organic compounds
5-Amino-5-deoxy-2-C-hydroxymethyl-2,3-O-isopropylidene-L-lyxono-1,5-lactam
aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: michela_simone@yahoo.co.uk
The 9H14NO5, formed by catalytic hydrogenation of an azidolactone, has been established by X-ray crystallographic analysis. The was determined by the use of 2,3-O-isopropylidene-L-lyxono-1,4-lactone as the carbohydrate starting material.
of the title compound, CComment
; Asano et al., 2000). They are almost always inhibitors of the corresponding glycosidases (Bruce et al., 1992) and have proved to have the potential to produce antiviral, antidiabetes and anticancer effects, as well as immune-modulatory properties (Asano et al., 1994). have provided short syntheses of novel imino sugars (Asano et al., 2000). Almost all of these targets have unbranched carbon chains. Recent results have indicated that analogues with carbon branches give rise to compounds with interesting biological activities (Ichikawa & Igarashi, 1995; Ichikawa et al., 1998). Novel imino sugars of this kind provide an opportunity for altering and, it is hoped, increasing the specificity of inhibition of individual glycosidases, and to study further the structure–activity relationships of glycosidase inhibitors. However, the chemistry of branched sugars, and in particular that of branched sugar has remained largely unexplored. The main problem is the lack of cheaply and easily available simple derivatives of with a carbon branch (Bols, 1996). Efficient routes to branched sugar are under investigation in our laboratory. One exploits the Ho crossed-aldol reaction (Ho, 1979, 1985; Simone et al., 2005), one the Kiliani reaction on ketohexoses (Kiliani, 1886; Soengas et al., 2005; Hotchkiss et al., 2004, 2006), and one the Amadori rearrangement on sugars followed by treatment with calcium hydroxide (Hotchkiss et al., 2006). The crossed-aldol reaction was the crucial step in the synthesis of the title powerful branched intermediate (3), stereoisomeric with (4) (Newton et al., 2004). Stereochemical ambiguity may arise from the aldol reaction.
have been extensively used as starting materials for the synthesis of important small biological molecules such as imino sugars. Imino sugars are analogues of in which the ring O atom is replaced by an N atom and the anomeric hydroxyl group is removed (Winchester & Fleet, 1992Azidolactol (1) was prepared from 2,3-O-isopropylidene-L-lyxono-1,4-lactone and submitted to the key aldol branching reaction. Oxidation of the aldol product with bromine water yielded branched lactone (2). Hydrogenation of (2) resulted in the initial formation of the corresponding amine, which underwent isomerization to the title lactam upon refluxing in the reaction solvent.
The X-ray Mogul norms (Bruno et al., 2004) are C6—O7 (0.02 Å; Mogul s.u. 0.02 Å) and C2—C3—O8 (−5.4°; Mogul s.u. 1.9°).
of (3) removes any ambiguity about the course of the aldol condensation and provides comparison of the solid-phase structures of (3) and (4) in order to rationalize their biological activity. The molecular structure shows no abnormal features. The largest differences from theThe c axis (Fig. 2), in which the molecules are linked by short hydrogen-bonded chains (O8—H10⋯O5—H9⋯O7). Curiously, the amine atom H13 is not involved in any strong hydrogen bonds. The closest O atoms are too distant, and the N—H⋯O angles are too accute (Table 1) to be real hydrogen bonds.
of (3) consists of sheets of molecules lying perpendicular to theExperimental
5-Amino-5-deoxy-2-C-hydroxymethyl-2,3-O-isopropylidene-L-lyxono-1,5-lactam, (3), was obtained upon reduction of 5-azido-2,3-O-isopropylidene-L-lyxono-1,4-lactone, (2), using Pd-black and hydrogen gas in refluxing toluene at low concentration (2.5 mg ml−1). A 64% yield of the title compound was obtained. The compound was then crystallized via solvent evaporation (dichloromethane–methanol), appearing as colourless plates (m.p. 490–491 K). Analysis: [α]D21 −14.0 (c 0.18 in methanol); IR (thin film, νmax, cm−1): 3340 (br, OH, NH), 1661 (s, CONH, six-ring lactam); 1H NMR (D2O, 400 MHz, δ, p.p.m.): 1.28, 1.34 [2 × 3H, 2 × s, C(CH3)2], 3.18 (1H, dd, JH5,H5′ = 13.7 Hz, JH5,H4 = 5.1 Hz, H5), 3.51 (1H, dd, JH5′,H5 = 13.6 Hz, JH5′,H4 = 3.5 Hz, H5′), 3.63 (1H, d, JH2,H2′ = 12.1 Hz, H2), 3.77 (1H, d, JH2′,H2 = 12.1 Hz, H2′), 4.08–4.15 (1H, m, J = 4.9 Hz, J = 3.6 Hz, H4), 4.34 (1H, d, JH3,H4 = 4.9 Hz, H3); 13C NMR (D2O, 100 MHz, δ, p.p.m.): 26.2, 26.9 [C(CH3)2], 43.2 (C5), 62.7 (C2′), 65.7 (C4), 77.3 (C3), 81.9 (C2), 111.5 [C(CH3)2], 172.9 (CONH).
Crystal data
|
Refinement
|
The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å) and Uiso(H) [in the range 1.2–1.5Ueq(parent)], after which the positions were refined with riding constraints. In the absence of significant Friedel pairs were merged and the assigned from the starting material.
Data collection: COLLECT (Nonius, 2001).; cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536807007568/at2225sup1.cif
contains datablocks 3, global. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S1600536807007568/at22253sup2.hkl
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C9H15NO5 | F(000) = 464 |
Mr = 217.22 | Dx = 1.349 Mg m−3 |
Orthorhombic, P22121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2bc 2 | Cell parameters from 1345 reflections |
a = 6.2423 (2) Å | θ = 5–27° |
b = 12.0919 (4) Å | µ = 0.11 mm−1 |
c = 14.1651 (6) Å | T = 150 K |
V = 1069.20 (7) Å3 | Plate, colourless |
Z = 4 | 0.70 × 0.42 × 0.39 mm |
Nonius KappaCCD area-detector diffractometer | 1402 reflections with I > −3σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.5°, θmin = 5.3° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −8→8 |
Tmin = 0.84, Tmax = 0.96 | k = −15→15 |
6832 measured reflections | l = −18→18 |
1402 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(F2) + (0.04P)2 + 0.18P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 0.89 | (Δ/σ)max = 0.000207 |
1402 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.18 e Å−3 |
333 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7689 (2) | 0.36364 (11) | 0.24059 (9) | 0.0218 | |
C2 | 0.6527 (2) | 0.40678 (11) | 0.15372 (9) | 0.0244 | |
C3 | 0.6634 (3) | 0.53128 (11) | 0.14364 (10) | 0.0284 | |
C4 | 0.8936 (3) | 0.56994 (12) | 0.14233 (11) | 0.0328 | |
N5 | 1.0184 (2) | 0.52029 (11) | 0.21867 (9) | 0.0328 | |
O5 | 0.45119 (17) | 0.28841 (8) | 0.31454 (8) | 0.0361 | |
C6 | 0.9726 (2) | 0.42833 (12) | 0.26584 (10) | 0.0255 | |
O7 | 1.08682 (17) | 0.39314 (9) | 0.33104 (8) | 0.0350 | |
C7 | 0.6349 (2) | 0.35344 (11) | 0.33024 (9) | 0.0258 | |
O8 | 0.5438 (2) | 0.57202 (8) | 0.22163 (8) | 0.0356 | |
O9 | 0.76720 (18) | 0.35597 (8) | 0.07790 (6) | 0.0302 | |
H9 | 0.3364 | 0.3237 | 0.3128 | 0.0543* | |
C10 | 0.8366 (3) | 0.24932 (11) | 0.10950 (9) | 0.0261 | |
H10 | 0.5431 | 0.6419 | 0.2170 | 0.0535* | |
O11 | 0.83058 (18) | 0.25414 (7) | 0.21157 (6) | 0.0257 | |
C12 | 0.6863 (3) | 0.15998 (12) | 0.07612 (11) | 0.0373 | |
C13 | 1.0646 (3) | 0.23253 (17) | 0.07736 (12) | 0.0455 | |
H13 | 1.1436 | 0.5518 | 0.2340 | 0.0405* | |
H21 | 0.5013 | 0.3829 | 0.1550 | 0.0275* | |
H31 | 0.5925 | 0.5537 | 0.0843 | 0.0326* | |
H41 | 0.8977 | 0.6510 | 0.1529 | 0.0380* | |
H42 | 0.9530 | 0.5510 | 0.0810 | 0.0385* | |
H71 | 0.7231 | 0.3183 | 0.3774 | 0.0312* | |
H72 | 0.5957 | 0.4294 | 0.3497 | 0.0305* | |
H121 | 0.7335 | 0.0879 | 0.0991 | 0.0556* | |
H122 | 0.5442 | 0.1776 | 0.0960 | 0.0557* | |
H123 | 0.6891 | 0.1601 | 0.0064 | 0.0552* | |
H131 | 1.1219 | 0.1634 | 0.1012 | 0.0681* | |
H132 | 1.1507 | 0.2953 | 0.0976 | 0.0675* | |
H133 | 1.0609 | 0.2316 | 0.0098 | 0.0676* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0241 (6) | 0.0184 (6) | 0.0228 (6) | 0.0020 (5) | −0.0001 (5) | −0.0004 (5) |
C2 | 0.0260 (6) | 0.0234 (6) | 0.0236 (6) | 0.0005 (5) | −0.0023 (6) | 0.0001 (5) |
C3 | 0.0370 (7) | 0.0219 (6) | 0.0262 (6) | 0.0029 (6) | 0.0007 (6) | 0.0020 (5) |
C4 | 0.0431 (8) | 0.0240 (7) | 0.0313 (7) | −0.0056 (6) | 0.0064 (7) | 0.0027 (6) |
N5 | 0.0308 (6) | 0.0351 (7) | 0.0327 (6) | −0.0131 (5) | 0.0000 (6) | −0.0006 (5) |
O5 | 0.0266 (5) | 0.0245 (5) | 0.0571 (7) | −0.0020 (4) | 0.0105 (5) | −0.0005 (5) |
C6 | 0.0229 (6) | 0.0293 (7) | 0.0243 (6) | 0.0018 (5) | 0.0012 (5) | −0.0035 (5) |
O7 | 0.0266 (5) | 0.0441 (6) | 0.0344 (5) | 0.0025 (5) | −0.0067 (5) | −0.0009 (5) |
C7 | 0.0258 (6) | 0.0253 (7) | 0.0263 (6) | 0.0003 (5) | 0.0035 (6) | 0.0011 (6) |
O8 | 0.0463 (6) | 0.0219 (5) | 0.0388 (6) | 0.0050 (5) | 0.0107 (5) | 0.0018 (4) |
O9 | 0.0462 (6) | 0.0235 (5) | 0.0209 (4) | 0.0041 (5) | 0.0009 (5) | 0.0007 (4) |
C10 | 0.0341 (7) | 0.0227 (6) | 0.0215 (6) | 0.0043 (6) | 0.0015 (6) | 0.0000 (5) |
O11 | 0.0341 (5) | 0.0213 (4) | 0.0216 (4) | 0.0063 (4) | −0.0013 (4) | −0.0010 (3) |
C12 | 0.0511 (9) | 0.0295 (7) | 0.0313 (7) | −0.0039 (7) | −0.0065 (8) | −0.0023 (6) |
C13 | 0.0388 (8) | 0.0545 (10) | 0.0432 (9) | 0.0095 (9) | 0.0132 (8) | 0.0041 (8) |
C1—C2 | 1.5205 (17) | O5—H9 | 0.834 |
C1—C6 | 1.5355 (19) | C6—O7 | 1.2418 (17) |
C1—C7 | 1.5257 (18) | C7—H71 | 0.964 |
C1—O11 | 1.4390 (16) | C7—H72 | 0.990 |
C2—C3 | 1.5137 (19) | O8—H10 | 0.847 |
C2—O9 | 1.4289 (16) | O9—C10 | 1.4322 (16) |
C2—H21 | 0.989 | C10—O11 | 1.4474 (16) |
C3—C4 | 1.512 (2) | C10—C12 | 1.507 (2) |
C3—O8 | 1.4211 (18) | C10—C13 | 1.508 (2) |
C3—H31 | 0.988 | C12—H121 | 0.976 |
C4—N5 | 1.462 (2) | C12—H122 | 0.955 |
C4—H41 | 0.992 | C12—H123 | 0.988 |
C4—H42 | 0.972 | C13—H131 | 0.970 |
N5—C6 | 1.3285 (19) | C13—H132 | 0.973 |
N5—H13 | 0.896 | C13—H133 | 0.958 |
O5—C7 | 1.4079 (17) | ||
C2—C1—C6 | 114.13 (11) | C1—C6—O7 | 118.31 (12) |
C2—C1—C7 | 116.11 (11) | N5—C6—O7 | 122.51 (13) |
C6—C1—C7 | 107.55 (10) | C1—C7—O5 | 111.11 (11) |
C2—C1—O11 | 102.24 (10) | C1—C7—H71 | 107.4 |
C6—C1—O11 | 108.27 (11) | O5—C7—H71 | 109.2 |
C7—C1—O11 | 108.07 (10) | C1—C7—H72 | 107.0 |
C1—C2—C3 | 113.36 (11) | O5—C7—H72 | 111.2 |
C1—C2—O9 | 102.85 (10) | H71—C7—H72 | 111.0 |
C3—C2—O9 | 109.56 (11) | C3—O8—H10 | 106.8 |
C1—C2—H21 | 110.0 | C2—O9—C10 | 107.67 (10) |
C3—C2—H21 | 109.5 | O9—C10—O11 | 105.55 (10) |
O9—C2—H21 | 111.5 | O9—C10—C12 | 111.04 (12) |
C2—C3—C4 | 110.52 (13) | O11—C10—C12 | 109.02 (12) |
C2—C3—O8 | 104.39 (11) | O9—C10—C13 | 108.21 (13) |
C4—C3—O8 | 113.68 (12) | O11—C10—C13 | 109.37 (13) |
C2—C3—H31 | 109.5 | C12—C10—C13 | 113.35 (13) |
C4—C3—H31 | 109.3 | C10—O11—C1 | 109.23 (9) |
O8—C3—H31 | 109.3 | C10—C12—H121 | 110.3 |
C3—C4—N5 | 111.75 (12) | C10—C12—H122 | 109.0 |
C3—C4—H41 | 109.2 | H121—C12—H122 | 112.4 |
N5—C4—H41 | 106.3 | C10—C12—H123 | 107.6 |
C3—C4—H42 | 107.5 | H121—C12—H123 | 109.2 |
N5—C4—H42 | 111.2 | H122—C12—H123 | 108.1 |
H41—C4—H42 | 111.0 | C10—C13—H131 | 111.0 |
C4—N5—C6 | 126.96 (12) | C10—C13—H132 | 109.1 |
C4—N5—H13 | 118.0 | H131—C13—H132 | 111.5 |
C6—N5—H13 | 115.0 | C10—C13—H133 | 106.3 |
C7—O5—H9 | 114.7 | H131—C13—H133 | 110.3 |
C1—C6—N5 | 119.17 (12) | H132—C13—H133 | 108.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H9···O7i | 0.83 | 1.79 | 2.614 (2) | 170 |
O8—H10···O5ii | 0.85 | 1.83 | 2.666 (2) | 170 |
N5—H13···O8iii | 0.90 | 2.52 | 3.339 (2) | 153 |
N5—H13···O11iv | 0.90 | 2.57 | 3.140 (2) | 122 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+2, y+1/2, −z+1/2. |
Acknowledgements
Financial support (to MS) provided through the European Community's Human Potential Programme under contract No. HPRN-CT-2002–00173 is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Asano, N., Oseki, K., Kiuz, H. & Matsui, K. (1994). J. Med. Chem. 37, 3701–3706. CrossRef CAS PubMed Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bols, M. (1996). In Carbohydrate Building Blocks. New York: John Wiley and Sons. Google Scholar
Bruce, I., Fleet, G. W. J., Cenci di Bello, I. & Winchester, B. (1992). Tetrahedron, 48, 10191–10200. CrossRef CAS Web of Science Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ho, P.-T. (1979). Can. J. Chem. 57, 381–381. CrossRef CAS Web of Science Google Scholar
Ho, P.-T. (1985). Can. J. Chem. 63, 2221–2224. CrossRef CAS Web of Science Google Scholar
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4585–4586. CrossRef CAS Web of Science Google Scholar
Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007–3018. Web of Science CrossRef CAS Google Scholar
Kiliani, H. (1886). Ber. Dtsch. Chem. Ges. 19, 221–227. CrossRef Google Scholar
Newton, C. R., Michela, I. S., Fleet, G. W. J., Blériot, Y. & Watkin, D. J. (2004). Acta Cryst. E60, o909–o910. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765. Web of Science CSD CrossRef CAS Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210. CrossRef PubMed CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.