organic compounds
4,4′-Di-tert-butyl-2,2′-bipyridine–hexafluorobenzene (1/1)1
aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk, todd.marder@durham.ac.uk
The title structure, C18H24N2·C6F6, comprises mixed stacks of alternating 4,4′-di-tert-butyl-2,2′-bipyridine and hexafluorobenzene molecules, both lying on crystallographic mirror planes. There are weak C—H⋯N (2.46–2.51 Å) and C—H⋯F (2.52–2.74 Å) hydrogen bonds lying on the mirror planes, as well as π–π interactions between stacked aromatic molecules (as indicated by interplanar distances of 3.35 Å).
Comment
Numerous ; Dahl, 1988; Collings et al., 2002). However, only three complexes of pyridine derivatives with perfluoroarenes have been reported to date. In 1:1 complexes of hexafluorobenzene (HFB) with 6-phenyl- or 6,6′-diphenyl derivatives of 4,4′-di-tert-butyl-2,2′-bipyridine, DTBPy (Mkhalid et al., 2006), the HFB molecule is stacked with the phenyl substituent rather than with the bipyridine core of the DTBPy. In Q·2.5C6F6, where Q = 5,10,15-{(1,3,5-triamidomesitylene)tris(o-phenylene)}-2-(2-pivaloylaminophenyl)porphyrin, C61H46N8O4 (Slebodnick et al., 1996), an HFB molecule is in face-to-face contact with the porphyrin, at a distance of 3.21 Å, implying π–π interactions (Hunter & Sanders, 1990; Bacchi et al., 2006), but no continuous stacks exist. Here, we report the title DTBPy·HFB complex, (I), which has infinite heteroarene/HFB mixed stacks.
and perfluoroarenes readily co-crystallize in a 1:1 stoichiometry with a mixed-stack packing motif (Patrick & Prosser, 1960The entire HFB molecule of (I) (Fig. 1) lies on a crystallographic mirror plane (Wyckoff position e), as does the DTBPy molecule, except for the methyl groups C18H3 and C28H3 and their symmetry equivalents (C18′H3 and C28′H3 in Fig. 1), as well as two symmetry-related pairs of H atoms on atoms C19 and C29. The DTBPy molecule adopts a trans conformation around the central C12—C22 bond, as in 6-phenyl-DTBPy·HFB, which shows the same motif of alternating molecules lying on mirror planes, whereas in 6,6′-diphenyl-DTBPy·HFB, this unit is twisted by 19° from a perfect trans conformation (Mkhalid et al., 2006).
Table 1 lists the shortest intra- (lines 1 and 2) and intermolecular contacts (all located in the mirror plane; Fig. 2), which satisfy the definition of `weak hydrogen bonds' as proposed by Taylor & Kennard (1982), Jeffrey (1997) or Desiraju & Steiner (1999). The low of the shortest C15—H15⋯F6i interaction in (I) can be estimated by analogy with the C—H⋯F—C interactions in the gaseous CHF3·CH3F complex (Caminati et al., 2005), with similar H⋯F distances of 2.43 (1) Å. The in the latter compound is only 1.8 kJ mol−1 per H⋯F link.
The overlap between adjacent layers in (I) is shown in Fig. 3, whereas in the perpendicular direction, [010], runs an infinite columnar (rather than slanted) stack of alternating rigorously parallel HFB and DTBPy molecules with a uniform interplanar separation of 3.35 Å (or b/2), which indicates π–π electron interaction between the aromatic rings (see above).
The structure of (I) shows pseudo-symmetry of I2/m (in the same setting), disturbed by the orientation of the tert-butyl groups in DTBPy and by small shifts of the molecular centroids (for HFB, x = 0.7287 and z = 0.7694; for DTBPy, x = 0.2751 and z = 0.2658) from the pseudo-2/m special positions (x = z = and x = z = , respectively).
Experimental
Compound (I) was obtained by hydrolysis of the B—C bond during an attempt to recrystallize the borylation product 4,4′-di-tert-butyl-6-Bpin-2,2′-bipyridine (Bpin = BOCMe2CMe2O) from HFB solution, which was permitted to evaporate slowly at room temperature. Crystals of (I) were obtained as blocks of irregular shape (with rounded edges) of 0.1 to 0.3 mm in size.
Crystal data
|
Data collection
|
Refinement
|
All H atoms were observed in a difference Fourier map but were treated as riding in idealized positions, with bond lengths C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms and C—H = 0.98 Å for methyl groups, of which C18H3 and C28H3 were permitted to rotate around the C—C bonds and C19H3 and C29H3 had fixed orientations due to mirror symmetry. The H atoms of each methyl group were assigned the same Uiso(H) value, which was refined.
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053680700445X/fb2037sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680700445X/fb2037Isup2.hkl
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.C18H24N2·C6F6 | F(000) = 472 |
Mr = 454.45 | Dx = 1.408 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 4097 reflections |
a = 8.5150 (7) Å | θ = 2.5–27.5° |
b = 6.6964 (5) Å | µ = 0.12 mm−1 |
c = 19.2756 (18) Å | T = 120 K |
β = 102.73 (1)° | Block, colourless |
V = 1072.08 (16) Å3 | 0.32 × 0.25 × 0.21 mm |
Z = 2 |
Bruker SMART 6K CCD area-detector diffractometer | 1962 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.047 |
Graphite monochromator | θmax = 27.5°, θmin = 2.2° |
Detector resolution: 5.6 pixels mm-1 | h = −11→11 |
ω scans | k = −8→8 |
12337 measured reflections | l = −25→25 |
2669 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0836P)2 + 0.0675P] where P = (Fo2 + 2Fc2)/3 |
2669 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
50 constraints |
Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 3 runs of narrow-frame ω-scans (scan width 0.3° ω, 5 s exposure), every run at a different φ angle. Crystal to detector distance 4.84 cm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6571 (2) | 0.7500 | 0.82701 (10) | 0.0336 (4) | |
C2 | 0.5633 (2) | 0.7500 | 0.75872 (11) | 0.0339 (4) | |
C3 | 0.6353 (3) | 0.7500 | 0.70135 (10) | 0.0336 (4) | |
C4 | 0.7999 (3) | 0.7500 | 0.71175 (10) | 0.0341 (4) | |
C5 | 0.8943 (2) | 0.7500 | 0.77986 (10) | 0.0335 (4) | |
C6 | 0.8220 (2) | 0.7500 | 0.83733 (10) | 0.0331 (4) | |
F1 | 0.58793 (15) | 0.7500 | 0.88277 (6) | 0.0465 (3) | |
F2 | 0.40304 (15) | 0.7500 | 0.74889 (7) | 0.0482 (3) | |
F3 | 0.54412 (16) | 0.7500 | 0.63522 (6) | 0.0459 (3) | |
F4 | 0.86995 (17) | 0.7500 | 0.65629 (6) | 0.0468 (3) | |
F5 | 1.05383 (15) | 0.7500 | 0.78996 (7) | 0.0475 (3) | |
F6 | 0.91353 (15) | 0.7500 | 0.90366 (6) | 0.0446 (3) | |
N11 | 0.32420 (17) | 0.7500 | 0.17729 (8) | 0.0274 (3) | |
C12 | 0.2315 (2) | 0.7500 | 0.22505 (9) | 0.0231 (4) | |
C13 | 0.0633 (2) | 0.7500 | 0.20553 (9) | 0.0250 (4) | |
H13 | 0.0020 | 0.7500 | 0.2412 | 0.030* | |
C14 | −0.0145 (2) | 0.7500 | 0.13405 (9) | 0.0268 (4) | |
C15 | 0.0835 (2) | 0.7500 | 0.08478 (9) | 0.0302 (4) | |
H15 | 0.0368 | 0.7500 | 0.0352 | 0.036* | |
C16 | 0.2491 (2) | 0.7500 | 0.10847 (9) | 0.0303 (4) | |
H16 | 0.3133 | 0.7500 | 0.0739 | 0.036* | |
C17 | −0.1979 (2) | 0.7500 | 0.10838 (9) | 0.0326 (4) | |
C19 | −0.2816 (2) | 0.7500 | 0.17042 (11) | 0.0534 (7) | |
H191 | −0.3986 | 0.7500 | 0.1524 | 0.054 (4)* | |
H192 | −0.2500 | 0.8687 | 0.2000 | 0.054 (4)* | |
N21 | 0.22538 (18) | 0.7500 | 0.34977 (8) | 0.0270 (3) | |
C22 | 0.3176 (2) | 0.7500 | 0.30150 (8) | 0.0223 (4) | |
C23 | 0.4850 (2) | 0.7500 | 0.32017 (9) | 0.0238 (4) | |
H23 | 0.5451 | 0.7500 | 0.2841 | 0.029* | |
C24 | 0.5657 (2) | 0.7500 | 0.39175 (9) | 0.0246 (4) | |
C25 | 0.4695 (2) | 0.7500 | 0.44138 (9) | 0.0298 (4) | |
H25 | 0.5171 | 0.7500 | 0.4908 | 0.036* | |
C26 | 0.3029 (2) | 0.7500 | 0.41801 (9) | 0.0307 (4) | |
H26 | 0.2398 | 0.7500 | 0.4530 | 0.037* | |
C27 | 0.7500 (2) | 0.7500 | 0.41172 (9) | 0.0276 (4) | |
C29 | 0.8142 (2) | 0.7500 | 0.49233 (10) | 0.0369 (5) | |
H291 | 0.9322 | 0.7500 | 0.5034 | 0.048 (4)* | |
H292 | 0.7745 | 0.6315 | 0.5129 | 0.048 (4)* | |
C18 | −0.24974 (16) | 0.9365 (2) | 0.06286 (8) | 0.0419 (4) | |
H181 | −0.3670 | 0.9364 | 0.0459 | 0.054 (3)* | |
H182 | −0.1984 | 0.9360 | 0.0221 | 0.054 (3)* | |
H183 | −0.2168 | 1.0564 | 0.0916 | 0.054 (3)* | |
C28 | 0.81300 (15) | 0.5629 (2) | 0.38063 (7) | 0.0354 (3) | |
H281 | 0.9310 | 0.5641 | 0.3921 | 0.043 (2)* | |
H282 | 0.7737 | 0.5617 | 0.3289 | 0.043 (2)* | |
H283 | 0.7744 | 0.4433 | 0.4011 | 0.043 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0425 (11) | 0.0295 (9) | 0.0289 (9) | 0.000 | 0.0079 (8) | 0.000 |
C2 | 0.0372 (11) | 0.0271 (9) | 0.0347 (10) | 0.000 | 0.0022 (8) | 0.000 |
C3 | 0.0485 (12) | 0.0238 (9) | 0.0233 (9) | 0.000 | −0.0033 (8) | 0.000 |
C4 | 0.0492 (12) | 0.0266 (9) | 0.0269 (9) | 0.000 | 0.0094 (9) | 0.000 |
C5 | 0.0347 (10) | 0.0322 (10) | 0.0313 (10) | 0.000 | 0.0024 (8) | 0.000 |
C6 | 0.0419 (11) | 0.0309 (10) | 0.0236 (9) | 0.000 | 0.0010 (8) | 0.000 |
F1 | 0.0513 (8) | 0.0575 (8) | 0.0336 (6) | 0.000 | 0.0157 (6) | 0.000 |
F2 | 0.0358 (7) | 0.0531 (8) | 0.0517 (8) | 0.000 | 0.0012 (6) | 0.000 |
F3 | 0.0584 (8) | 0.0437 (7) | 0.0268 (6) | 0.000 | −0.0094 (5) | 0.000 |
F4 | 0.0651 (9) | 0.0485 (7) | 0.0298 (6) | 0.000 | 0.0172 (6) | 0.000 |
F5 | 0.0367 (7) | 0.0596 (8) | 0.0449 (7) | 0.000 | 0.0063 (5) | 0.000 |
F6 | 0.0465 (7) | 0.0580 (8) | 0.0237 (6) | 0.000 | −0.0043 (5) | 0.000 |
N11 | 0.0224 (7) | 0.0365 (8) | 0.0228 (7) | 0.000 | 0.0040 (6) | 0.000 |
C12 | 0.0217 (8) | 0.0259 (8) | 0.0208 (8) | 0.000 | 0.0028 (6) | 0.000 |
C13 | 0.0216 (8) | 0.0312 (9) | 0.0229 (8) | 0.000 | 0.0066 (6) | 0.000 |
C14 | 0.0210 (8) | 0.0342 (9) | 0.0244 (8) | 0.000 | 0.0035 (7) | 0.000 |
C15 | 0.0246 (9) | 0.0452 (11) | 0.0204 (8) | 0.000 | 0.0038 (7) | 0.000 |
C16 | 0.0250 (9) | 0.0458 (11) | 0.0212 (8) | 0.000 | 0.0073 (7) | 0.000 |
C17 | 0.0192 (8) | 0.0545 (12) | 0.0230 (8) | 0.000 | 0.0022 (7) | 0.000 |
C19 | 0.0201 (9) | 0.109 (2) | 0.0310 (11) | 0.000 | 0.0054 (8) | 0.000 |
N21 | 0.0264 (8) | 0.0322 (8) | 0.0222 (7) | 0.000 | 0.0052 (6) | 0.000 |
C22 | 0.0251 (8) | 0.0219 (8) | 0.0195 (8) | 0.000 | 0.0042 (6) | 0.000 |
C23 | 0.0243 (9) | 0.0250 (8) | 0.0216 (8) | 0.000 | 0.0042 (6) | 0.000 |
C24 | 0.0260 (9) | 0.0231 (8) | 0.0225 (8) | 0.000 | 0.0007 (7) | 0.000 |
C25 | 0.0333 (10) | 0.0346 (10) | 0.0197 (8) | 0.000 | 0.0019 (7) | 0.000 |
C26 | 0.0312 (10) | 0.0403 (10) | 0.0214 (8) | 0.000 | 0.0079 (7) | 0.000 |
C27 | 0.0249 (9) | 0.0311 (9) | 0.0237 (8) | 0.000 | −0.0017 (7) | 0.000 |
C29 | 0.0326 (10) | 0.0460 (12) | 0.0264 (9) | 0.000 | −0.0055 (8) | 0.000 |
C18 | 0.0265 (7) | 0.0523 (9) | 0.0424 (8) | 0.0064 (6) | −0.0021 (6) | 0.0006 (7) |
C28 | 0.0270 (7) | 0.0376 (7) | 0.0376 (7) | 0.0047 (5) | −0.0017 (5) | −0.0029 (6) |
C1—F1 | 1.334 (2) | C17—C18 | 1.5343 (18) |
C1—C6 | 1.374 (3) | C19—H191 | 0.9800 |
C1—C2 | 1.381 (3) | C19—H192 | 0.9800 |
C2—F2 | 1.336 (2) | N21—C26 | 1.335 (2) |
C2—C3 | 1.377 (3) | N21—C22 | 1.343 (2) |
C3—F3 | 1.338 (2) | C22—C23 | 1.391 (2) |
C3—C4 | 1.371 (3) | C23—C24 | 1.399 (2) |
C4—F4 | 1.334 (2) | C23—H23 | 0.9500 |
C4—C5 | 1.380 (3) | C24—C25 | 1.390 (2) |
C5—F5 | 1.329 (2) | C24—C27 | 1.531 (2) |
C5—C6 | 1.381 (3) | C25—C26 | 1.390 (3) |
C6—F6 | 1.343 (2) | C25—H25 | 0.9500 |
N11—C12 | 1.338 (2) | C26—H26 | 0.9500 |
N11—C16 | 1.340 (2) | C27—C29 | 1.529 (2) |
C12—C13 | 1.399 (2) | C27—C28 | 1.5359 (17) |
C12—C22 | 1.494 (2) | C27—C28i | 1.5360 (17) |
C13—C14 | 1.391 (2) | C29—H291 | 0.9800 |
C13—H13 | 0.9500 | C29—H292 | 0.9800 |
C14—C15 | 1.396 (2) | C18—H181 | 0.9800 |
C14—C17 | 1.531 (2) | C18—H182 | 0.9800 |
C15—C16 | 1.382 (3) | C18—H183 | 0.9800 |
C15—H15 | 0.9500 | C28—H281 | 0.9800 |
C16—H16 | 0.9500 | C28—H282 | 0.9800 |
C17—C19 | 1.521 (3) | C28—H283 | 0.9800 |
C17—C18i | 1.5343 (18) | ||
F1—C1—C6 | 120.10 (17) | C17—C19—H191 | 109.7 |
F1—C1—C2 | 120.18 (19) | C17—C19—H192 | 109.9 |
C6—C1—C2 | 119.72 (19) | H191—C19—H192 | 109.5 |
F2—C2—C3 | 120.51 (17) | C26—N21—C22 | 116.41 (15) |
F2—C2—C1 | 119.55 (18) | N21—C22—C23 | 122.88 (15) |
C3—C2—C1 | 119.94 (19) | N21—C22—C12 | 116.63 (14) |
F3—C3—C4 | 119.93 (18) | C23—C22—C12 | 120.48 (15) |
F3—C3—C2 | 119.82 (19) | C22—C23—C24 | 120.48 (15) |
C4—C3—C2 | 120.25 (17) | C22—C23—H23 | 119.8 |
F4—C4—C3 | 120.39 (17) | C24—C23—H23 | 119.8 |
F4—C4—C5 | 119.50 (19) | C25—C24—C23 | 116.31 (15) |
C3—C4—C5 | 120.11 (19) | C25—C24—C27 | 123.63 (15) |
F5—C5—C4 | 120.11 (19) | C23—C24—C27 | 120.06 (15) |
F5—C5—C6 | 120.30 (17) | C24—C25—C26 | 119.40 (16) |
C4—C5—C6 | 119.59 (19) | C24—C25—H25 | 120.3 |
F6—C6—C1 | 119.87 (17) | C26—C25—H25 | 120.3 |
F6—C6—C5 | 119.73 (18) | N21—C26—C25 | 124.52 (16) |
C1—C6—C5 | 120.39 (17) | N21—C26—H26 | 117.7 |
C12—N11—C16 | 117.11 (14) | C25—C26—H26 | 117.8 |
N11—C12—C13 | 122.64 (15) | C29—C27—C24 | 111.87 (15) |
N11—C12—C22 | 116.28 (14) | C29—C27—C28 | 108.61 (10) |
C13—C12—C22 | 121.08 (15) | C24—C27—C28 | 109.18 (9) |
C14—C13—C12 | 120.17 (16) | C29—C27—C28i | 108.61 (10) |
C14—C13—H13 | 119.9 | C24—C27—C28i | 109.18 (9) |
C12—C13—H13 | 119.9 | C28—C27—C28i | 109.35 (16) |
C13—C14—C15 | 116.62 (16) | C27—C29—H291 | 110.0 |
C13—C14—C17 | 123.34 (15) | C27—C29—H292 | 109.5 |
C15—C14—C17 | 120.05 (15) | H291—C29—H292 | 109.9 |
C16—C15—C14 | 119.63 (16) | C17—C18—H181 | 109.5 |
C16—C15—H15 | 120.2 | C17—C18—H182 | 109.4 |
C14—C15—H15 | 120.2 | H181—C18—H182 | 109.5 |
N11—C16—C15 | 123.83 (16) | C17—C18—H183 | 109.5 |
N11—C16—H16 | 118.1 | H181—C18—H183 | 109.5 |
C15—C16—H16 | 118.1 | H182—C18—H183 | 109.5 |
C19—C17—C14 | 111.54 (15) | C27—C28—H281 | 109.5 |
C19—C17—C18i | 108.91 (11) | C27—C28—H282 | 109.5 |
C14—C17—C18i | 109.22 (10) | H281—C28—H282 | 109.5 |
C19—C17—C18 | 108.91 (11) | C27—C28—H283 | 109.4 |
C14—C17—C18 | 109.22 (10) | H281—C28—H283 | 109.5 |
C18i—C17—C18 | 109.00 (16) | H282—C28—H283 | 109.5 |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N21 | 0.95 | 2.50 | 2.819 (2) | 100 |
C23—H23···N11 | 0.95 | 2.46 | 2.793 (2) | 100 |
C15—H15···F6ii | 0.95 | 2.52 | 3.472 (2) | 180 |
C25—H25···F3 | 0.95 | 2.74 | 3.649 (2) | 160 |
C19—H191···N11iii | 0.98 | 2.51 | 3.388 (2) | 149 |
Symmetry codes: (ii) x−1, y, z−1; (iii) x−1, y, z. |
Footnotes
1Arene–perfluoroarene interactions in crystal engineering. Part XVI. For Part XV, see Batsanov et al. (2006).
Acknowledgements
The authors thank the Saudi Arabia Cultural Attaché (London) for a postgraduate scholarship (IAIM).
References
Bacchi, S., Benaglia, M., Cozzi, F., Demartin, F., Filippini, G. & Gavezzotti, A. (2006). Chem. Eur. J. 12, 3538–3546. Web of Science CSD CrossRef PubMed CAS Google Scholar
Batsanov, A. S., Collings, J. C. & Marder, T. B. (2006). Acta Cryst. C62, m229–m231. CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caminati, W., López, J. C., Alonso, J. L. & Grabow, J.-U. (2005). Angew. Chem. Int. Ed. Engl. 44, 3840–3844. Web of Science CrossRef PubMed CAS Google Scholar
Collings, J. C., Roscoe, K. P., Robins, E. G., Batsanov, A. S., Stimson, L. M., Howard, J. A. K., Clarke, S. J. & Marder, T. B. (2002). New J. Chem. 26, 1740–1746. Web of Science CSD CrossRef CAS Google Scholar
Dahl, T. (1988). Acta Chem. Scand. A, 42, 1–7. CrossRef Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, p. 13. Oxford University Press. Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, p. 12. Oxford University Press. Google Scholar
Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K., Perutz, R. N. & Marder, T. B. (2006). Angew. Chem. Int. Ed. Engl. 45, 489–491. Web of Science CSD CrossRef PubMed CAS Google Scholar
Patrick, C. R. & Prosser, G. S. (1960). Nature, 187, 1021. CrossRef Web of Science Google Scholar
Slebodnick, C., Fettinger, J. C., Peterson, H. B. & Ibers, J. A. (1996). J. Am. Chem. Soc. 118, 3216–3224. CSD CrossRef CAS Web of Science Google Scholar
Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070. CSD CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.