organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di-tert-butyl-2,2′-bi­pyridine–hexa­fluoro­benzene (1/1)1

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk, todd.marder@durham.ac.uk

(Received 3 December 2006; accepted 27 January 2007; online 7 February 2007)

The title structure, C18H24N2·C6F6, comprises mixed stacks of alternating 4,4′-di-tert-butyl-2,2′-bipyridine and hexa­fluoro­benzene mol­ecules, both lying on crystallographic mirror planes. There are weak C—H⋯N (2.46–2.51 Å) and C—H⋯F (2.52–2.74 Å) hydrogen bonds lying on the mirror planes, as well as ππ inter­actions between stacked aromatic mol­ecules (as indicated by inter­planar distances of 3.35 Å).

Comment

Numerous arenes and perfluoro­arenes readily co-crystallize in a 1:1 stoichiometry with a mixed-stack packing motif (Patrick & Prosser, 1960[Patrick, C. R. & Prosser, G. S. (1960). Nature, 187, 1021.]; Dahl, 1988[Dahl, T. (1988). Acta Chem. Scand. A, 42, 1-7.]; Collings et al., 2002[Collings, J. C., Roscoe, K. P., Robins, E. G., Batsanov, A. S., Stimson, L. M., Howard, J. A. K., Clarke, S. J. & Marder, T. B. (2002). New J. Chem. 26, 1740-1746.]). However, only three complexes of pyridine derivatives with perfluoro­arenes have been reported to date. In 1:1 complexes of hexa­fluoro­benzene (HFB) with 6-phenyl- or 6,6′-diphenyl derivatives of 4,4′-di-tert-butyl-2,2′-bipyridine, DTBPy (Mkhalid et al., 2006[Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K., Perutz, R. N. & Marder, T. B. (2006). Angew. Chem. Int. Ed. Engl. 45, 489-491.]), the HFB mol­ecule is stacked with the phenyl substituent rather than with the bipyridine core of the DTBPy. In Q·2.5C6F6, where Q = 5,10,15-{(1,3,5-triamido­mesityl­ene)tris­(o-phenyl­ene)}-2-(2-pivaloylamino­phen­yl)porphyrin, C61H46N8O4 (Slebodnick et al., 1996[Slebodnick, C., Fettinger, J. C., Peterson, H. B. & Ibers, J. A. (1996). J. Am. Chem. Soc. 118, 3216-3224.]), an HFB mol­ecule is in face-to-face contact with the porphyrin, at a distance of 3.21 Å, implying ππ inter­actions (Hunter & Sanders, 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]; Bacchi et al., 2006[Bacchi, S., Benaglia, M., Cozzi, F., Demartin, F., Filippini, G. & Gavezzotti, A. (2006). Chem. Eur. J. 12, 3538-3546.]), but no continuous stacks exist. Here, we report the title DTBPy·HFB complex, (I)[link], which has infinite heteroarene/HFB mixed stacks.

[Scheme 1]

The entire HFB mol­ecule of (I)[link] (Fig. 1[link]) lies on a crystallographic mirror plane (Wyckoff position e), as does the DTBPy mol­ecule, except for the methyl groups C18H3 and C28H3 and their symmetry equivalents (C18′H3 and C28′H3 in Fig. 1[link]), as well as two symmetry-related pairs of H atoms on atoms C19 and C29. The DTBPy mol­ecule adopts a trans conformation around the central C12—C22 bond, as in 6-phenyl-DTBPy·HFB, which shows the same motif of alternating mol­ecules lying on mirror planes, whereas in 6,6′-diphenyl-DTBPy·HFB, this unit is twisted by 19° from a perfect trans conformation (Mkhalid et al., 2006[Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K., Perutz, R. N. & Marder, T. B. (2006). Angew. Chem. Int. Ed. Engl. 45, 489-491.]).

Table 1[link] lists the shortest intra- (lines 1 and 2) and inter­molecular contacts (all located in the mirror plane; Fig. 2[link]), which satisfy the definition of `weak hydrogen bonds' as proposed by Taylor & Kennard (1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]), Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, p. 12. Oxford University Press.]) or Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, p. 13. Oxford University Press.]). The low dissociation energy of the shortest C15—H15⋯F6i interaction in (I)[link] can be estimated by analogy with the C—H⋯F—C interactions in the gaseous CHF3·CH3F complex (Caminati et al., 2005[Caminati, W., López, J. C., Alonso, J. L. & Grabow, J.-U. (2005). Angew. Chem. Int. Ed. Engl. 44, 3840-3844.]), with similar H⋯F distances of 2.43 (1) Å. The dissociation energy in the latter compound is only 1.8 kJ mol−1 per H⋯F link.

The overlap between adjacent layers in (I)[link] is shown in Fig. 3[link], whereas in the perpendicular direction, [010], runs an infinite columnar (rather than slanted) stack of alternating rigorously parallel HFB and DTBPy mol­ecules with a uniform inter­planar separation of 3.35 Å (or b/2), which indicates ππ electron inter­action between the aromatic rings (see above).

The structure of (I)[link] shows pseudo-symmetry of space group I2/m (in the same setting), disturbed by the orientation of the tert-butyl groups in DTBPy and by small shifts of the mol­ecular centroids (for HFB, x = 0.7287 and z = 0.7694; for DTBPy, x = 0.2751 and z = 0.2658) from the pseudo-2/m special positions (x = z = [{ 3 \over 4}] and x = z = [{1 \over 4}], respectively).

[Figure 1]
Figure 1
The molecular structure of HFB and DTBPy in (I)[link], viewed down the b axis. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are related to unprimed atoms by (x, [3\over2] − y, z).
[Figure 2]
Figure 2
The mol­ecular packing of (I)[link] in the (x, [3\over4], z) plane. [Symmetry codes: (i) x − 1, y, z − 1; (ii) x − 1, y, z.]
[Figure 3]
Figure 3
The overlap between mol­ecules of two adjacent layers. H atoms have been omitted for clarity.

Experimental

Compound (I)[link] was obtained by hydrolysis of the B—C bond during an attempt to recrystallize the borylation product 4,4′-di-tert-butyl-6-Bpin-2,2′-bipyridine (Bpin = BOCMe2CMe2O) from HFB solution, which was permitted to evaporate slowly at room temperature. Crystals of (I)[link] were obtained as blocks of irregular shape (with rounded edges) of 0.1 to 0.3 mm in size.

Crystal data
  • C18H24N2·C6F6

  • Mr = 454.45

  • Monoclinic, P 21 /m

  • a = 8.5150 (7) Å

  • b = 6.6964 (5) Å

  • c = 19.2756 (18) Å

  • β = 102.73 (1)°

  • V = 1072.08 (16) Å3

  • Z = 2

  • Dx = 1.408 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.32 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 12337 measured reflections

  • 2669 independent reflections

  • 1962 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.138

  • S = 1.06

  • 2669 reflections

  • 193 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0836P)2 + 0.0675P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Geometry of C—H⋯N and C—H⋯F interactions (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N21 0.95 2.50 2.819 (2) 100
C23—H23⋯N11 0.95 2.46 2.793 (2) 100
C15—H15⋯F6i 0.95 2.52 3.472 (2) 180
C25—H25⋯F3 0.95 2.74 3.649 (2) 160
C19—H191⋯N11ii 0.98 2.51 3.388 (2) 149
Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y, z.

All H atoms were observed in a difference Fourier map but were treated as riding in idealized positions, with bond lengths C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms and C—H = 0.98 Å for methyl groups, of which C18H3 and C28H3 were permitted to rotate around the C—C bonds and C19H3 and C29H3 had fixed orientations due to mirror symmetry. The H atoms of each methyl group were assigned the same Uiso(H) value, which was refined.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

4,4'-Di-tert-butyl-2,2'-bipyridine–hexafluorobenzene (1/1) top
Crystal data top
C18H24N2·C6F6F(000) = 472
Mr = 454.45Dx = 1.408 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 4097 reflections
a = 8.5150 (7) Åθ = 2.5–27.5°
b = 6.6964 (5) ŵ = 0.12 mm1
c = 19.2756 (18) ÅT = 120 K
β = 102.73 (1)°Block, colourless
V = 1072.08 (16) Å30.32 × 0.25 × 0.21 mm
Z = 2
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
1962 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
Detector resolution: 5.6 pixels mm-1h = 1111
ω scansk = 88
12337 measured reflectionsl = 2525
2669 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.138H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.0675P]
where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
50 constraints
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 3 runs of narrow-frame ω-scans (scan width 0.3° ω, 5 s exposure), every run at a different φ angle. Crystal to detector distance 4.84 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6571 (2)0.75000.82701 (10)0.0336 (4)
C20.5633 (2)0.75000.75872 (11)0.0339 (4)
C30.6353 (3)0.75000.70135 (10)0.0336 (4)
C40.7999 (3)0.75000.71175 (10)0.0341 (4)
C50.8943 (2)0.75000.77986 (10)0.0335 (4)
C60.8220 (2)0.75000.83733 (10)0.0331 (4)
F10.58793 (15)0.75000.88277 (6)0.0465 (3)
F20.40304 (15)0.75000.74889 (7)0.0482 (3)
F30.54412 (16)0.75000.63522 (6)0.0459 (3)
F40.86995 (17)0.75000.65629 (6)0.0468 (3)
F51.05383 (15)0.75000.78996 (7)0.0475 (3)
F60.91353 (15)0.75000.90366 (6)0.0446 (3)
N110.32420 (17)0.75000.17729 (8)0.0274 (3)
C120.2315 (2)0.75000.22505 (9)0.0231 (4)
C130.0633 (2)0.75000.20553 (9)0.0250 (4)
H130.00200.75000.24120.030*
C140.0145 (2)0.75000.13405 (9)0.0268 (4)
C150.0835 (2)0.75000.08478 (9)0.0302 (4)
H150.03680.75000.03520.036*
C160.2491 (2)0.75000.10847 (9)0.0303 (4)
H160.31330.75000.07390.036*
C170.1979 (2)0.75000.10838 (9)0.0326 (4)
C190.2816 (2)0.75000.17042 (11)0.0534 (7)
H1910.39860.75000.15240.054 (4)*
H1920.25000.86870.20000.054 (4)*
N210.22538 (18)0.75000.34977 (8)0.0270 (3)
C220.3176 (2)0.75000.30150 (8)0.0223 (4)
C230.4850 (2)0.75000.32017 (9)0.0238 (4)
H230.54510.75000.28410.029*
C240.5657 (2)0.75000.39175 (9)0.0246 (4)
C250.4695 (2)0.75000.44138 (9)0.0298 (4)
H250.51710.75000.49080.036*
C260.3029 (2)0.75000.41801 (9)0.0307 (4)
H260.23980.75000.45300.037*
C270.7500 (2)0.75000.41172 (9)0.0276 (4)
C290.8142 (2)0.75000.49233 (10)0.0369 (5)
H2910.93220.75000.50340.048 (4)*
H2920.77450.63150.51290.048 (4)*
C180.24974 (16)0.9365 (2)0.06286 (8)0.0419 (4)
H1810.36700.93640.04590.054 (3)*
H1820.19840.93600.02210.054 (3)*
H1830.21681.05640.09160.054 (3)*
C280.81300 (15)0.5629 (2)0.38063 (7)0.0354 (3)
H2810.93100.56410.39210.043 (2)*
H2820.77370.56170.32890.043 (2)*
H2830.77440.44330.40110.043 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (11)0.0295 (9)0.0289 (9)0.0000.0079 (8)0.000
C20.0372 (11)0.0271 (9)0.0347 (10)0.0000.0022 (8)0.000
C30.0485 (12)0.0238 (9)0.0233 (9)0.0000.0033 (8)0.000
C40.0492 (12)0.0266 (9)0.0269 (9)0.0000.0094 (9)0.000
C50.0347 (10)0.0322 (10)0.0313 (10)0.0000.0024 (8)0.000
C60.0419 (11)0.0309 (10)0.0236 (9)0.0000.0010 (8)0.000
F10.0513 (8)0.0575 (8)0.0336 (6)0.0000.0157 (6)0.000
F20.0358 (7)0.0531 (8)0.0517 (8)0.0000.0012 (6)0.000
F30.0584 (8)0.0437 (7)0.0268 (6)0.0000.0094 (5)0.000
F40.0651 (9)0.0485 (7)0.0298 (6)0.0000.0172 (6)0.000
F50.0367 (7)0.0596 (8)0.0449 (7)0.0000.0063 (5)0.000
F60.0465 (7)0.0580 (8)0.0237 (6)0.0000.0043 (5)0.000
N110.0224 (7)0.0365 (8)0.0228 (7)0.0000.0040 (6)0.000
C120.0217 (8)0.0259 (8)0.0208 (8)0.0000.0028 (6)0.000
C130.0216 (8)0.0312 (9)0.0229 (8)0.0000.0066 (6)0.000
C140.0210 (8)0.0342 (9)0.0244 (8)0.0000.0035 (7)0.000
C150.0246 (9)0.0452 (11)0.0204 (8)0.0000.0038 (7)0.000
C160.0250 (9)0.0458 (11)0.0212 (8)0.0000.0073 (7)0.000
C170.0192 (8)0.0545 (12)0.0230 (8)0.0000.0022 (7)0.000
C190.0201 (9)0.109 (2)0.0310 (11)0.0000.0054 (8)0.000
N210.0264 (8)0.0322 (8)0.0222 (7)0.0000.0052 (6)0.000
C220.0251 (8)0.0219 (8)0.0195 (8)0.0000.0042 (6)0.000
C230.0243 (9)0.0250 (8)0.0216 (8)0.0000.0042 (6)0.000
C240.0260 (9)0.0231 (8)0.0225 (8)0.0000.0007 (7)0.000
C250.0333 (10)0.0346 (10)0.0197 (8)0.0000.0019 (7)0.000
C260.0312 (10)0.0403 (10)0.0214 (8)0.0000.0079 (7)0.000
C270.0249 (9)0.0311 (9)0.0237 (8)0.0000.0017 (7)0.000
C290.0326 (10)0.0460 (12)0.0264 (9)0.0000.0055 (8)0.000
C180.0265 (7)0.0523 (9)0.0424 (8)0.0064 (6)0.0021 (6)0.0006 (7)
C280.0270 (7)0.0376 (7)0.0376 (7)0.0047 (5)0.0017 (5)0.0029 (6)
Geometric parameters (Å, º) top
C1—F11.334 (2)C17—C181.5343 (18)
C1—C61.374 (3)C19—H1910.9800
C1—C21.381 (3)C19—H1920.9800
C2—F21.336 (2)N21—C261.335 (2)
C2—C31.377 (3)N21—C221.343 (2)
C3—F31.338 (2)C22—C231.391 (2)
C3—C41.371 (3)C23—C241.399 (2)
C4—F41.334 (2)C23—H230.9500
C4—C51.380 (3)C24—C251.390 (2)
C5—F51.329 (2)C24—C271.531 (2)
C5—C61.381 (3)C25—C261.390 (3)
C6—F61.343 (2)C25—H250.9500
N11—C121.338 (2)C26—H260.9500
N11—C161.340 (2)C27—C291.529 (2)
C12—C131.399 (2)C27—C281.5359 (17)
C12—C221.494 (2)C27—C28i1.5360 (17)
C13—C141.391 (2)C29—H2910.9800
C13—H130.9500C29—H2920.9800
C14—C151.396 (2)C18—H1810.9800
C14—C171.531 (2)C18—H1820.9800
C15—C161.382 (3)C18—H1830.9800
C15—H150.9500C28—H2810.9800
C16—H160.9500C28—H2820.9800
C17—C191.521 (3)C28—H2830.9800
C17—C18i1.5343 (18)
F1—C1—C6120.10 (17)C17—C19—H191109.7
F1—C1—C2120.18 (19)C17—C19—H192109.9
C6—C1—C2119.72 (19)H191—C19—H192109.5
F2—C2—C3120.51 (17)C26—N21—C22116.41 (15)
F2—C2—C1119.55 (18)N21—C22—C23122.88 (15)
C3—C2—C1119.94 (19)N21—C22—C12116.63 (14)
F3—C3—C4119.93 (18)C23—C22—C12120.48 (15)
F3—C3—C2119.82 (19)C22—C23—C24120.48 (15)
C4—C3—C2120.25 (17)C22—C23—H23119.8
F4—C4—C3120.39 (17)C24—C23—H23119.8
F4—C4—C5119.50 (19)C25—C24—C23116.31 (15)
C3—C4—C5120.11 (19)C25—C24—C27123.63 (15)
F5—C5—C4120.11 (19)C23—C24—C27120.06 (15)
F5—C5—C6120.30 (17)C24—C25—C26119.40 (16)
C4—C5—C6119.59 (19)C24—C25—H25120.3
F6—C6—C1119.87 (17)C26—C25—H25120.3
F6—C6—C5119.73 (18)N21—C26—C25124.52 (16)
C1—C6—C5120.39 (17)N21—C26—H26117.7
C12—N11—C16117.11 (14)C25—C26—H26117.8
N11—C12—C13122.64 (15)C29—C27—C24111.87 (15)
N11—C12—C22116.28 (14)C29—C27—C28108.61 (10)
C13—C12—C22121.08 (15)C24—C27—C28109.18 (9)
C14—C13—C12120.17 (16)C29—C27—C28i108.61 (10)
C14—C13—H13119.9C24—C27—C28i109.18 (9)
C12—C13—H13119.9C28—C27—C28i109.35 (16)
C13—C14—C15116.62 (16)C27—C29—H291110.0
C13—C14—C17123.34 (15)C27—C29—H292109.5
C15—C14—C17120.05 (15)H291—C29—H292109.9
C16—C15—C14119.63 (16)C17—C18—H181109.5
C16—C15—H15120.2C17—C18—H182109.4
C14—C15—H15120.2H181—C18—H182109.5
N11—C16—C15123.83 (16)C17—C18—H183109.5
N11—C16—H16118.1H181—C18—H183109.5
C15—C16—H16118.1H182—C18—H183109.5
C19—C17—C14111.54 (15)C27—C28—H281109.5
C19—C17—C18i108.91 (11)C27—C28—H282109.5
C14—C17—C18i109.22 (10)H281—C28—H282109.5
C19—C17—C18108.91 (11)C27—C28—H283109.4
C14—C17—C18109.22 (10)H281—C28—H283109.5
C18i—C17—C18109.00 (16)H282—C28—H283109.5
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N210.952.502.819 (2)100
C23—H23···N110.952.462.793 (2)100
C15—H15···F6ii0.952.523.472 (2)180
C25—H25···F30.952.743.649 (2)160
C19—H191···N11iii0.982.513.388 (2)149
Symmetry codes: (ii) x1, y, z1; (iii) x1, y, z.
 

Footnotes

1Arene–perfluoro­arene inter­actions in crystal engineering. Part XVI. For Part XV, see Batsanov et al. (2006[Batsanov, A. S., Collings, J. C. & Marder, T. B. (2006). Acta Cryst. C62, m229-m231.]).

Acknowledgements

The authors thank the Saudi Arabia Cultural Attaché (London) for a postgraduate scholarship (IAIM).

References

First citationBacchi, S., Benaglia, M., Cozzi, F., Demartin, F., Filippini, G. & Gavezzotti, A. (2006). Chem. Eur. J. 12, 3538–3546.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBatsanov, A. S., Collings, J. C. & Marder, T. B. (2006). Acta Cryst. C62, m229–m231.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART (Version 5.625) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaminati, W., López, J. C., Alonso, J. L. & Grabow, J.-U. (2005). Angew. Chem. Int. Ed. Engl. 44, 3840–3844.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCollings, J. C., Roscoe, K. P., Robins, E. G., Batsanov, A. S., Stimson, L. M., Howard, J. A. K., Clarke, S. J. & Marder, T. B. (2002). New J. Chem. 26, 1740–1746.  Web of Science CSD CrossRef CAS Google Scholar
First citationDahl, T. (1988). Acta Chem. Scand. A, 42, 1–7.  CrossRef Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, p. 13. Oxford University Press.  Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, p. 12. Oxford University Press.  Google Scholar
First citationMkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K., Perutz, R. N. & Marder, T. B. (2006). Angew. Chem. Int. Ed. Engl. 45, 489–491.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPatrick, C. R. & Prosser, G. S. (1960). Nature, 187, 1021.  CrossRef Web of Science Google Scholar
First citationSlebodnick, C., Fettinger, J. C., Peterson, H. B. & Ibers, J. A. (1996). J. Am. Chem. Soc. 118, 3216–3224.  CSD CrossRef CAS Web of Science Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds