organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Colupulone

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston-Upon-Thames KT1 2EE, England, and bDepartment of Chemistry, George Porter Building, University of Leicester, University Road, Leicester LE1 7RH, England
*Correspondence e-mail: k965764@kingston.ac.uk

(Received 9 February 2007; accepted 22 February 2007; online 28 February 2007)

The structure of the title compound (systematic name: 3,5-dihydr­oxy-2-isobutyryl-4,6,6-tris­(3-methyl-but-2-en­yl)cyclo­hexa-2,4-dienone), C25H36O4, is of inter­est with respect to its biological activity. The structure displays O—H⋯O=C intra- and inter­molecular inter­actions, with O⋯O distances of 2.398 (2) and 2.6846 (19) Å, respectively.

Comment

Hop α-acids consist of humulone and cohumulone (Moir, 2000[Moir, M. (2000). J. Am. Soc. Brew. Chem. 58, 131-146.]) and the β-acids consist mainly of lupulone and colupulone (Moir, 2000[Moir, M. (2000). J. Am. Soc. Brew. Chem. 58, 131-146.]), the ratio of these depending greatly on the variety of hops analysed (Nickerson & Williams, 1986[Nickerson, G. & Williams, P. (1986). J. Am. Soc. Brew. Chem. 44, 91-94.]). There is evidence of other analogues of these compounds but they are in relatively low abundance.

[Scheme 1]

Colupulone, (I)[link] (Fig. 1[link]), was first identified as a hop β-acid in 1914 (Wöllmer, 1925[Wöllmer, W. (1925). Ber. 58, 672-678.]) and since this discovery its structure has been the subject of a great deal of debate. Indeed Harris et al. (1952[Harris, G., Howard, G. A. & Pollock, J. R. A. (1952). J. Inst. Brew. 52, 413-416.]) proposed an ether linkage for one of the isoprenyl groups of colupulone and the corresponding β-acids.

Colupulone shows evidence of tautomerization by 1H and 13C NMR spectroscopy (Borremans et al., 1975[Borremans, F., De Potter, M. & De Keukeleire, D. (1975). Org. Magn. Reason. 7, 415-417.]). The septet resonance for the methine proton in the acyl side chain exists as two separate resonances in CDCl3, integrating for 0.7 and 0.3 protons at δ 4.02 and δ 4.19 p.p.m., respectively. There is also evidence from 1H NMR spectroscopy of intra­molecular hydrogen bonding. The strongly hydrogen-bonded proton has a chemical shift of around δ 19 p.p.m. (Borremans et al., 1975[Borremans, F., De Potter, M. & De Keukeleire, D. (1975). Org. Magn. Reason. 7, 415-417.]).

In the mol­ecular structure of (I)[link], intra­molecular hydrogen bonding is evident (Fig. 2[link]). We have also identified the presence of inter­molecular hydrogen bonding, O3—H3⋯O2i [symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, z] (Fig. 2 and Table 1[link]). It has become apparent from our studies that any attempts to transform (I)[link] into esters and ethers have furnished oils as the product. This is a result of disruption of the inter­molecular hydrogen-bonding character by protection of the enolic hydroxyl function which prevents the mol­ecule forming crystalline materials.

[Figure 1]
Figure 1
The molecular structure of (I)[link], with 50% probability ellipsoids and the labelling scheme.
[Figure 2]
Figure 2
The packing of (I)[link]; the H atoms and side chains have been excluded for clarity with the exception of the hydroxyl H atoms

Experimental

Colupulone was synthesized according to a literature method (Drewett & Laws, 1970[Drewett, K. & Laws, D. (1970). J. Inst. Brew. 79, 188-190.]). Crystals were obtained from acetonitrile.

Crystal data
  • C25H36O4

  • Mr = 400.54

  • Orthorhombic, P b c a

  • a = 20.331 (3) Å

  • b = 10.9190 (18) Å

  • c = 21.327 (4) Å

  • V = 4734.4 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 (2) K

  • 0.31 × 0.23 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 32137 measured reflections

  • 4169 independent reflections

  • 3337 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.131

  • S = 1.09

  • 4169 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.84 1.63 2.398 (2) 151
O3—H3⋯O2i 0.84 1.94 2.6846 (19) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

All H atoms bound to carbon were treated as riding atoms [C—H 0.95–1.00 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. For the hydroxyl groups, O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART for Windows NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

3,5-dihydroxy-2-isobutyryl-4,6,6-tris(3-methyl-but-2-enyl)cyclohexa-2,4- dienone top
Crystal data top
C25H36O4F(000) = 1744
Mr = 400.54Dx = 1.124 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 941 reflections
a = 20.331 (3) Åθ = 2.8–23.6°
b = 10.9190 (18) ŵ = 0.07 mm1
c = 21.327 (4) ÅT = 150 K
V = 4734.4 (13) Å3Block, colourless
Z = 80.31 × 0.23 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3337 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
φ and ω scansh = 2424
32137 measured reflectionsk = 1212
4169 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.5184P]
where P = (Fo2 + 2Fc2)/3
4169 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00694 (6)0.04980 (12)0.07693 (7)0.0333 (4)
H10.02450.01880.07070.050*
O20.18238 (7)0.19466 (11)0.10076 (6)0.0286 (3)
O30.19023 (7)0.24462 (12)0.11214 (7)0.0306 (3)
H30.23070.23280.10690.046*
O40.01922 (6)0.16638 (13)0.06097 (7)0.0351 (4)
C10.05570 (9)0.03562 (17)0.08592 (8)0.0239 (4)
C20.08445 (9)0.08359 (17)0.08385 (8)0.0227 (4)
C30.15365 (9)0.09496 (17)0.09656 (8)0.0225 (4)
C40.19628 (9)0.02100 (17)0.10312 (9)0.0227 (4)
C50.15750 (9)0.13858 (16)0.10366 (8)0.0225 (4)
C60.09181 (9)0.14548 (17)0.09824 (8)0.0233 (4)
C70.04143 (10)0.18582 (18)0.07092 (9)0.0272 (5)
C80.06381 (11)0.31679 (18)0.06736 (11)0.0382 (5)
H80.09620.33160.10190.046*
C90.00558 (13)0.4039 (2)0.07632 (15)0.0639 (8)
H9A0.01420.38990.11760.096*
H9B0.02100.48880.07350.096*
H9C0.02730.38880.04360.096*
C100.09843 (12)0.3379 (2)0.00469 (12)0.0532 (7)
H10A0.06770.32130.02970.080*
H10B0.11340.42310.00220.080*
H10C0.13640.28290.00140.080*
C110.05512 (10)0.26498 (18)0.10449 (9)0.0283 (5)
H11A0.08620.33390.09870.034*
H11B0.02120.27030.07130.034*
C120.02278 (11)0.2758 (2)0.16748 (11)0.0408 (6)
H120.01250.22100.17530.049*
C130.03739 (12)0.3522 (2)0.21335 (11)0.0446 (6)
C140.00031 (18)0.3509 (3)0.27410 (14)0.0823 (10)
H14A0.02440.42820.27880.124*
H14B0.03040.34130.30920.124*
H14C0.03150.28250.27390.124*
C150.08984 (14)0.4486 (3)0.21026 (14)0.0678 (8)
H15A0.11130.44580.16910.102*
H15B0.12250.43360.24320.102*
H15C0.07000.52950.21650.102*
C160.23623 (9)0.01285 (18)0.16486 (9)0.0255 (4)
H16A0.26090.06530.16530.031*
H16B0.26870.08040.16570.031*
C170.19463 (10)0.01982 (19)0.22288 (9)0.0305 (5)
H170.17140.09430.22920.037*
C180.18646 (12)0.0655 (2)0.26632 (10)0.0403 (6)
C190.14351 (14)0.0438 (3)0.32266 (12)0.0622 (8)
H19A0.12380.03790.31990.093*
H19B0.17010.04950.36090.093*
H19C0.10860.10570.32390.093*
C200.21876 (17)0.1888 (2)0.26475 (13)0.0692 (9)
H20A0.24730.19430.22790.104*
H20B0.18500.25270.26260.104*
H20C0.24510.20000.30280.104*
C210.24403 (9)0.02169 (18)0.04592 (9)0.0264 (4)
H21A0.27280.09470.04870.032*
H21B0.27250.05180.04800.032*
C220.20898 (10)0.02299 (18)0.01575 (9)0.0295 (5)
H220.17900.08860.02210.035*
C230.21460 (11)0.05632 (19)0.06268 (10)0.0344 (5)
C240.25942 (14)0.1652 (2)0.06232 (12)0.0529 (7)
H24A0.29210.15670.09580.079*
H24B0.23360.23980.06920.079*
H24C0.28190.17040.02170.079*
C250.17428 (13)0.0418 (3)0.12109 (11)0.0512 (7)
H25A0.14340.11030.12460.077*
H25B0.20340.04080.15770.077*
H25C0.14970.03540.11910.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (8)0.0318 (8)0.0461 (9)0.0006 (6)0.0042 (6)0.0017 (7)
O20.0270 (7)0.0206 (7)0.0382 (8)0.0017 (6)0.0041 (6)0.0005 (6)
O30.0248 (8)0.0199 (7)0.0471 (9)0.0016 (6)0.0022 (7)0.0027 (6)
O40.0256 (8)0.0352 (8)0.0444 (9)0.0049 (6)0.0056 (6)0.0012 (7)
C10.0213 (10)0.0298 (11)0.0205 (10)0.0006 (8)0.0009 (8)0.0014 (8)
C20.0237 (10)0.0241 (10)0.0203 (10)0.0018 (8)0.0006 (8)0.0013 (8)
C30.0275 (11)0.0206 (10)0.0193 (10)0.0007 (8)0.0014 (8)0.0002 (8)
C40.0215 (10)0.0216 (10)0.0248 (10)0.0015 (8)0.0000 (8)0.0009 (8)
C50.0279 (11)0.0199 (10)0.0197 (10)0.0016 (8)0.0018 (8)0.0003 (8)
C60.0269 (11)0.0238 (10)0.0191 (10)0.0021 (8)0.0003 (8)0.0021 (8)
C70.0271 (11)0.0310 (11)0.0234 (10)0.0049 (9)0.0010 (8)0.0020 (9)
C80.0376 (13)0.0262 (11)0.0507 (14)0.0052 (9)0.0162 (11)0.0003 (10)
C90.0539 (17)0.0300 (14)0.108 (2)0.0141 (12)0.0243 (16)0.0060 (14)
C100.0453 (15)0.0512 (16)0.0631 (17)0.0170 (12)0.0228 (13)0.0275 (13)
C110.0285 (11)0.0259 (11)0.0305 (11)0.0057 (9)0.0034 (9)0.0009 (9)
C120.0378 (13)0.0344 (13)0.0502 (15)0.0058 (10)0.0114 (11)0.0012 (11)
C130.0449 (14)0.0517 (15)0.0371 (14)0.0107 (12)0.0069 (11)0.0044 (12)
C140.103 (3)0.092 (3)0.0523 (19)0.015 (2)0.0286 (18)0.0075 (17)
C150.0607 (18)0.080 (2)0.0630 (19)0.0052 (16)0.0026 (15)0.0267 (16)
C160.0241 (10)0.0224 (10)0.0300 (11)0.0007 (8)0.0021 (8)0.0007 (8)
C170.0319 (11)0.0304 (11)0.0292 (11)0.0022 (9)0.0042 (9)0.0052 (9)
C180.0498 (15)0.0441 (14)0.0271 (12)0.0090 (11)0.0011 (10)0.0030 (10)
C190.0665 (18)0.085 (2)0.0356 (15)0.0203 (16)0.0094 (13)0.0009 (14)
C200.123 (3)0.0405 (15)0.0438 (16)0.0043 (16)0.0103 (16)0.0124 (12)
C210.0253 (10)0.0231 (10)0.0308 (11)0.0006 (8)0.0061 (8)0.0010 (9)
C220.0302 (11)0.0261 (11)0.0321 (12)0.0005 (9)0.0073 (9)0.0037 (9)
C230.0414 (13)0.0337 (12)0.0283 (12)0.0045 (10)0.0101 (10)0.0005 (9)
C240.0763 (19)0.0400 (14)0.0423 (15)0.0105 (13)0.0096 (13)0.0095 (11)
C250.0549 (16)0.0668 (18)0.0319 (13)0.0033 (13)0.0041 (11)0.0080 (12)
Geometric parameters (Å, º) top
O1—C11.297 (2)C14—H14A0.9800
O1—H10.8400C14—H14B0.9800
O2—C31.239 (2)C14—H14C0.9800
O3—C51.348 (2)C15—H15A0.9800
O3—H30.8400C15—H15B0.9800
O4—C71.269 (2)C15—H15C0.9800
C1—C21.428 (3)C16—C171.501 (3)
C1—C61.431 (3)C16—H16A0.9900
C2—C31.438 (3)C16—H16B0.9900
C2—C71.445 (3)C17—C181.324 (3)
C3—C41.541 (3)C17—H170.9500
C4—C51.507 (3)C18—C201.498 (3)
C4—C161.550 (3)C18—C191.504 (3)
C4—C211.559 (3)C19—H19A0.9800
C5—C61.342 (3)C19—H19B0.9800
C6—C111.509 (3)C19—H19C0.9800
C7—C81.503 (3)C20—H20A0.9800
C8—C101.528 (3)C20—H20B0.9800
C8—C91.531 (3)C20—H20C0.9800
C8—H81.0000C21—C221.496 (3)
C9—H9A0.9800C21—H21A0.9900
C9—H9B0.9800C21—H21B0.9900
C9—H9C0.9800C22—C231.329 (3)
C10—H10A0.9800C22—H220.9500
C10—H10B0.9800C23—C241.498 (3)
C10—H10C0.9800C23—C251.500 (3)
C11—C121.500 (3)C24—H24A0.9800
C11—H11A0.9900C24—H24B0.9800
C11—H11B0.9900C24—H24C0.9800
C12—C131.319 (3)C25—H25A0.9800
C12—H120.9500C25—H25B0.9800
C13—C151.500 (4)C25—H25C0.9800
C13—C141.506 (4)
C1—O1—H1109.5H14A—C14—H14B109.5
C5—O3—H3109.5C13—C14—H14C109.5
O1—C1—C2120.41 (17)H14A—C14—H14C109.5
O1—C1—C6115.52 (17)H14B—C14—H14C109.5
C2—C1—C6124.06 (17)C13—C15—H15A109.5
C1—C2—C3118.25 (16)C13—C15—H15B109.5
C1—C2—C7117.56 (17)H15A—C15—H15B109.5
C3—C2—C7124.16 (17)C13—C15—H15C109.5
O2—C3—C2123.42 (17)H15A—C15—H15C109.5
O2—C3—C4116.77 (16)H15B—C15—H15C109.5
C2—C3—C4119.77 (16)C17—C16—C4113.72 (15)
C5—C4—C3113.99 (15)C17—C16—H16A108.8
C5—C4—C16108.47 (15)C4—C16—H16A108.8
C3—C4—C16108.96 (15)C17—C16—H16B108.8
C5—C4—C21109.13 (15)C4—C16—H16B108.8
C3—C4—C21106.45 (15)H16A—C16—H16B107.7
C16—C4—C21109.80 (15)C18—C17—C16127.7 (2)
C6—C5—O3117.04 (16)C18—C17—H17116.1
C6—C5—C4124.59 (17)C16—C17—H17116.1
O3—C5—C4118.34 (16)C17—C18—C20124.2 (2)
C5—C6—C1118.63 (17)C17—C18—C19121.4 (2)
C5—C6—C11122.19 (17)C20—C18—C19114.4 (2)
C1—C6—C11119.18 (17)C18—C19—H19A109.5
O4—C7—C2119.40 (18)C18—C19—H19B109.5
O4—C7—C8116.42 (17)H19A—C19—H19B109.5
C2—C7—C8124.17 (17)C18—C19—H19C109.5
C7—C8—C10109.11 (18)H19A—C19—H19C109.5
C7—C8—C9110.54 (19)H19B—C19—H19C109.5
C10—C8—C9111.8 (2)C18—C20—H20A109.5
C7—C8—H8108.4C18—C20—H20B109.5
C10—C8—H8108.4H20A—C20—H20B109.5
C9—C8—H8108.4C18—C20—H20C109.5
C8—C9—H9A109.5H20A—C20—H20C109.5
C8—C9—H9B109.5H20B—C20—H20C109.5
H9A—C9—H9B109.5C22—C21—C4113.03 (16)
C8—C9—H9C109.5C22—C21—H21A109.0
H9A—C9—H9C109.5C4—C21—H21A109.0
H9B—C9—H9C109.5C22—C21—H21B109.0
C8—C10—H10A109.5C4—C21—H21B109.0
C8—C10—H10B109.5H21A—C21—H21B107.8
H10A—C10—H10B109.5C23—C22—C21128.0 (2)
C8—C10—H10C109.5C23—C22—H22116.0
H10A—C10—H10C109.5C21—C22—H22116.0
H10B—C10—H10C109.5C22—C23—C24124.5 (2)
C12—C11—C6111.35 (16)C22—C23—C25120.6 (2)
C12—C11—H11A109.4C24—C23—C25114.9 (2)
C6—C11—H11A109.4C23—C24—H24A109.5
C12—C11—H11B109.4C23—C24—H24B109.5
C6—C11—H11B109.4H24A—C24—H24B109.5
H11A—C11—H11B108.0C23—C24—H24C109.5
C13—C12—C11128.0 (2)H24A—C24—H24C109.5
C13—C12—H12116.0H24B—C24—H24C109.5
C11—C12—H12116.0C23—C25—H25A109.5
C12—C13—C15124.8 (2)C23—C25—H25B109.5
C12—C13—C14121.2 (3)H25A—C25—H25B109.5
C15—C13—C14114.0 (2)C23—C25—H25C109.5
C13—C14—H14A109.5H25A—C25—H25C109.5
C13—C14—H14B109.5H25B—C25—H25C109.5
O1—C1—C2—C3177.59 (17)C2—C1—C6—C11175.01 (17)
C6—C1—C2—C31.8 (3)C1—C2—C7—O41.2 (3)
O1—C1—C2—C70.6 (3)C3—C2—C7—O4179.19 (18)
C6—C1—C2—C7179.90 (17)C1—C2—C7—C8179.78 (18)
C1—C2—C3—O2174.21 (17)C3—C2—C7—C81.8 (3)
C7—C2—C3—O23.8 (3)O4—C7—C8—C10102.3 (2)
C1—C2—C3—C48.2 (3)C2—C7—C8—C1076.7 (2)
C7—C2—C3—C4173.82 (17)O4—C7—C8—C921.0 (3)
O2—C3—C4—C5174.53 (16)C2—C7—C8—C9159.9 (2)
C2—C3—C4—C57.7 (2)C5—C6—C11—C12102.4 (2)
O2—C3—C4—C1653.2 (2)C1—C6—C11—C1277.8 (2)
C2—C3—C4—C16128.99 (17)C6—C11—C12—C13112.2 (3)
O2—C3—C4—C2165.1 (2)C11—C12—C13—C151.9 (4)
C2—C3—C4—C21112.66 (18)C11—C12—C13—C14180.0 (2)
C3—C4—C5—C60.8 (3)C5—C4—C16—C1757.1 (2)
C16—C4—C5—C6122.4 (2)C3—C4—C16—C1767.5 (2)
C21—C4—C5—C6118.0 (2)C21—C4—C16—C17176.26 (16)
C3—C4—C5—O3176.98 (15)C4—C16—C17—C18116.5 (2)
C16—C4—C5—O355.4 (2)C16—C17—C18—C200.1 (4)
C21—C4—C5—O364.2 (2)C16—C17—C18—C19179.1 (2)
O3—C5—C6—C1176.78 (16)C5—C4—C21—C2264.2 (2)
C4—C5—C6—C15.4 (3)C3—C4—C21—C2259.3 (2)
O3—C5—C6—C113.0 (3)C16—C4—C21—C22177.07 (16)
C4—C5—C6—C11174.79 (17)C4—C21—C22—C23123.4 (2)
O1—C1—C6—C5175.44 (17)C21—C22—C23—C240.6 (3)
C2—C1—C6—C55.2 (3)C21—C22—C23—C25178.8 (2)
O1—C1—C6—C114.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.841.632.398 (2)151
O3—H3···O2i0.841.942.6846 (19)147
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We thank Kingston University for their financial support during this project and the Chemistry Department at the University of Leicester for generous assistance in providing all of the X-ray data in this series of investigations.

References

First citationBorremans, F., De Potter, M. & De Keukeleire, D. (1975). Org. Magn. Reason. 7, 415–417.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART for Windows NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrewett, K. & Laws, D. (1970). J. Inst. Brew. 79, 188–190.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565  CrossRef CAS IUCr Journals Google Scholar
First citationHarris, G., Howard, G. A. & Pollock, J. R. A. (1952). J. Inst. Brew. 52, 413–416.  CrossRef Google Scholar
First citationMoir, M. (2000). J. Am. Soc. Brew. Chem. 58, 131–146.  CAS Google Scholar
First citationNickerson, G. & Williams, P. (1986). J. Am. Soc. Brew. Chem. 44, 91–94.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWöllmer, W. (1925). Ber. 58, 672–678.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds