organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(Di­methyl­amino)-5-(3,4,5-tri­meth­oxy­benzyl­­idene)-1,3-thia­zolidin-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos, Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 19 January 2007; accepted 28 January 2007; online 7 February 2007)

In the title compound, C15H18N2O4S, there is a very wide C—C—C angle [130.72 (16)°] at the methine C atom linking the two rings. A single C—H⋯O hydrogen bond links pairs of mol­ecules into dimers around a twofold axis.

Comment

We have recently described (Delgado et al., 2005[Delgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477-o482.], 2006[Delgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o382-o385.]) the structures of a range of (Z)-5-benzyl­idene-2-thioxothia­zolidin-4-ones that had originally been synthesized both as potential inter­mediates for the synthesis of fused heterocyclic systems, and as potential anti­fungal agents (Sortino et al., 2007[Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enrize, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484-494.]). As part of an effort to diversify the substituents, particularly in respect of the anti­fungal activity, we now report the structure of the related analogue (I)[link] (Fig. 1[link]), which was obtained by reaction of dimethyl­amine with the previously described (Delgado et al., 2006[Delgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o382-o385.]) (Z)-5-(3,4,5-trimethoxy­benzyl­idene)-2-thioxothia­zolidin-4-one, (II)[link].

[Scheme 1]

As with all of the (Z)-5-benzyl­idene-2-thioxothia­zolidin-4-ones, the mol­ecular skeleton of (I)[link] is almost planar, as shown by the key torsion angles, and it exhibits a very wide C—C—C angle at the methine C atom linking the two rings (Table 1[link]). The exocyclic bond angles at atoms C5 and C51 are consistent with a repulsive intra­molecular inter­action between S1 and H56 (Fig. 1[link]). The conformation of the meth­oxy groups, and the pattern of the exocyclic C—C—O bond angles at C53, C54 and C55 closely follows the behaviour observed in (II) (Delgado et al., 2006[Delgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o382-o385.]).

A single, almost linear C—H⋯O hydrogen bond (Table 2[link]) links a pair of mol­ecules into an R22(14) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer lying across a twofold rotation axis and quite sharply folded across the intra-ring O⋯O vectors. There are four dimers of this type in each unit cell. Fairly short contacts occur between the heterocyclic ring of the mol­ecule at (x, y, z), which is part of a hydrogen-bonded dimer across the axis ([1\over2], y, [1\over4]) and the aryl ring of the mol­ecule at (1 − x, 1 − y, 1 − z), which forms part of a hydrogen-bonded dimer across ([1\over2], −y, [3\over4]). Hence the dimers aligned along [001] form a series of short contacts (Fig. 3[link]), with an inter­planar angle between adjacent heterocyclic and aryl rings of 3.9 (2)°, a ring-centroid separation of 3.492 (2) Å, and an inter­planar spacing of ca 3.33 Å. However, since the thia­zolidin-4-one ring exhibits no aromatic type delocalization, it is unlikely that these contacts are other than adventitious, associated with little or no direction-specific inter­action energy between adjacent dimers.

[Figure 1]
Figure 1
The molecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link] showing the formation of a cyclic hydrogen-bonded (dashed lines) dimer. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, y, [{1\over 2}] − z).
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of compound (I)[link], showing a chain of hydrogen-bonded (dashed lines) dimers along [001]. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.

Experimental

A solution of (II) (1 mmol) and dimethyl­amine (0.5 mmol) in N,N-dimethyl­formamide (2 ml) was heated under reflux for 6 h. The mixture was cooled to ambient temperature, and the resulting precipitate was collected by filtration and washed with ethanol; crystallization from N,N-dimethyl­formamide provided yellow crystals suitable for single-crystal X-ray diffraction; yield 64%, m. p. 478–479 K.

Crystal data
  • C15H18N2O4S

  • Mr = 322.37

  • Monoclinic, C 2/c

  • a = 29.259 (6) Å

  • b = 7.6410 (15) Å

  • c = 14.336 (3) Å

  • β = 110.59 (3)°

  • V = 3000.3 (11) Å3

  • Z = 8

  • Dx = 1.427 Mg m−3

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.48 × 0.25 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.904, Tmax = 0.954

  • 34966 measured reflections

  • 3433 independent reflections

  • 2798 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.11

  • 3433 reflections

  • 204 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0405P)2 + 5.225P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond and torsion angles (°)

C5—C57—C51 130.72 (16)
S1—C5—C57 129.59 (14)
C4—C5—C57 121.69 (15)
C52—C51—C57 117.02 (15)
C56—C51—C57 123.21 (15)
C53—O53—C531 116.67 (13)
O53—C53—C52 123.97 (15)
O53—C53—C54 115.90 (15)
C54—O54—C541 113.56 (14)
O54—C54—C53 119.39 (15)
O54—C54—C55 121.02 (15)
C55—O55—C551 116.47 (13)
O55—C55—C54 115.78 (15)
O55—C55—C56 123.59 (16)
S1—C2—N2—C21 −0.9 (2)
S1—C2—N2—C22 173.48 (14)
C4—C5—C57—C51 178.74 (16)
C5—C57—C51—C52 −177.26 (17)
C52—C53—O53—C531 6.9 (2)
C53—C54—O54—C541 −105.43 (19)
C56—C55—O55—C551 3.5 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C52—H52⋯O4i 0.95 2.30 3.216 (2) 162
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms with C—H distances 0.95 Å (aromatic and methine) or 0.98 Å (meth­yl), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrazzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(Z)-2-(Dimethylamino)-5-(3,4,5-trimethoxybenzylidene)-1,3-thiazolidin-4-one top
Crystal data top
C15H18N2O4SF(000) = 1360
Mr = 322.37Dx = 1.427 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3433 reflections
a = 29.259 (6) Åθ = 3.8–27.5°
b = 7.6410 (15) ŵ = 0.24 mm1
c = 14.336 (3) ÅT = 120 K
β = 110.59 (3)°Plate, yellow
V = 3000.3 (11) Å30.48 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3433 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.8°
φ and ω scansh = 3737
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.904, Tmax = 0.954l = 1818
34966 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0405P)2 + 5.225P]
where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Experimental. MS (EI, 30 eV) m/z (%) 322 (37, M+), 224 (100), 209 (76), 181 (12), 69 (9).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.563871 (15)0.27949 (6)0.58438 (3)0.01972 (12)
C20.62209 (6)0.3569 (2)0.59098 (13)0.0197 (3)
N20.65949 (5)0.3382 (2)0.67603 (11)0.0224 (3)
C210.65416 (7)0.2587 (3)0.76418 (14)0.0278 (4)
C220.70897 (7)0.3826 (3)0.68225 (15)0.0312 (4)
N30.62541 (5)0.4299 (2)0.51078 (11)0.0210 (3)
C40.58079 (6)0.4360 (2)0.43445 (13)0.0197 (3)
O40.57382 (5)0.50106 (17)0.35237 (9)0.0237 (3)
C50.54014 (6)0.3528 (2)0.46079 (12)0.0186 (3)
C570.49437 (6)0.3411 (2)0.39417 (12)0.0183 (3)
C510.45034 (6)0.2642 (2)0.40300 (12)0.0182 (3)
C520.40797 (6)0.2660 (2)0.31737 (12)0.0186 (3)
C530.36473 (6)0.1951 (2)0.32008 (12)0.0192 (3)
O530.32162 (4)0.19222 (18)0.23984 (9)0.0238 (3)
C5310.32375 (7)0.2495 (3)0.14624 (13)0.0263 (4)
C540.36312 (6)0.1219 (2)0.40826 (13)0.0199 (3)
O540.32059 (4)0.04416 (18)0.40839 (10)0.0262 (3)
C5410.29455 (7)0.1465 (3)0.45608 (16)0.0347 (5)
C550.40532 (6)0.1223 (2)0.49410 (12)0.0197 (3)
O550.40052 (4)0.04945 (18)0.57703 (9)0.0251 (3)
C5510.44261 (7)0.0564 (3)0.66656 (13)0.0245 (4)
C560.44876 (6)0.1923 (2)0.49177 (13)0.0198 (3)
H21A0.65490.13100.75870.042*
H21B0.62300.29490.76930.042*
H21C0.68100.29690.82370.042*
H22A0.70830.42600.61750.047*
H22B0.72970.27820.70060.047*
H22C0.72210.47350.73280.047*
H570.49000.39120.33090.022*
H520.40890.31600.25740.022*
H53A0.34620.17430.12740.039*
H53B0.33540.37070.15230.039*
H53C0.29110.24270.09500.039*
H54A0.26630.08010.45860.052*
H54B0.28330.25490.41850.052*
H54C0.31610.17490.52400.052*
H55A0.45240.17860.68250.037*
H55B0.46940.00880.65690.037*
H55C0.43470.00420.72150.037*
H560.47720.19140.55000.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0165 (2)0.0226 (2)0.0202 (2)0.00036 (16)0.00663 (16)0.00106 (16)
C20.0171 (8)0.0204 (8)0.0226 (8)0.0004 (6)0.0082 (7)0.0028 (7)
N20.0166 (7)0.0261 (8)0.0245 (8)0.0010 (6)0.0071 (6)0.0008 (6)
C210.0238 (9)0.0353 (10)0.0213 (9)0.0002 (8)0.0041 (7)0.0023 (8)
C220.0154 (8)0.0424 (12)0.0333 (10)0.0017 (8)0.0052 (7)0.0004 (9)
N30.0176 (7)0.0229 (7)0.0234 (7)0.0007 (6)0.0085 (6)0.0014 (6)
C40.0189 (8)0.0194 (8)0.0225 (8)0.0003 (6)0.0094 (7)0.0042 (7)
O40.0249 (6)0.0275 (7)0.0209 (6)0.0019 (5)0.0108 (5)0.0002 (5)
C50.0191 (8)0.0185 (8)0.0206 (8)0.0001 (6)0.0099 (7)0.0023 (7)
C570.0198 (8)0.0192 (8)0.0177 (8)0.0008 (6)0.0086 (6)0.0030 (6)
C510.0172 (8)0.0190 (8)0.0190 (8)0.0000 (6)0.0072 (6)0.0045 (6)
C520.0192 (8)0.0194 (8)0.0181 (8)0.0010 (6)0.0076 (7)0.0029 (6)
C530.0165 (8)0.0211 (8)0.0186 (8)0.0004 (6)0.0042 (6)0.0043 (6)
O530.0156 (6)0.0352 (7)0.0186 (6)0.0014 (5)0.0034 (5)0.0001 (5)
C5310.0197 (8)0.0377 (11)0.0191 (8)0.0007 (8)0.0040 (7)0.0007 (8)
C540.0167 (8)0.0195 (8)0.0251 (9)0.0023 (6)0.0093 (7)0.0034 (7)
O540.0190 (6)0.0325 (7)0.0294 (7)0.0079 (5)0.0114 (5)0.0031 (6)
C5410.0234 (9)0.0484 (13)0.0356 (11)0.0008 (9)0.0146 (8)0.0032 (10)
C550.0215 (8)0.0189 (8)0.0206 (8)0.0006 (7)0.0096 (7)0.0010 (7)
O550.0211 (6)0.0329 (7)0.0208 (6)0.0052 (5)0.0069 (5)0.0050 (5)
C5510.0241 (9)0.0280 (9)0.0210 (9)0.0011 (7)0.0076 (7)0.0035 (7)
C560.0178 (8)0.0228 (9)0.0184 (8)0.0008 (6)0.0058 (6)0.0025 (7)
Geometric parameters (Å, º) top
S1—C51.7522 (18)C52—H520.95
S1—C21.7740 (17)C53—O531.376 (2)
C2—N31.312 (2)C53—C541.398 (2)
C2—N21.329 (2)O53—C5311.433 (2)
N2—C221.459 (2)C531—H53A0.98
N2—C211.459 (2)C531—H53B0.98
C21—H21A0.98C531—H53C0.98
C21—H21B0.98C54—O541.379 (2)
C21—H21C0.98C54—C551.404 (2)
C22—H22A0.98O54—C5411.423 (2)
C22—H22B0.98C541—H54A0.98
C22—H22C0.98C541—H54B0.98
N3—C41.378 (2)C541—H54C0.98
C4—O41.227 (2)C55—O551.364 (2)
C4—C51.509 (2)C55—C561.390 (2)
C5—C571.347 (2)O55—C5511.434 (2)
C57—C511.461 (2)C551—H55A0.98
C57—H570.95C551—H55B0.98
C51—C561.402 (2)C551—H55C0.98
C51—C521.405 (2)C56—H560.95
C52—C531.389 (2)
C5—S1—C288.79 (8)C51—C52—H52119.9
N3—C2—N2123.98 (16)C52—C53—C54120.13 (16)
N3—C2—S1117.44 (13)C53—O53—C531116.67 (13)
N2—C2—S1118.58 (13)O53—C53—C52123.97 (15)
C2—N2—C22120.68 (15)O53—C53—C54115.90 (15)
C2—N2—C21122.36 (15)O53—C531—H53A109.5
C22—N2—C21116.73 (15)O53—C531—H53B109.5
N2—C21—H21A109.5H53A—C531—H53B109.5
N2—C21—H21B109.5O53—C531—H53C109.5
H21A—C21—H21B109.5H53A—C531—H53C109.5
N2—C21—H21C109.5H53B—C531—H53C109.5
H21A—C21—H21C109.5C53—C54—C55119.53 (15)
H21B—C21—H21C109.5C54—O54—C541113.56 (14)
N2—C22—H22A109.5O54—C54—C53119.39 (15)
N2—C22—H22B109.5O54—C54—C55121.02 (15)
H22A—C22—H22B109.5O54—C541—H54A109.5
N2—C22—H22C109.5O54—C541—H54B109.5
H22A—C22—H22C109.5H54A—C541—H54B109.5
H22B—C22—H22C109.5O54—C541—H54C109.5
C2—N3—C4111.62 (15)H54A—C541—H54C109.5
O4—C4—N3124.51 (16)H54B—C541—H54C109.5
O4—C4—C5122.08 (16)C56—C55—C54120.63 (16)
N3—C4—C5113.41 (15)C55—O55—C551116.47 (13)
C4—C5—S1108.71 (12)O55—C55—C54115.78 (15)
C5—C57—C51130.72 (16)O55—C55—C56123.59 (16)
S1—C5—C57129.59 (14)O55—C551—H55A109.5
C4—C5—C57121.69 (15)O55—C551—H55B109.5
C52—C51—C57117.02 (15)H55A—C551—H55B109.5
C56—C51—C57123.21 (15)O55—C551—H55C109.5
C5—C57—H57114.6H55A—C551—H55C109.5
C51—C57—H57114.6H55B—C551—H55C109.5
C56—C51—C52119.77 (15)C55—C56—C51119.67 (16)
C53—C52—C51120.27 (16)C55—C56—H56120.2
C53—C52—H52119.9C51—C56—H56120.2
C5—S1—C2—N30.45 (14)C57—C51—C52—C53179.93 (15)
C5—S1—C2—N2179.43 (15)C51—C52—C53—O53179.70 (15)
N3—C2—N2—C226.6 (3)C51—C52—C53—C540.2 (3)
N3—C2—N2—C21179.01 (17)C52—C53—O53—C5316.9 (2)
S1—C2—N2—C210.9 (2)C54—C53—O53—C531173.58 (15)
S1—C2—N2—C22173.48 (14)O53—C53—C54—O543.7 (2)
N2—C2—N3—C4178.42 (16)C52—C53—C54—O54176.76 (15)
S1—C2—N3—C41.5 (2)O53—C53—C54—C55178.91 (15)
C2—N3—C4—O4178.41 (16)C52—C53—C54—C550.6 (3)
C2—N3—C4—C51.9 (2)C53—C54—O54—C541105.43 (19)
O4—C4—C5—C572.1 (3)C55—C54—O54—C54177.2 (2)
N3—C4—C5—C57177.59 (15)O54—C54—C55—O553.1 (2)
O4—C4—C5—S1178.75 (14)C53—C54—C55—O55179.57 (15)
N3—C4—C5—S11.55 (18)O54—C54—C55—C56176.40 (15)
C2—S1—C5—C57178.44 (17)C53—C54—C55—C560.9 (3)
C2—S1—C5—C40.61 (12)C56—C55—O55—C5513.5 (2)
C4—C5—C57—C51178.74 (16)C54—C55—O55—C551177.05 (15)
S1—C5—C57—C510.2 (3)O55—C55—C56—C51179.87 (15)
C5—C57—C51—C563.4 (3)C54—C55—C56—C510.4 (3)
C5—C57—C51—C52177.26 (17)C52—C51—C56—C550.4 (2)
C56—C51—C52—C530.7 (2)C57—C51—C56—C55179.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···O4i0.952.303.216 (2)162
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

JC thanks the Consejeía de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. BI and AG thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrazzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDelgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477–o482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDelgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o382–o385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enrize, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds