0.069 (9)*
H2B0.042 (4)0.008 (3)0.2558 (9)0.034 (7)*
C10.4478 (4)0.2066 (2)0.37405 (9)0.0340 (5)
C20.6367 (5)0.3015 (2)0.35965 (10)0.0395 (6)
H20.68000.30650.32250.047*
C30.7613 (5)0.3880 (3)0.39872 (12)0.0473 (7)
H30.89030.45220.38870.057*
C40.6964 (5)0.3805 (3)0.45266 (11)0.0530 (8)
H40.77930.44070.47980.064*
C50.5110 (5)0.2856 (3)0.46687 (10)0.0477 (7)
H50.47090.28040.50420.057*
C60.3802 (5)0.1967 (2)0.42832 (9)0.0364 (6)
C70.1833 (5)0.0965 (3)0.44960 (9)0.0419 (6)
H7A0.26660.02880.47810.050*
H7B0.07120.15660.46870.050*
C80.0225 (4)0.0054 (2)0.40825 (9)0.0368 (5)
H8A0.06790.07070.37990.044*
H8B0.10150.05090.42800.044*
C90.1762 (4)0.0973 (2)0.38008 (9)0.0326 (5)
C100.3336 (4)0.0384 (2)0.34217 (9)0.0314 (5)
C110.4906 (4)0.1256 (2)0.31713 (9)0.0327 (5)
H110.59750.08400.29180.039*
C120.4914 (4)0.2740 (2)0.32916 (9)0.0363 (6)
H120.59950.33440.31210.044*
C130.3358 (5)0.3342 (3)0.36575 (9)0.0390 (6)
H130.33690.43620.37380.047*
C140.1768 (4)0.2468 (2)0.39110 (9)0.0353 (5)
H140.06850.28940.41600.042*
C150.1761 (4)0.1812 (2)0.28836 (9)0.0314 (5)
O20.1329 (3)0.81843 (16)0.22084 (6)0.0360 (4)
N30.3008 (4)0.63384 (19)0.16859 (7)0.0317 (4)
N40.0134 (4)0.5889 (2)0.24465 (9)0.0426 (5)
H4B0.015 (4)0.496 (3)0.2416 (9)0.036 (7)*
H4A0.077 (5)0.626 (3)0.2740 (11)0.047 (7)*
C210.4437 (4)0.7339 (2)0.13104 (9)0.0334 (5)
C220.6176 (4)0.8181 (2)0.15319 (9)0.0340 (5)
H220.63390.81050.19190.041*
C230.7667 (5)0.9128 (2)0.11940 (10)0.0424 (6)
H230.88650.96910.13460.051*
C240.7391 (5)0.9241 (3)0.06339 (11)0.0462 (7)
H240.83740.99060.03990.055*
C250.5707 (5)0.8400 (3)0.04142 (10)0.0451 (7)
H250.55880.84770.00250.054*
C260.4141 (5)0.7425 (3)0.07420 (9)0.0373 (6)
C270.2361 (5)0.6556 (3)0.04489 (9)0.0462 (7)
H27A0.33610.59380.01830.055*
H27B0.14090.72520.02270.055*
C280.0496 (5)0.5573 (3)0.07958 (10)0.0446 (6)
H28A0.05820.61710.10540.053*
H28B0.05680.51100.05460.053*
C290.1772 (4)0.4415 (3)0.11223 (9)0.0379 (6)
C300.3084 (4)0.4827 (2)0.15580 (9)0.0323 (5)
C310.4467 (4)0.3825 (2)0.18449 (9)0.0347 (5)
H310.53780.41290.21340.042*
C320.4515 (5)0.2380 (3)0.17082 (10)0.0410 (6)
H320.54620.16880.19030.049*
C330.3174 (5)0.1941 (3)0.12854 (10)0.0431 (6)
H330.31900.09470.11940.052*
C340.1818 (5)0.2949 (3)0.09973 (10)0.0422 (6)
H340.09030.26390.07100.051*
C350.1453 (4)0.6875 (2)0.21248 (9)0.0313 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0472 (11)0.0317 (9)0.0390 (9)0.0038 (7)0.0038 (8)0.0007 (7)
N10.0380 (11)0.0314 (10)0.0269 (9)0.0025 (8)0.0013 (8)0.0021 (7)
N20.0540 (15)0.0362 (13)0.0346 (11)0.0022 (10)0.0115 (10)0.0024 (9)
C10.0359 (13)0.0307 (12)0.0342 (12)0.0077 (10)0.0047 (10)0.0034 (9)
C20.0373 (14)0.0347 (13)0.0457 (14)0.0063 (11)0.0001 (11)0.0013 (10)
C30.0377 (14)0.0351 (14)0.0665 (18)0.0028 (11)0.0090 (13)0.0044 (12)
C40.0562 (18)0.0423 (15)0.0559 (17)0.0066 (13)0.0231 (14)0.0146 (12)
C50.0583 (18)0.0451 (15)0.0381 (14)0.0129 (13)0.0084 (12)0.0099 (11)
C60.0397 (14)0.0346 (13)0.0339 (12)0.0102 (11)0.0057 (10)0.0055 (10)
C70.0509 (16)0.0455 (15)0.0305 (12)0.0125 (12)0.0062 (11)0.0037 (10)
C80.0368 (13)0.0387 (13)0.0357 (13)0.0056 (11)0.0070 (10)0.0010 (10)
C90.0334 (13)0.0361 (13)0.0270 (12)0.0037 (10)0.0042 (10)0.0030 (9)
C100.0334 (12)0.0340 (12)0.0258 (11)0.0016 (10)0.0039 (9)0.0046 (9)
C110.0326 (13)0.0384 (13)0.0268 (11)0.0004 (10)0.0002 (10)0.0052 (9)
C120.0366 (14)0.0372 (14)0.0349 (12)0.0079 (11)0.0013 (11)0.0065 (10)
C130.0441 (15)0.0312 (13)0.0392 (13)0.0055 (11)0.0080 (11)0.0003 (10)
C140.0404 (14)0.0362 (14)0.0282 (12)0.0003 (11)0.0008 (10)0.0016 (9)
C150.0337 (13)0.0316 (13)0.0294 (12)0.0006 (10)0.0060 (10)0.0016 (9)
O20.0403 (10)0.0321 (9)0.0348 (9)0.0014 (7)0.0021 (7)0.0070 (6)
N30.0353 (11)0.0344 (11)0.0248 (9)0.0027 (8)0.0012 (8)0.0037 (7)
N40.0537 (14)0.0351 (13)0.0365 (12)0.0049 (10)0.0111 (10)0.0069 (9)
C210.0358 (13)0.0339 (13)0.0287 (11)0.0033 (10)0.0054 (10)0.0026 (9)
C220.0330 (13)0.0352 (13)0.0328 (12)0.0053 (10)0.0015 (10)0.0026 (9)
C230.0386 (14)0.0380 (14)0.0479 (15)0.0009 (11)0.0074 (12)0.0004 (11)
C240.0449 (16)0.0420 (15)0.0471 (15)0.0056 (12)0.0125 (12)0.0073 (11)
C250.0547 (17)0.0483 (16)0.0281 (12)0.0176 (13)0.0101 (12)0.0049 (10)
C260.0399 (14)0.0416 (14)0.0297 (12)0.0117 (11)0.0008 (10)0.0040 (10)
C270.0565 (17)0.0532 (16)0.0294 (12)0.0151 (13)0.0074 (12)0.0078 (11)
C280.0433 (15)0.0501 (16)0.0428 (14)0.0063 (12)0.0110 (12)0.0168 (11)
C290.0372 (14)0.0413 (14)0.0352 (12)0.0035 (11)0.0006 (10)0.0118 (10)
C300.0341 (13)0.0332 (13)0.0289 (11)0.0028 (10)0.0034 (10)0.0065 (9)
C310.0368 (13)0.0366 (13)0.0306 (12)0.0033 (10)0.0015 (10)0.0034 (10)
C320.0417 (15)0.0384 (14)0.0407 (14)0.0055 (11)0.0056 (11)0.0014 (10)
C330.0439 (15)0.0369 (14)0.0476 (15)0.0017 (12)0.0048 (12)0.0148 (11)
C340.0385 (14)0.0479 (15)0.0411 (14)0.0023 (12)0.0023 (11)0.0173 (11)
C350.0309 (12)0.0353 (13)0.0277 (11)0.0010 (10)0.0018 (9)0.0052 (9)
Geometric parameters (Å, º) top
O1—C151.233 (3)O2—C351.229 (3)
N1—C151.392 (3)N3—C351.390 (3)
N1—C101.438 (3)N3—C301.436 (3)
N1—C11.439 (3)N3—C211.444 (3)
N2—C151.337 (3)N4—C351.339 (3)
N2—H2A0.89 (3)N4—H4B0.86 (2)
N2—H2B0.92 (2)N4—H4A0.90 (3)
C1—C21.394 (3)C21—C221.393 (3)
C1—C61.397 (3)C21—C261.399 (3)
C2—C31.378 (3)C22—C231.383 (3)
C2—H20.9500C22—H220.9500
C3—C41.384 (4)C23—C241.377 (3)
C3—H30.9500C23—H230.9500
C4—C51.380 (4)C24—C251.369 (4)
C4—H40.9500C24—H240.9500
C5—C61.397 (3)C25—C261.410 (3)
C5—H50.9500C25—H250.9500
C6—C71.513 (3)C26—C271.512 (3)
C7—C81.527 (3)C27—C281.531 (3)
C7—H7A0.9900C27—H27A0.9900
C7—H7B0.9900C27—H27B0.9900
C8—C91.500 (3)C28—C291.500 (3)
C8—H8A0.9900C28—H28A0.9900
C8—H8B0.9900C28—H28B0.9900
C9—C141.390 (3)C29—C341.394 (3)
C9—C101.400 (3)C29—C301.398 (3)
C10—C111.380 (3)C30—C311.385 (3)
C11—C121.384 (3)C31—C321.382 (3)
C11—H110.9500C31—H310.9500
C12—C131.376 (3)C32—C331.391 (3)
C12—H120.9500C32—H320.9500
C13—C141.393 (3)C33—C341.382 (4)
C13—H130.9500C33—H330.9500
C14—H140.9500C34—H340.9500
C15—N1—C10121.98 (18)C35—N3—C30122.25 (18)
C15—N1—C1118.82 (18)C35—N3—C21119.51 (18)
C10—N1—C1117.67 (17)C30—N3—C21117.98 (17)
C15—N2—H2A117.4 (18)C35—N4—H4B127.7 (15)
C15—N2—H2B127.7 (14)C35—N4—H4A114.1 (15)
H2A—N2—H2B113 (2)H4B—N4—H4A118 (2)
C2—C1—C6121.0 (2)C22—C21—C26121.2 (2)
C2—C1—N1117.7 (2)C22—C21—N3117.6 (2)
C6—C1—N1121.3 (2)C26—C21—N3121.2 (2)
C3—C2—C1120.7 (3)C23—C22—C21120.8 (2)
C3—C2—H2119.6C23—C22—H22119.6
C1—C2—H2119.6C21—C22—H22119.6
C2—C3—C4119.3 (3)C24—C23—C22119.0 (3)
C2—C3—H3120.4C24—C23—H23120.5
C4—C3—H3120.4C22—C23—H23120.5
C5—C4—C3119.9 (2)C25—C24—C23120.3 (2)
C5—C4—H4120.1C25—C24—H24119.9
C3—C4—H4120.1C23—C24—H24119.9
C4—C5—C6122.4 (3)C24—C25—C26122.7 (2)
C4—C5—H5118.8C24—C25—H25118.6
C6—C5—H5118.8C26—C25—H25118.6
C5—C6—C1116.7 (2)C21—C26—C25116.0 (2)
C5—C6—C7116.9 (2)C21—C26—C27126.4 (2)
C1—C6—C7126.3 (2)C25—C26—C27117.6 (2)
C6—C7—C8118.9 (2)C26—C27—C28119.1 (2)
C6—C7—H7A107.6C26—C27—H27A107.6
C8—C7—H7A107.6C28—C27—H27A107.6
C6—C7—H7B107.6C26—C27—H27B107.6
C8—C7—H7B107.6C28—C27—H27B107.6
H7A—C7—H7B107.0H27A—C27—H27B107.0
C9—C8—C7111.3 (2)C29—C28—C27111.6 (2)
C9—C8—H8A109.4C29—C28—H28A109.3
C7—C8—H8A109.4C27—C28—H28A109.3
C9—C8—H8B109.4C29—C28—H28B109.3
C7—C8—H8B109.4C27—C28—H28B109.3
H8A—C8—H8B108.0H28A—C28—H28B108.0
C14—C9—C10118.5 (2)C34—C29—C30118.0 (2)
C14—C9—C8123.4 (2)C34—C29—C28123.3 (2)
C10—C9—C8118.1 (2)C30—C29—C28118.7 (2)
C11—C10—C9121.2 (2)C31—C30—C29121.4 (2)
C11—C10—N1121.3 (2)C31—C30—N3121.1 (2)
C9—C10—N1117.6 (2)C29—C30—N3117.5 (2)
C10—C11—C12119.6 (2)C32—C31—C30119.6 (2)
C10—C11—H11120.2C32—C31—H31120.2
C12—C11—H11120.2C30—C31—H31120.2
C13—C12—C11120.1 (2)C31—C32—C33119.9 (2)
C13—C12—H12119.9C31—C32—H32120.1
C11—C12—H12119.9C33—C32—H32120.1
C12—C13—C14120.5 (2)C34—C33—C32120.1 (2)
C12—C13—H13119.8C34—C33—H33119.9
C14—C13—H13119.8C32—C33—H33119.9
C9—C14—C13120.1 (2)C33—C34—C29121.0 (2)
C9—C14—H14119.9C33—C34—H34119.5
C13—C14—H14119.9C29—C34—H34119.5
O1—C15—N2122.9 (2)O2—C35—N4122.7 (2)
O1—C15—N1120.5 (2)O2—C35—N3121.01 (19)
N2—C15—N1116.6 (2)N4—C35—N3116.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.92 (2)2.02 (3)2.800 (3)142.7 (19)
N4—H4B···O10.86 (2)2.11 (3)2.801 (3)137.4 (19)
N2—H2A···Cg40.89 (3)3.01 (3)3.862 (3)162 (2)
N4—H4A···Cg2ii0.90 (3)2.89 (3)3.765 (3)166 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

We thank the Basic Technology programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (https://www.cposs.org.uk).

References

First citationBandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.  CAS Google Scholar
First citationCyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840.  CAS PubMed Web of Science Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J., Fernandes, P., Shankland, N. & Kennedy, A. R. (2006). Acta Cryst. E62, o5361–o5362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarami, S., Li, Y., Hughes, D. S., Hursthouse, M. B., Russell, A. E., Threlfall, T. L., Claybourn, M. & Roberts, R. (2006). Acta Cryst. B62, 689–691.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o205–o206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds