organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-5-de­oxy-2-C-hydroxymethyl-2,3-O-iso­propyl­idene-L-lyxono-1,5-lactam

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: michela_simone@yahoo.co.uk

(Received 8 February 2007; accepted 13 February 2007; online 23 February 2007)

The relative configuration of the title compound, C9H14NO5, formed by catalytic hydrogenation of an azido­lactone, has been established by X-ray crystallographic analysis. The absolute configuration was determined by the use of 2,3-O-isopropyl­idene-L-lyxono-1,4-lactone as the carbohydrate starting material.

Comment

Carbohydrates have been extensively used as starting materials for the synthesis of important small biological mol­ecules such as imino sugars. Imino sugars are analogues of carbohydrates in which the ring O atom is replaced by an N atom and the anomeric hydroxyl group is removed (Winchester & Fleet, 1992[Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.]; Asano et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]). They are almost always inhibitors of the corresponding glycosidases (Bruce et al., 1992[Bruce, I., Fleet, G. W. J., Cenci di Bello, I. & Winchester, B. (1992). Tetrahedron, 48, 10191-10200.]) and have proved to have the potential to produce anti­viral, anti­diabetes and anti­cancer effects, as well as immune-modulatory properties (Asano et al., 1994[Asano, N., Oseki, K., Kiuz, H. & Matsui, K. (1994). J. Med. Chem. 37, 3701-3706.]). Lactones have provided short syntheses of novel imino sugars (Asano et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]). Almost all of these targets have unbranched carbon chains. Recent results have indicated that analogues with carbon branches give rise to compounds with inter­esting biological activities (Ichikawa & Igarashi, 1995[Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4585-4586.]; Ichikawa et al., 1998[Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007-3018.]). Novel imino sugars of this kind provide an opportunity for altering and, it is hoped, increasing the specificity of inhibition of individual glycosidases, and to study further the structure–activity relationships of glycosidase inhibitors. However, the chemistry of branched sugars, and in particular that of branched sugar lactones, has remained largely unexplored. The main problem is the lack of cheaply and easily available simple derivatives of monosaccharides with a carbon branch (Bols, 1996[Bols, M. (1996). In Carbohydrate Building Blocks. New York: John Wiley and Sons.]). Efficient routes to branched sugar lactones are under investigation in our laboratory. One exploits the Ho crossed-aldol reaction (Ho, 1979[Ho, P.-T. (1979). Can. J. Chem. 57, 381-381.], 1985[Ho, P.-T. (1985). Can. J. Chem. 63, 2221-2224.]; Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]), one the Kiliani reaction on ketohexoses (Kiliani, 1886[Kiliani, H. (1886). Ber. Dtsch. Chem. Ges. 19, 221-227.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]; Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.], 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]), and one the Amadori rearrangement on sugars followed by treatment with calcium hydroxide (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]). The crossed-aldol reaction was the crucial step in the synthesis of the title powerful branched inter­mediate (3), stereoisomeric with (4) (Newton et al., 2004[Newton, C. R., Michela, I. S., Fleet, G. W. J., Blériot, Y. & Watkin, D. J. (2004). Acta Cryst. E60, o909-o910.]). Stereochemical ambiguity may arise from the aldol reaction.

Azido­lactol (1) was prepared from 2,3-O-isopropyl­idene-L-lyxono-1,4-lactone and submitted to the key aldol branching reaction. Oxidation of the aldol product with bromine water yielded branched lactone (2). Hydrogenation of (2) resulted in the initial formation of the corresponding amine, which underwent isomerization to the title lactam upon refluxing in the reaction solvent.

[Scheme 1]

The X-ray crystal structure of (3) removes any ambiguity about the course of the aldol condensation and provides comparison of the solid-phase structures of (3) and (4) in order to rationalize their biological activity. The mol­ecular structure shows no abnormal features. The largest differences from the Mogul norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) are C6—O7 (0.02 Å; Mogul s.u. 0.02 Å) and C2—C3—O8 (−5.4°; Mogul s.u. 1.9°).

The crystal structure of (3) consists of sheets of mol­ecules lying perpendicular to the c axis (Fig. 2[link]), in which the mol­ecules are linked by short hydrogen-bonded chains (O8—H10⋯O5—H9⋯O7). Curiously, the amine atom H13 is not involved in any strong hydrogen bonds. The closest O atoms are too distant, and the N—H⋯O angles are too accute (Table 1[link]) to be real hydrogen bonds.

[Figure 1]
Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
A packing diagram of the title compound, showing one sheet of hydrogen-bonded mol­ecules lying parallel to the ab plane. Note that atom H13 (bonded to nitrogen) is not involved in any hydrogen bonds. [Symmetry codes: (i) x − 1, y, z; (ii) 1 − x, y − [{1\over 2}], [{1\over 2}] − z.]

Experimental

5-Amino-5-deoxy-2-C-hydroxymethyl-2,3-O-isopropylidene-L-lyxono-1,5-lactam, (3), was obtained upon reduction of 5-azido-2,3-O-isopropyl­idene-L-lyxono-1,4-lactone, (2), using Pd-black and hydrogen gas in refluxing toluene at low concentration (2.5 mg ml−1). A 64% yield of the title compound was obtained. The compound was then crystallized via solvent evaporation (dichloro­methane–methanol), appearing as colourless plates (m.p. 490–491 K). Analysis: [α]D21 −14.0 (c 0.18 in methanol); IR (thin film, νmax, cm−1): 3340 (br, OH, NH), 1661 (s, CONH, six-ring lactam); 1H NMR (D2O, 400 MHz, δ, p.p.m.): 1.28, 1.34 [2 × 3H, 2 × s, C(CH3)2], 3.18 (1H, dd, JH5,H5′ = 13.7 Hz, JH5,H4 = 5.1 Hz, H5), 3.51 (1H, dd, JH5′,H5 = 13.6 Hz, JH5′,H4 = 3.5 Hz, H5′), 3.63 (1H, d, JH2,H2′ = 12.1 Hz, H2), 3.77 (1H, d, JH2′,H2 = 12.1 Hz, H2′), 4.08–4.15 (1H, m, J = 4.9 Hz, J = 3.6 Hz, H4), 4.34 (1H, d, JH3,H4 = 4.9 Hz, H3); 13C NMR (D2O, 100 MHz, δ, p.p.m.): 26.2, 26.9 [C(CH3)2], 43.2 (C5), 62.7 (C2′), 65.7 (C4), 77.3 (C3), 81.9 (C2), 111.5 [C(CH3)2], 172.9 (CONH).

Crystal data
  • C9H15NO5

  • Mr = 217.22

  • Orthorhombic, P 221 21

  • a = 6.2423 (2) Å

  • b = 12.0919 (4) Å

  • c = 14.1651 (6) Å

  • V = 1069.20 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.70 × 0.42 × 0.39 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.84, Tmax = 0.96

  • 6832 measured reflections

  • 1402 independent reflections

  • 1402 reflections with I > −3σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 0.89

  • 1402 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H9⋯O7i 0.83 1.79 2.614 (2) 170
O8—H10⋯O5ii 0.85 1.83 2.666 (2) 170
N5—H13⋯O8iii 0.90 2.52 3.339 (2) 153
N5—H13⋯O11iv 0.90 2.57 3.140 (2) 122
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å) and Uiso(H) [in the range 1.2–1.5Ueq(parent)], after which the positions were refined with riding constraints. In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the starting material.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-C-Hydroxymethyl-2,3-O-isopropylidene-L-lyxono-1,5-lactam top
Crystal data top
C9H15NO5F(000) = 464
Mr = 217.22Dx = 1.349 Mg m3
Orthorhombic, P22121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2bc 2Cell parameters from 1345 reflections
a = 6.2423 (2) Åθ = 5–27°
b = 12.0919 (4) ŵ = 0.11 mm1
c = 14.1651 (6) ÅT = 150 K
V = 1069.20 (7) Å3Plate, colourless
Z = 40.70 × 0.42 × 0.39 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1402 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.84, Tmax = 0.96k = 1515
6832 measured reflectionsl = 1818
1402 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(F2) + (0.04P)2 + 0.18P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.89(Δ/σ)max = 0.000207
1402 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.18 e Å3
333 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7689 (2)0.36364 (11)0.24059 (9)0.0218
C20.6527 (2)0.40678 (11)0.15372 (9)0.0244
C30.6634 (3)0.53128 (11)0.14364 (10)0.0284
C40.8936 (3)0.56994 (12)0.14233 (11)0.0328
N51.0184 (2)0.52029 (11)0.21867 (9)0.0328
O50.45119 (17)0.28841 (8)0.31454 (8)0.0361
C60.9726 (2)0.42833 (12)0.26584 (10)0.0255
O71.08682 (17)0.39314 (9)0.33104 (8)0.0350
C70.6349 (2)0.35344 (11)0.33024 (9)0.0258
O80.5438 (2)0.57202 (8)0.22163 (8)0.0356
O90.76720 (18)0.35597 (8)0.07790 (6)0.0302
H90.33640.32370.31280.0543*
C100.8366 (3)0.24932 (11)0.10950 (9)0.0261
H100.54310.64190.21700.0535*
O110.83058 (18)0.25414 (7)0.21157 (6)0.0257
C120.6863 (3)0.15998 (12)0.07612 (11)0.0373
C131.0646 (3)0.23253 (17)0.07736 (12)0.0455
H131.14360.55180.23400.0405*
H210.50130.38290.15500.0275*
H310.59250.55370.08430.0326*
H410.89770.65100.15290.0380*
H420.95300.55100.08100.0385*
H710.72310.31830.37740.0312*
H720.59570.42940.34970.0305*
H1210.73350.08790.09910.0556*
H1220.54420.17760.09600.0557*
H1230.68910.16010.00640.0552*
H1311.12190.16340.10120.0681*
H1321.15070.29530.09760.0675*
H1331.06090.23160.00980.0676*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0241 (6)0.0184 (6)0.0228 (6)0.0020 (5)0.0001 (5)0.0004 (5)
C20.0260 (6)0.0234 (6)0.0236 (6)0.0005 (5)0.0023 (6)0.0001 (5)
C30.0370 (7)0.0219 (6)0.0262 (6)0.0029 (6)0.0007 (6)0.0020 (5)
C40.0431 (8)0.0240 (7)0.0313 (7)0.0056 (6)0.0064 (7)0.0027 (6)
N50.0308 (6)0.0351 (7)0.0327 (6)0.0131 (5)0.0000 (6)0.0006 (5)
O50.0266 (5)0.0245 (5)0.0571 (7)0.0020 (4)0.0105 (5)0.0005 (5)
C60.0229 (6)0.0293 (7)0.0243 (6)0.0018 (5)0.0012 (5)0.0035 (5)
O70.0266 (5)0.0441 (6)0.0344 (5)0.0025 (5)0.0067 (5)0.0009 (5)
C70.0258 (6)0.0253 (7)0.0263 (6)0.0003 (5)0.0035 (6)0.0011 (6)
O80.0463 (6)0.0219 (5)0.0388 (6)0.0050 (5)0.0107 (5)0.0018 (4)
O90.0462 (6)0.0235 (5)0.0209 (4)0.0041 (5)0.0009 (5)0.0007 (4)
C100.0341 (7)0.0227 (6)0.0215 (6)0.0043 (6)0.0015 (6)0.0000 (5)
O110.0341 (5)0.0213 (4)0.0216 (4)0.0063 (4)0.0013 (4)0.0010 (3)
C120.0511 (9)0.0295 (7)0.0313 (7)0.0039 (7)0.0065 (8)0.0023 (6)
C130.0388 (8)0.0545 (10)0.0432 (9)0.0095 (9)0.0132 (8)0.0041 (8)
Geometric parameters (Å, º) top
C1—C21.5205 (17)O5—H90.834
C1—C61.5355 (19)C6—O71.2418 (17)
C1—C71.5257 (18)C7—H710.964
C1—O111.4390 (16)C7—H720.990
C2—C31.5137 (19)O8—H100.847
C2—O91.4289 (16)O9—C101.4322 (16)
C2—H210.989C10—O111.4474 (16)
C3—C41.512 (2)C10—C121.507 (2)
C3—O81.4211 (18)C10—C131.508 (2)
C3—H310.988C12—H1210.976
C4—N51.462 (2)C12—H1220.955
C4—H410.992C12—H1230.988
C4—H420.972C13—H1310.970
N5—C61.3285 (19)C13—H1320.973
N5—H130.896C13—H1330.958
O5—C71.4079 (17)
C2—C1—C6114.13 (11)C1—C6—O7118.31 (12)
C2—C1—C7116.11 (11)N5—C6—O7122.51 (13)
C6—C1—C7107.55 (10)C1—C7—O5111.11 (11)
C2—C1—O11102.24 (10)C1—C7—H71107.4
C6—C1—O11108.27 (11)O5—C7—H71109.2
C7—C1—O11108.07 (10)C1—C7—H72107.0
C1—C2—C3113.36 (11)O5—C7—H72111.2
C1—C2—O9102.85 (10)H71—C7—H72111.0
C3—C2—O9109.56 (11)C3—O8—H10106.8
C1—C2—H21110.0C2—O9—C10107.67 (10)
C3—C2—H21109.5O9—C10—O11105.55 (10)
O9—C2—H21111.5O9—C10—C12111.04 (12)
C2—C3—C4110.52 (13)O11—C10—C12109.02 (12)
C2—C3—O8104.39 (11)O9—C10—C13108.21 (13)
C4—C3—O8113.68 (12)O11—C10—C13109.37 (13)
C2—C3—H31109.5C12—C10—C13113.35 (13)
C4—C3—H31109.3C10—O11—C1109.23 (9)
O8—C3—H31109.3C10—C12—H121110.3
C3—C4—N5111.75 (12)C10—C12—H122109.0
C3—C4—H41109.2H121—C12—H122112.4
N5—C4—H41106.3C10—C12—H123107.6
C3—C4—H42107.5H121—C12—H123109.2
N5—C4—H42111.2H122—C12—H123108.1
H41—C4—H42111.0C10—C13—H131111.0
C4—N5—C6126.96 (12)C10—C13—H132109.1
C4—N5—H13118.0H131—C13—H132111.5
C6—N5—H13115.0C10—C13—H133106.3
C7—O5—H9114.7H131—C13—H133110.3
C1—C6—N5119.17 (12)H132—C13—H133108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H9···O7i0.831.792.614 (2)170
O8—H10···O5ii0.851.832.666 (2)170
N5—H13···O8iii0.902.523.339 (2)153
N5—H13···O11iv0.902.573.140 (2)122
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+1/2, z+1/2.
 

Acknowledgements

Financial support (to MS) provided through the European Community's Human Potential Programme under contract No. HPRN-CT-2002–00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationAsano, N., Oseki, K., Kiuz, H. & Matsui, K. (1994). J. Med. Chem. 37, 3701–3706.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). In Carbohydrate Building Blocks. New York: John Wiley and Sons.  Google Scholar
First citationBruce, I., Fleet, G. W. J., Cenci di Bello, I. & Winchester, B. (1992). Tetrahedron, 48, 10191–10200.  CrossRef CAS Web of Science Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, P.-T. (1979). Can. J. Chem. 57, 381–381.  CrossRef CAS Web of Science Google Scholar
First citationHo, P.-T. (1985). Can. J. Chem. 63, 2221–2224.  CrossRef CAS Web of Science Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationIchikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4585–4586.  CrossRef CAS Web of Science Google Scholar
First citationIchikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007–3018.  Web of Science CrossRef CAS Google Scholar
First citationKiliani, H. (1886). Ber. Dtsch. Chem. Ges. 19, 221–227.  CrossRef Google Scholar
First citationNewton, C. R., Michela, I. S., Fleet, G. W. J., Blériot, Y. & Watkin, D. J. (2004). Acta Cryst. E60, o909–o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationWinchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210.  CrossRef PubMed CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds