metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of catena-poly[[sodium(I)-tri-μ-di­methyl­formamide-κ6O:O] iodide] at 140 K

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: joseph.wright@uea.ac.uk

(Received 22 January 2007; accepted 11 February 2007; online 21 February 2007)

The structure of the title compound, {[Na(C3H7NO)3]I}n, has been redetermined at 140 (2) K. The Na+ cations lie on sites of 32 point symmetry and are linked into one-dimensional chains via bridging DMF mol­ecules lying on mirror planes. The coordination geometry of Na+ is inter­mediate between octa­hedral and trigonal prismatic. The I anions lie on sites of [\overline{6}] point symmetry between the chains.

Comment

The structure of the title compound, (I)[link], has been determined previously at room temperature (Gobillon et al., 1962[Gobillon, Y., Piret, P. & van Meerssche, M. (1962). Bull. Soc. Chim. Fr. pp. 551-555.]; Batsanov & Struchkov, 1994[Batsanov, A. S. & Struchkov, Yu. T. (1994). Koord. Khim. 20, 354-356 (In Russian); Chem. Abs. 121, 218187.]). In the first case, all atoms were refined using only isotropic displacement parameters. The second determination gave unsatisfactory R values (R = 0.140). Compound (I)[link] has been obtained as a by-product of a Heck reaction involving an aryl iodide in DMF, using Na2CO3 as base. We have taken this opportunity to redetermine the structure of (I)[link] at 140 (2) K, leading to significantly improved precision.

[Scheme 1]

The Na+ cation in (I)[link] is coordinated by six DMF mol­ecules lying on mirror planes (Fig. 1[link]). The bond distances (Table 1[link]) and coplanar nature of O1, C1 and N1 suggests a degree of double-bond character between C1 and N1 in addition to that between C1 and O1. This suggests the presence of a partial positive charge on N1 and a partial negative charge on O1, as suggested by Gobillon et al. (1962[Gobillon, Y., Piret, P. & van Meerssche, M. (1962). Bull. Soc. Chim. Fr. pp. 551-555.]), which may lead to enhanced electrostatic inter­action between the DMF mol­ecules and the Na+ cation.

The geometry at Na1 is inter­mediate between octa­hedral and trigonal prismatic; when viewed along the c axis (Fig. 2[link]), the angle between O atoms in successive layers is 29.0°. The bridging DMF mol­ecules generate one-dimensional chains along c. The positions of the DMF mol­ecules alternate along the c axis, leading to an ABAB pattern of DMF sites.

Gobillon et al. (1962[Gobillon, Y., Piret, P. & van Meerssche, M. (1962). Bull. Soc. Chim. Fr. pp. 551-555.]) have described the structure of (I)[link] as containing C—H⋯I hydrogen bonds, involving C1 and C3. The C⋯I distances determined in the current study [C1⋯I1 = 4.261 (3) and C3⋯I1 4.349 (4) Å] are outside the normal range for such an inter­action, based on the van der Waals radii of the elements involved (Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond,3rd ed. Ithaca: Cornell University Press.]). The inter­action of the cationic polymer with the anions is, therefore, best described as largely electrostatic.

[Figure 1]
Figure 1
Part of the polymeric structure of (I)[link], viewed approximately perpendicular to the c axis, showing displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted. [Symmetry codes: (i) −x + y, −x, [{1\over 2}] − z; (ii) y, x, −[{1\over 2}] + z; (iii) −y, x − y, z; (iv) y, x, [{1\over 2}] + z; (v) −x, −x + y, −[{1\over 2}] + z; (vi) −x, −x + y, [{1\over 2}] + z; (vii) x − y, −y, −z; (viii) x − y, −y, 1 − z.]
[Figure 2]
Figure 2
Perspective view of (I)[link] along the c axis. H atoms have been omitted.

Experimental

Crystals of (I)[link] were obtained by crystallization from a hexa­ne–chloro­form (1:1) mixture of the solid residues from a Heck reaction. A mixture of 1-butyl-3-methyl­imidazolium hexa­fluoro­phosphate (0.188 ml, 1.0 mmol), Pd(OAc)2 (112 mg, 0.50 mmol) and triphenyl­phosphane (256 mg, 1.0 mmol) was suspended in dry tetra­hydro­furan (15 ml) and stirred overnight under nitro­gen. The resulting brown suspension was evaporated in vacuo and washed with CH2Cl2. The dried residue was then used as a catalyst for a Mizoroki–Heck reaction, according to the following typical procedure. Iodobenzene (1.0 mmol), sodium acetate (1.5 mmol), and tert-butyl acrylate (1.4 mmol) were placed in a Schlenk tube under N2, and the reagents were suspended in dimethyl­formamide (DMF, 3 ml), before injection of the catalyst (0.05 mmol) in DMF (3 ml). The reaction mixture was stirred for 8 h at 353 K, before cooling and extraction of the organic components with several portions of hexane. Extraction of the residue with chloro­form followed by layering with hexane yielded crystals of (I)[link].

Crystal data
  • [Na(C3H7NO)3]I

  • Mr = 369.18

  • Hexagonal, [P \overline 62c ]

  • a = 11.8038 (14) Å

  • c = 6.3881 (7) Å

  • V = 770.81 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 140 (2) K

  • 0.25 × 0.04 × 0.01 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2006[Oxford Diffraction (2006). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.621, Tmax = 0.979

  • 10001 measured reflections

  • 657 independent reflections

  • 607 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.032

  • S = 1.01

  • 657 reflections

  • 37 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 281 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Selected geometric parameters (Å, °)

C1—O1 1.238 (3)
C1—N1 1.316 (4)
C2—N1 1.460 (5)
C3—N1 1.457 (4)
Na1—O1 2.3954 (15)
O1—Na1—O1i 80.40 (5)
O1—Na1—O1ii 87.62 (7)
Symmetry codes: (i) [-x+y, -x, -z+{\script{1\over 2}}]; (ii) [y, x, z-{\script{1\over 2}}].

H atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for H1, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. The methyl groups were allowed to rotate about their local threefold axes.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

catena-poly[[sodium(I)-tri-µ-dimethylformamide-κ6O:O] iodide] top
Crystal data top
[Na(C3H7NO)3]IDx = 1.591 Mg m3
Mr = 369.18Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P62cCell parameters from 4526 reflections
Hall symbol: P -6c -2cθ = 3.8–27.5°
a = 11.8038 (14) ŵ = 2.11 mm1
c = 6.3881 (7) ÅT = 140 K
V = 770.81 (15) Å3Needle, colourless
Z = 20.25 × 0.04 × 0.01 mm
F(000) = 368
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
657 independent reflections
Radiation source: Enhance (Mo) X-ray Source607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Thin–slice φ and ω scansθmax = 27.6°, θmin = 3.8°
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
h = 1515
Tmin = 0.621, Tmax = 0.979k = 1515
10001 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.032 w = 1/[σ2(Fo2) + (0.0162P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
657 reflectionsΔρmax = 0.41 e Å3
37 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Flack (1983), 281 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2666 (3)0.2349 (3)0.25000.0182 (6)
H10.34940.23960.25000.022*
C20.1453 (3)0.3513 (4)0.25000.0249 (9)
H2A0.07170.26480.21520.037*0.50
H2B0.15150.41510.14580.037*0.50
H2C0.13150.37750.38900.037*0.50
C30.3875 (3)0.4718 (3)0.25000.0261 (8)
H3A0.39570.51700.38260.039*0.50
H3B0.38640.52540.13370.039*0.50
H3C0.46200.45750.23360.039*0.50
I10.66670.33330.25000.02405 (9)
N10.2663 (3)0.3463 (3)0.25000.0197 (6)
Na10.00000.00000.00000.0191 (3)
O10.1683 (2)0.12459 (19)0.25000.0206 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (16)0.0198 (16)0.0173 (15)0.0100 (14)0.0000.000
C20.021 (2)0.0151 (17)0.0412 (19)0.0106 (15)0.0000.000
C30.0259 (18)0.0160 (16)0.0264 (18)0.0029 (15)0.0000.000
I10.02509 (11)0.02509 (11)0.02196 (14)0.01255 (6)0.0000.000
N10.0200 (16)0.0160 (15)0.0238 (14)0.0095 (14)0.0000.000
Na10.0177 (5)0.0177 (5)0.0219 (8)0.0088 (2)0.0000.000
O10.0156 (11)0.0141 (10)0.0298 (12)0.0057 (9)0.0000.000
Geometric parameters (Å, º) top
C1—O11.238 (3)C3—H3A0.980
C1—N11.316 (4)C3—H3B0.980
C1—H10.950C3—H3C0.980
C2—N11.460 (5)Na1—O12.3954 (15)
C2—H2A0.980Na1—O1i2.3954 (15)
C2—H2B0.980Na1—O1ii2.3954 (15)
C2—H2C0.980Na1—Na1iii3.1941 (4)
C3—N11.457 (4)O1—Na1iii2.3954 (15)
O1—C1—N1125.5 (3)O1—Na1—O1i117.02 (8)
O1—C1—H1117.2O1iii—Na1—O1i87.62 (7)
N1—C1—H1117.2O1v—Na1—O1i80.40 (5)
N1—C2—H2A109.5O1iv—Na1—O1ii87.62 (7)
N1—C2—H2B109.5O1—Na1—O1ii80.40 (5)
H2A—C2—H2B109.5O1iii—Na1—O1ii80.40 (5)
N1—C2—H2C109.5O1v—Na1—O1ii117.02 (8)
H2A—C2—H2C109.5O1i—Na1—O1ii157.01 (9)
H2B—C2—H2C109.5O1iv—Na1—Na1vi48.19 (3)
N1—C3—H3A109.5O1—Na1—Na1vi131.81 (3)
N1—C3—H3B109.5O1iii—Na1—Na1vi131.81 (3)
H3A—C3—H3B109.5O1v—Na1—Na1vi48.19 (3)
N1—C3—H3C109.5O1i—Na1—Na1vi48.19 (3)
H3A—C3—H3C109.5O1ii—Na1—Na1vi131.81 (3)
H3B—C3—H3C109.5O1iv—Na1—Na1iii131.81 (3)
C1—N1—C3121.6 (3)O1—Na1—Na1iii48.19 (3)
C1—N1—C2122.2 (3)O1iii—Na1—Na1iii48.19 (3)
C3—N1—C2116.2 (3)O1v—Na1—Na1iii131.81 (3)
O1iv—Na1—O1157.01 (9)O1i—Na1—Na1iii131.81 (3)
O1iv—Na1—O1iii117.02 (8)O1ii—Na1—Na1iii48.19 (3)
O1—Na1—O1iii80.40 (5)Na1vi—Na1—Na1iii180.0
O1iv—Na1—O1v80.40 (5)C1—O1—Na1134.40 (8)
O1—Na1—O1v87.62 (7)C1—O1—Na1iii134.40 (8)
O1iii—Na1—O1v157.01 (9)Na1—O1—Na1iii83.62 (6)
O1iv—Na1—O1i80.40 (5)
Symmetry codes: (i) xy, y, z; (ii) y, xy, z; (iii) x+y, x, z+1/2; (iv) x, x+y, z1/2; (v) y, x, z1/2; (vi) x+y, x, z1/2.
 

Acknowledgements

The authors thank the EPSRC for funding and Dr David Hughes for the provision of X-ray facilities.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBatsanov, A. S. & Struchkov, Yu. T. (1994). Koord. Khim. 20, 354–356 (In Russian); Chem. Abs. 121, 218187.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGobillon, Y., Piret, P. & van Meerssche, M. (1962). Bull. Soc. Chim. Fr. pp. 551–555.  Google Scholar
First citationOxford Diffraction (2006). ABSPACK, CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond,3rd ed. Ithaca: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds