organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′:5,6-Di-O-iso­propyl­­idene-3-C-hy­droxy­methyl-D-allono-1,4-lactone: an organic structure containing large unoccupied voids

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: michela_simone@yahoo.co.uk

(Received 6 December 2006; accepted 15 January 2007; online 19 January 2007)

The Kiliani reaction of D-hamamelose with sodium cyanide, followed by acetonation, affords crystalline 3,3′:5,6-di-O-isopropyl­idene-3-C-hydroxy­methyl-D-allono-1,4-lactone, C13H20O7, a carbon-branched sugar with potential as an enanti­omerically pure carbohydrate scaffold. The lactone has one single free hydroxyl group unprotected, with six other functional groups protected in a single step as ketals or esters. The resulting crystal structure is unusual in that it contains large voids (544 Å3) within which there is no evidence of included solvent.

Comment

At present, there are very few accessible branched carbohydrate scaffolds (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.]; Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.]) for use in the synthesis of complex enanti­omerically pure targets (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]). The reactions of calcium oxide on Amadori 1-deoxy­amino-ketoses (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]) and the Kiliani reaction of cyanide with ketoses (Hotchkiss et al., 2004[Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]) allow the preparation of 2-C-methyl and 2-C-hydroxy­methyl lactones in relatively short sequences. However, syntheses of carbohydrates bearing a carbon branch at C-3 are very rare (Bream et al., 2006[Bream, R., Watkin, D., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, o977-o979.]). One approach to such chirons is the Kiliani cyanide reaction on 2-C-hydroxy­methyl sugars [such as hamamelose (1)] to produce 3-C-hydroxy­methyl lactones [such as (2) and (4)]. The experimental details for the Kiliani reaction of D-hamamelose (1) with cyanide to give a mixture of the two branched sugar lactones (2) and (4), followed by treatment with dimethoxy­propane to afford a separable mixture of the two diacetonides (3) and (5), have been reported in a previous paper (Parker et al., 2006[Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961-o3963.]).

[Scheme 1]

A significant number of ambiguities arise from the formation of possible lactones, the sites for the formation of cyclic ketals and the sizes of both the lactone and ketal rings. This is an area in which X-ray crystallography is needed to have any confidence at all in the structures of diacetonides obtained by this short procedure. The crystal structure of the altrono-diacetonide (5), formed from the lactone (4) derived by cyclization of the branched C-3′ hydroxy­methyl group on to the carboxylic acid, has been established by X-ray crystallography (Parker et al., 2006[Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961-o3963.]). This paper firmly assigns the structure of the second crystalline product as the branched allono-lactone (3) formed from lactone formation from the C-4 hydroxyl group; the absolute configuration of (3) is determined by the use of D-ribose as the starting material for the synthesis. It is noteworthy that both lactones (3) and (5) have only the C-2 hydroxyl group unprotected; the sequence provides access to two sugars with seven functional groups but with six of the them protected in one simple step.

The component mol­ecules have no unusual torsion angles, and show no evidence of inter­nal strain. The relatively large anisotropic displacement parameters for the methyl groups and O atoms in the acetonide protecting group may indicate some ring fluxion (Fig. 1[link]).

The crystal structure is unusual in that it contains substantial voids (544 Å3) within which there is no evidence for included solvent (Fig. 2[link]). The voids are big enough to have contained dichloro­methane, but the maximum residual electron density is only 0.2 e Å−3. We do not know if the voids in the dry crystals ever contained solvent, though generally solvent loss from organic crystals is associated with either a total loss of crystallinity, or at least a degradation of the crystal quality. In this case the crystals remained glass-clear.

The structure consists of a tight helix (Fig. 3[link]), involving O—H⋯Oi hydrogen bonds (Table 1[link]), which runs parallel to the c axis at (½, ½, z). The main parts of the mol­ecule hang off this backbone like leaves from a tree. The tips of the `leaves' of four separate helices meet to form a second helix at (0, 0, z). The `leaves' of each pair of adjacent hydrogen-bonded helices (separated by [z\over2] because of the 41 axis) inter­leave along (0, 0, z), but there is no evidence for particularly strong inter­actions at these points.

[Figure 1]
Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
Packing diagam of the title compound viewed along c. The residual electron density in the void has a maximum value of 0.22 e Å−3. Hydrogen bonds are drawn as dotted lines
[Figure 3]
Figure 3
Oblique packing diagram of the title compound, showing the hydrogen-bonded helix which is the main structural feature. The ends of one turn of the helix are coloured blue and purple. Operators involved in forming the helix are: (i) x, y, z + 1; (ii) −y + 1, x, z + [{1\over 4}]; (iii) −x + 1, −y + 1, z + [{1\over 2}]; (iv) y, −x + 1, z − [{1\over 4}]; (v) y, −x + 1, z + [{3\over 4}]. Hydrogen bonds are drawn as dotted lines.

Experimental

The title compound, (3), was crystallized by dissolving it in dichloro­methane, adding a few drops of cyclo­hexane and allowing the slow competitive evaporation of the two solvents until needle-like colourless crystals formed [m.p. 353 K (dichloro­methane/cyclo­hexa­ne)]. MS–ES (m/z): 287.2 ([M − H], 15%); HRMS (MS ES+): found 311.1101 [M + Na]+ C13H20NaO7 requires 311.1101; [α]D23: +5.5 (c 1.25 in chloro­form); νmax (thin film): 3445 (br, OH), 2989 (CH2, CH3), 1800 (C=O) cm−1; δH (C6D6, 400 MHz): 1.20, 1.31, 1.36, 1.38 [12H, 4 × s, 2 × C(CH3)2], 3.30–3.40 (1H, br s, OH-2), 3.51 (1H, ddd, JH-5,H-4 = 8.5 Hz, JH-5,H-6 = 6.7 Hz, JH-5,H-6′ = 5.3 Hz, H-5), 3.75 (1H, dd, JH-6,H-6′ = 9.5 Hz, JH-6,H-5 = 6.6 Hz, H-6), 3.82 (1H, dd, JH-6′,H-6 = 9.5 Hz, JH-6′,H-5 = 5.3 Hz, H-6′), 3.97 (1H, d, JH-3,H-3′ = 10.0 Hz H-3), 4.20 (1H, s, H-2), 4.26 (1H, d, JH-4,H-5 = 8.6 Hz, H-4), 4.55 (1H, d, JH-3′,H-3 = 10.0 Hz, H-3′); δC (C6D6, 100 MHz): 24.8, 25.5, 26.5, 26.9 [2 × C(CH3)2], 65.3 (C-3′), 65.8 (C-6), 67.0 (C-2), 73.7 (C-5), 84.9 (C-3), 85.0 (C-4), 110.7, 111.2 [2 × C(CH3)2], 173.2 (C=O).

Crystal data
  • C13H20O7

  • Mr = 288.30

  • Tetragonal, P 41

  • a = 14.1641 (4) Å

  • c = 9.2045 (3) Å

  • V = 1846.62 (10) Å3

  • Z = 4

  • Dx = 1.037 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • Needle, colourless

  • 0.44 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; ­Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.96, Tmax = 0.99

  • 21907 measured reflections

  • 2229 independent reflections

  • 1802 reflections with I > 3σ(I)

  • Rint = 0.068

  • θmax = 27.6°

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.044

  • S = 1.04

  • 1802 reflections

  • 181 parameters

  • H-atom parameters constrained

  • w = [1 − (FoFc)2/36σ2(F)]2/[1.09T0(x) + 0.255T1(x) + 0.726T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]; Watkin, 1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]) Modified Chebychev polynomial (Watkin, 1994; Prince, 1982)

  • (Δ/σ)max = 0.010

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O2i 0.80 1.91 2.679 (2) 160
Symmetry code: (i) [-y+1, x, z+{\script{1\over 4}}].

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the starting materials The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H = 0.93–0.98, O—H = 0.82 Å and Uiso(H) = 1.2 or 1.5 times Ueq(parent atom)], after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

3,3':5,6-di-O-isopropylidene-3-C-hydroxymethyl-D-allono-1,4-lactone top
Crystal data top
C13H20O7Dx = 1.037 Mg m3
Mr = 288.30Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 21907 reflections
Hall symbol: P 4wθ = 5–28°
a = 14.1641 (4) ŵ = 0.08 mm1
c = 9.2045 (3) ÅT = 150 K
V = 1846.62 (10) Å3Needle, colourless
Z = 40.44 × 0.12 × 0.10 mm
F(000) = 616
Data collection top
Nonius KappaCCD
diffractometer
1802 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 27.6°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1213
Tmin = 0.96, Tmax = 0.99k = 018
21907 measured reflectionsl = 011
2229 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.044 Modified Chebychev polynomial (Watkin, 1994; Prince, 1982) with coefficients 1.09 0.255 0.726 and Robust Weighting (Prince, 1982); W = [weight][1-(δF/6σF)2]2
S = 1.04(Δ/σ)max = 0.010
1802 reflectionsΔρmax = 0.22 e Å3
181 parametersΔρmin = 0.21 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40908 (17)0.29983 (17)0.2555 (3)0.0322
C20.50778 (16)0.34055 (15)0.2595 (2)0.0292
C30.56325 (17)0.26748 (16)0.1741 (2)0.0306
C40.51393 (17)0.17588 (17)0.2218 (3)0.0340
C50.54440 (19)0.13445 (17)0.3650 (3)0.0384
C60.4755 (2)0.06101 (19)0.4243 (4)0.0493
O10.33445 (12)0.34056 (13)0.2657 (2)0.0401
O20.51303 (12)0.43275 (11)0.20539 (19)0.0336
O30.54536 (12)0.28276 (12)0.02234 (18)0.0340
O40.41413 (12)0.20543 (12)0.2386 (2)0.0367
O50.62892 (15)0.08096 (13)0.3439 (3)0.0522
O60.53620 (16)0.00210 (14)0.5075 (3)0.0579
C70.67037 (18)0.27177 (18)0.1852 (3)0.0356
O80.69994 (13)0.24162 (13)0.0446 (2)0.0409
C80.63374 (18)0.27831 (18)0.0555 (3)0.0356
C90.6603 (2)0.3780 (2)0.1031 (3)0.0434
C100.6248 (2)0.2097 (2)0.1803 (3)0.0477
C110.6237 (2)0.0037 (2)0.4304 (3)0.0510
C120.6225 (4)0.0873 (2)0.3307 (5)0.0805
C130.7021 (3)0.0043 (3)0.5393 (4)0.0793
H10.53170.46780.26770.0507*
H210.53080.34030.35950.0347*
H410.52010.12750.14800.0411*
H510.55230.18540.43690.0454*
H610.42640.08890.48490.0586*
H620.44590.02540.34440.0580*
H710.69060.33610.20420.0413*
H720.69470.22930.25950.0417*
H910.72030.37820.15480.0642*
H920.66730.41890.01910.0647*
H930.61020.40410.16600.0643*
H1010.68500.20580.22870.0703*
H1020.57760.23100.24910.0705*
H1030.60730.14730.14200.0706*
H1210.62160.14470.38830.1191*
H1220.67950.08640.27310.1185*
H1230.56760.08450.26790.1184*
H1310.69830.06020.60030.1178*
H1320.76230.00330.48840.1177*
H1330.69820.05100.59990.1178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (13)0.0401 (12)0.0161 (8)0.0017 (10)0.0017 (9)0.0035 (9)
C20.0405 (12)0.0301 (11)0.0169 (9)0.0024 (9)0.0033 (9)0.0022 (9)
C30.0429 (13)0.0302 (11)0.0188 (10)0.0015 (9)0.0003 (9)0.0012 (8)
C40.0432 (13)0.0297 (11)0.0292 (11)0.004 (1)0.0058 (9)0.0041 (9)
C50.0508 (14)0.0277 (11)0.0368 (12)0.0027 (10)0.0091 (11)0.0047 (10)
C60.0598 (17)0.0355 (13)0.0526 (17)0.0019 (12)0.0124 (14)0.0173 (13)
O10.0380 (9)0.0546 (10)0.0278 (8)0.0050 (8)0.0042 (7)0.0055 (8)
O20.0501 (10)0.0280 (8)0.0228 (7)0.0023 (7)0.0088 (7)0.0007 (6)
O30.0403 (9)0.0442 (9)0.0174 (7)0.0029 (7)0.0011 (6)0.0016 (7)
O40.0390 (9)0.0369 (9)0.0343 (9)0.0044 (7)0.0035 (7)0.0001 (7)
O50.0550 (12)0.0410 (10)0.0606 (13)0.0091 (9)0.0166 (10)0.0154 (9)
O60.0734 (13)0.0437 (10)0.0566 (13)0.0090 (10)0.0162 (12)0.0237 (10)
C70.0403 (13)0.0397 (13)0.0269 (11)0.0011 (10)0.0059 (10)0.0042 (10)
O80.0432 (10)0.0476 (10)0.0319 (9)0.0031 (8)0.0084 (7)0.0024 (8)
C80.0410 (13)0.0407 (13)0.0250 (11)0.0021 (10)0.0054 (10)0.0018 (10)
C90.0471 (15)0.0496 (15)0.0335 (12)0.0063 (12)0.0070 (11)0.0057 (12)
C100.0611 (17)0.0499 (15)0.0320 (13)0.0003 (13)0.0107 (12)0.0074 (12)
C110.0686 (19)0.0385 (14)0.0458 (15)0.0130 (13)0.0028 (14)0.0082 (12)
C120.120 (3)0.0417 (17)0.080 (3)0.0111 (19)0.011 (2)0.0076 (18)
C130.078 (2)0.103 (3)0.057 (2)0.011 (2)0.0075 (19)0.011 (2)
Geometric parameters (Å, º) top
C1—C21.513 (3)O6—C111.430 (4)
C1—O11.208 (3)C7—O81.426 (3)
C1—O41.348 (3)C7—H710.972
C2—C31.519 (3)C7—H720.974
C2—O21.400 (3)O8—C81.413 (3)
C2—H210.976C8—C91.526 (4)
C3—C41.538 (3)C8—C101.510 (4)
C3—O31.436 (2)C9—H910.974
C3—C71.522 (4)C9—H920.971
C4—C51.506 (4)C9—H930.987
C4—O41.482 (3)C10—H1010.963
C4—H410.968C10—H1020.970
C5—C61.527 (4)C10—H1030.984
C5—O51.430 (3)C11—C121.499 (5)
C5—H510.986C11—C131.497 (5)
C6—O61.422 (4)C12—H1210.972
C6—H610.975C12—H1220.965
C6—H620.985C12—H1230.970
O2—H10.803C13—H1310.972
O3—C81.444 (3)C13—H1320.972
O5—C111.441 (3)C13—H1330.964
C2—C1—O1128.7 (2)C3—C7—H72112.0
C2—C1—O4109.39 (19)O8—C7—H72110.4
O1—C1—O4121.9 (2)H71—C7—H72110.5
C1—C2—C3101.88 (18)C7—O8—C8106.66 (18)
C1—C2—O2113.35 (18)O3—C8—O8105.54 (17)
C3—C2—O2115.11 (18)O3—C8—C9108.4 (2)
C1—C2—H21109.2O8—C8—C9111.4 (2)
C3—C2—H21108.2O3—C8—C10109.5 (2)
O2—C2—H21108.8O8—C8—C10108.3 (2)
C2—C3—C4101.08 (18)C9—C8—C10113.4 (2)
C2—C3—O3108.02 (18)C8—C9—H91110.9
C4—C3—O3108.96 (19)C8—C9—H92110.4
C2—C3—C7117.0 (2)H91—C9—H92107.3
C4—C3—C7117.86 (19)C8—C9—H93109.7
O3—C3—C7103.63 (18)H91—C9—H93109.9
C3—C4—C5116.7 (2)H92—C9—H93108.6
C3—C4—O4103.00 (18)C8—C10—H101108.4
C5—C4—O4106.95 (19)C8—C10—H102110.7
C3—C4—H41110.8H101—C10—H102109.1
C5—C4—H41108.2C8—C10—H103109.1
O4—C4—H41111.1H101—C10—H103109.7
C4—C5—C6113.3 (2)H102—C10—H103109.8
C4—C5—O5109.1 (2)O5—C11—O6105.7 (2)
C6—C5—O5102.86 (19)O5—C11—C12108.6 (3)
C4—C5—H51109.5O6—C11—C12109.9 (3)
C6—C5—H51109.4O5—C11—C13109.7 (3)
O5—C5—H51112.6O6—C11—C13108.2 (3)
C5—C6—O6101.9 (2)C12—C11—C13114.4 (3)
C5—C6—H61112.6C11—C12—H121109.1
O6—C6—H61111.2C11—C12—H122108.5
C5—C6—H62110.7H121—C12—H122108.8
O6—C6—H62111.0C11—C12—H123110.0
H61—C6—H62109.3H121—C12—H123110.4
C2—O2—H1109.9H122—C12—H123110.1
C3—O3—C8108.84 (18)C11—C13—H131110.5
C4—O4—C1110.04 (17)C11—C13—H132109.1
C5—O5—C11108.8 (2)H131—C13—H132109.8
C6—O6—C11106.9 (2)C11—C13—H133109.8
C3—C7—O8102.68 (19)H131—C13—H133109.0
C3—C7—H71110.1H132—C13—H133108.5
O8—C7—H71110.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O2i0.801.912.679 (2)160
Symmetry code: (i) y+1, x, z+1/4.
 

Acknowledgements

Financial support [to MS] provided through the European Community's Human Potential Programme under contract HPRN-CT-2002–00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.  Google Scholar
First citationBream, R., Watkin, D., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, o977–o979.  CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961–o3963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds