metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-1,3-thia­zolidine-2-thione-κ2S2:S2-μ-thio­cyanato-κ2S:N-copper(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Thailand, and bthe School of Chemistry, University of Bristol, Cantock's Close, Bristol BS 1TS, England
*Correspondence e-mail: chaveng.p@psu.ac.th

(Received 31 January 2007; accepted 13 February 2007; online 28 February 2007)

The title compound, [Cu(SCN)(C3H5NS2)]n, was prepared from the direct reaction between copper(I) thio­cyanate and 1,3-thia­zolidine-2-thione. The structure is an infinite two-dimensional polymer, parallel to the ac plane, with tetra­hedrally distorted Cu atoms which are coordinated by the S and N atoms of the thio­cyanate ions, and by the thione S atom of 1,3-thia­zolidine-2-thione mol­ecules.

Comment

Heterocyclic thione compounds have received much attention due to their wide range of applications (Rapper, 1985[Rapper, E. S. (1985). Coord. Chem. Rev. 61, 115-184.], 1994[Rapper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.], 1996[Rapper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.], 1997[Rapper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]; Akrivos, 2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 181, 181-210.]; Bell et al., 2004[Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 1063-1076.]). Neutral thione mol­ecules can coordinate to metal atoms in a variety of ways (Aslanidis et al., 2004[Aslanidis, P., Cox, P. J., Divanidis, S. & Karagiannidis, P. (2004). Inorg. Chim. Acta, 357, 2677-2686.]). Likewise, the metal atoms in group IB are also inter­esting for use in synthesis with these ligands; the complexes have been applied in optical, electrical, magnetic and luminescent materials (Huang et al., 2004[Huang, Z., Song, H.-B., Du, M., Chem, S.-T. & Wang, S. (2004). Inorg. Chem. 43, 931-944.]).

[Scheme 1]

For this work, we used copper(I) thio­cyanate as a starting material to inter­act directly with 1,3-thia­zolidine-2-thione under mild reaction conditions. The structure of the title complex, (I)[link], is depicted in Fig. 1[link]. The title complex is a two-dimensional polymeric structure, the Cu centre having a distorted tetra­hedral geometry and being coordinated by two 1,3-thia­zolidine-2-thione mol­ecules and two thio­cyanate groups. Each 1,3-thia­zolidine-2-thione mol­ecule is bonded to Cu atoms via the thione S atom. The thio­cyanate groups bridge two Cu centres. As a result, 12-membered rings are formed. The crystal packing shows a weak N—H⋯N hydrogen bond (Table 1[link]).

[Figure 1]
Figure 1
The polymeric sheet structure of title complex, showing the atom-labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Experimental

1,3-Thia­zolidine-2-thione (0.125 g, 0.985 mmol) was dissolved in CH3CN (30 ml); CuSCN (0.120 g, 0.985 mmol) was then added as a powder to the solution. The mixture was heated to 343 K and refluxed until the grey solid had changed colour to yellow (around 7 h). The yellow solid was filtered off and the yellow solution was kept at room temperature and allowed to evaporate slowly. Colourless needle-like crystals of the title complex were obtained.

Crystal data
  • [Cu(SCN)(C3H5NS2)]

  • Mr = 240.82

  • Monoclinic, P 21 /c

  • a = 5.8370 (7) Å

  • b = 19.992 (3) Å

  • c = 6.9779 (9) Å

  • β = 106.391 (2)°

  • V = 781.17 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 293 (2) K

  • 0.23 × 0.05 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART (Version 5.631), SAINT (Version 6.02A), SADABS (Version 2.0) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.671, Tmax = 0.940

  • 6767 measured reflections

  • 1871 independent reflections

  • 1573 reflections with I > 2/s(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.108

  • S = 1.15

  • 1871 reflections

  • 94 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.877 (19) 2.69 (3) 3.486 (5) 151 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

H atoms bonded to C atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to nitro­gen was located in a difference Fourier map. Its position was refined with a distance restraint [N—H = 0.89 (2) Å] and with Uiso(H) = 1.2Ueq(N).

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.631), SAINT (Version 6.02A), SADABS (Version 2.0) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.631), SAINT (Version 6.02A), SADABS (Version 2.0) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.631), SAINT (Version 6.02A), SADABS (Version 2.0) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Poly[µ-1,3-thiazoline-2-thione-κ2S2:S2-µ-thiocyanato-κ2S:N- copper(I)] top
Crystal data top
[Cu(SCN)(C3H5NS2)]F(000) = 480
Mr = 240.82Dx = 2.048 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71074 Å
Hall symbol: -P 2ybcCell parameters from 1484 reflections
a = 5.8370 (7) Åθ = 3.2–24.0°
b = 19.992 (3) ŵ = 3.52 mm1
c = 6.9779 (9) ÅT = 293 K
β = 106.391 (2)°Needle, colorless
V = 781.17 (18) Å30.23 × 0.05 × 0.02 mm
Z = 4
Data collection top
Bruker AXS D8
diffractometer
1871 independent reflections
Radiation source: sealed X-ray tube1573 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.366 pixels mm-1θmax = 28.2°, θmin = 2.0°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 2526
Tmin = 0.671, Tmax = 0.940l = 99
6767 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.9712P]
where P = (Fo2 + 2Fc2)/3
1871 reflections(Δ/σ)max = 0.001
94 parametersΔρmax = 0.73 e Å3
1 restraintΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17403 (10)0.30184 (3)1.19916 (9)0.0394 (2)
S10.04782 (19)0.29292 (5)0.81538 (16)0.0296 (2)
S20.1806 (2)0.43839 (5)0.82671 (18)0.0359 (3)
N10.4138 (6)0.34760 (17)0.7097 (5)0.0312 (8)
H10.453 (8)0.3078 (13)0.676 (7)0.037*
N20.5112 (7)0.3246 (2)1.2443 (6)0.0430 (9)
C10.2285 (7)0.35495 (19)0.7778 (6)0.0255 (8)
C20.5562 (8)0.4071 (2)0.7042 (8)0.0399 (11)
H2A0.61230.40680.58600.048*
H2B0.69350.40880.82130.048*
C30.3971 (8)0.4660 (2)0.7007 (8)0.0408 (11)
H3A0.31770.47920.56430.049*
H3B0.48830.50370.77010.049*
S30.06175 (18)0.38930 (5)1.25329 (17)0.0335 (3)
C40.3110 (7)0.3499 (2)1.2486 (6)0.0288 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0300 (3)0.0270 (3)0.0662 (4)0.0021 (2)0.0215 (3)0.0067 (3)
S10.0331 (5)0.0212 (5)0.0393 (6)0.0044 (4)0.0178 (4)0.0041 (4)
S20.0378 (6)0.0227 (5)0.0548 (7)0.0044 (4)0.0252 (5)0.0055 (5)
N10.0290 (17)0.0251 (17)0.044 (2)0.0006 (14)0.0175 (16)0.0001 (16)
N20.0254 (18)0.055 (2)0.050 (2)0.0006 (18)0.0129 (17)0.001 (2)
C10.0303 (19)0.0214 (19)0.026 (2)0.0002 (16)0.0104 (16)0.0003 (15)
C20.030 (2)0.039 (3)0.056 (3)0.0020 (19)0.022 (2)0.005 (2)
C30.040 (2)0.029 (2)0.059 (3)0.0071 (19)0.023 (2)0.006 (2)
S30.0271 (5)0.0261 (5)0.0489 (7)0.0013 (4)0.0132 (5)0.0051 (5)
C40.026 (2)0.032 (2)0.028 (2)0.0071 (17)0.0073 (16)0.0001 (17)
Geometric parameters (Å, º) top
Cu1—N21.957 (4)N1—H10.877 (19)
Cu1—S1i2.2641 (11)N2—C4iii1.148 (5)
Cu1—S32.3211 (12)C2—C31.495 (6)
Cu1—S12.5754 (13)C2—H2A0.9700
S1—C11.696 (4)C2—H2B0.9700
S1—Cu1ii2.2641 (11)C3—H3A0.9700
S2—C11.741 (4)C3—H3B0.9700
S2—C31.817 (4)S3—C41.646 (4)
N1—C11.307 (5)C4—N2iv1.148 (5)
N1—C21.458 (5)
N2—Cu1—S1i123.44 (13)S1—C1—S2122.0 (2)
N2—Cu1—S3114.47 (13)N1—C2—C3106.7 (3)
S1i—Cu1—S3107.71 (4)N1—C2—H2A110.4
N2—Cu1—S199.38 (12)C3—C2—H2A110.4
S1i—Cu1—S1106.74 (4)N1—C2—H2B110.4
S3—Cu1—S1102.28 (4)C3—C2—H2B110.4
C1—S1—Cu1ii106.09 (14)H2A—C2—H2B108.6
C1—S1—Cu195.86 (14)C2—C3—S2105.5 (3)
Cu1ii—S1—Cu1113.82 (5)C2—C3—H3A110.6
C1—S2—C391.4 (2)S2—C3—H3A110.6
C1—N1—C2117.0 (3)C2—C3—H3B110.6
C1—N1—H1120 (3)S2—C3—H3B110.6
C2—N1—H1123 (3)H3A—C3—H3B108.8
C4iii—N2—Cu1165.4 (4)C4—S3—Cu1101.40 (15)
N1—C1—S1126.1 (3)N2iv—C4—S3177.6 (4)
N1—C1—S2112.0 (3)
N2—Cu1—S1—C135.10 (19)Cu1—S1—C1—N1112.1 (4)
S1i—Cu1—S1—C1164.36 (14)Cu1ii—S1—C1—S2174.6 (2)
S3—Cu1—S1—C182.65 (14)Cu1—S1—C1—S268.5 (2)
N2—Cu1—S1—Cu1ii75.38 (14)C3—S2—C1—N110.7 (3)
S1i—Cu1—S1—Cu1ii53.88 (8)C3—S2—C1—S1168.8 (3)
S3—Cu1—S1—Cu1ii166.87 (4)C1—N1—C2—C322.8 (5)
S1i—Cu1—N2—C4iii178.7 (15)N1—C2—C3—S227.9 (5)
S3—Cu1—N2—C4iii44.2 (16)C1—S2—C3—C222.4 (4)
S1—Cu1—N2—C4iii64.0 (16)N2—Cu1—S3—C4168.86 (19)
C2—N1—C1—S1175.1 (3)S1i—Cu1—S3—C427.52 (15)
C2—N1—C1—S25.4 (5)S1—Cu1—S3—C484.74 (15)
Cu1ii—S1—C1—N14.8 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2ii0.88 (2)2.69 (3)3.486 (5)151 (4)
Symmetry code: (ii) x, y+1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Royal Golden Jubilee PhD program (RGJ) and the Center for Innovation in Chemistry, Postgraduate Education and Research Programme in Chemistry (PERCH–CIC) and thank the Graduate School for their support. Finally, we also thank the Department of Chemistry, Prince of Songkla University and the School of Chemistry, University of Bristol (UK), for instrumental support.

References

First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 181, 181–210.  Web of Science CrossRef Google Scholar
First citationAslanidis, P., Cox, P. J., Divanidis, S. & Karagiannidis, P. (2004). Inorg. Chim. Acta, 357, 2677–2686.  Web of Science CSD CrossRef CAS Google Scholar
First citationBell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 1063–1076.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART (Version 5.631), SAINT (Version 6.02A), SADABS (Version 2.0) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, Z., Song, H.-B., Du, M., Chem, S.-T. & Wang, S. (2004). Inorg. Chem. 43, 931–944.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRapper, E. S. (1985). Coord. Chem. Rev. 61, 115–184.  CrossRef Web of Science Google Scholar
First citationRapper, E. S. (1994). Coord. Chem. Rev. 129, 91–156.  CrossRef Web of Science Google Scholar
First citationRapper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef Web of Science Google Scholar
First citationRapper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds