organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Cyclo­hexyl­amino)-1,4-naphtho­quinone

CROSSMARK_Color_square_no_text.svg

aMain Building, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: knightjc@cardiff.ac.uk

(Received 31 January 2007; accepted 1 February 2007; online 9 February 2007)

The mol­ecules of the title compound, C16H17NO2, inter­act by ππ stacking between the naphthoquinone ring systems.

Comment

In research focusing on the development of redox-active naphthoquinone-based chealting agents we have observed unexpected reactivity of amine-substituted chloro­naptho­quinones and we report here a by-product from one of our syntheses. In an attempt to prepare 3-(cyclo­hexyl­amino)-2-(p-tolyl­sulfan­yl)naphthalene-1,4-dione by reaction of 2-chloro-3-(cyclo­hexyl­amino)naphthalene-1,4-dione with thio­cresol under basic conditions, we isolated the title compound, (I)[link], in modest yield. We postulate that the dechlorinated product was obtained via a quinolic inter­mediate obtained after oxidation of thio­cresol to the corresponding disulfide. The reduction of chloronaphthoquinones has been described before (Reynolds et al., 1964[Reynolds, G. A. & Van Allan, J. A. (1964). J. Org. Chem. 29, 3591-3593.]), but what is unusual here is that a low-potential amino­quinone is acting as an oxidant. Elimination of HCl from the inter­mediate 2-chloro-3-(cyclo­hexyl­amino)naph­thalene-1,4-diol would be readily achieved under the basic conditions employed to afford the title compound.

[Scheme 1]

In (I)[link], the naphthoquinone system is substituted with a cyclo­hexyl­amino group in position 2 (Fig. 1[link]). The cyclo­hexyl group is in the chair conformation with an average C—C bond length of 1.496 (2) Å which lies well within the range of classical values. The central C10—N1—C11 angle is 126.73 (12)°, a value which is slightly more obtuse than that found in the related compound 3-chloro-2-pyrrolidino-1,4-naphthoquinone (Lynch et al., 2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. C58, o704-o707.]). An acute intra­molecular N—H⋯O bond (Table 1[link]) helps to establish the mol­ecular conformation of (I)[link].

The mol­ecular packing diagram (Fig. 2[link]) shows the occurrance of centrosymmetric inter­molecular ππ stacking of the C1/C2/C3/C8/C9/C10 aromatic ring, with a centroid–centroid distance of 3.8694 (8) Å.

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing 50% displacement ellipsoids (H atoms are represented by spheres of arbitrary radius).
[Figure 2]
Figure 2
The packing of (I)[link] showing the ππ stacking. The dashed line indicates the intra­molecular hydrogen bond.

Experimental

3-Chloro-2-(cyclohexylamino)-1,4-naphthoquinone (0.5 g, 1.73 mmol), potassium carbonate (365 mg, 2.64 mmol) and p-thio­toluene (241 mg, 2.54 mmol) were reacted in acetonitrile (40 ml). The solution mixture was refluxed overnight under an inert nitro­gen atmosphere. This solution was filtered, dried and purified by flash column chroma­tography (SiO2) using CHCl3 as the eluant. The title compound was found at RF = 0.36. Ruby-red blocks of (I)[link] were obtained by slow evaporation of a CHCl3 solution (yield 185 mg, 42%).

Crystal data
  • C16H17NO2

  • Mr = 255.31

  • Monoclinic, P 21 /c

  • a = 10.3204 (3) Å

  • b = 6.3380 (2) Å

  • c = 18.9664 (7) Å

  • β = 96.179 (1)°

  • V = 1233.40 (7) Å3

  • Z = 4

  • Dx = 1.375 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • Block, red

  • 0.52 × 0.40 × 0.22 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.954, Tmax = 0.980

  • 11095 measured reflections

  • 3094 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.068

  • θmax = 28.7°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.05

  • 3094 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0722P)2 + 0.0683P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 2.19 2.5917 (16) 107

The H atoms were placed in calculated positions (C—H = 0.95–1.00 and N—H = 0.88 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

2-(Cyclohexylamino)-1,4-naphthoquinone top
Crystal data top
C16H17NO2F(000) = 544
Mr = 255.31Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6520 reflections
a = 10.3204 (3) Åθ = 2.9–27.5°
b = 6.3380 (2) ŵ = 0.09 mm1
c = 18.9664 (7) ÅT = 150 K
β = 96.179 (1)°Block, red
V = 1233.40 (7) Å30.52 × 0.40 × 0.22 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3094 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 28.7°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1312
Tmin = 0.954, Tmax = 0.980k = 88
11095 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.0683P]
where P = (Fo2 + 2Fc2)/3
2944 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. 1H NMR (CDCl3): δ 1.10–1.35 (m, 5H, Cy ring), 1.55 (m, 1H, Cy ring), 1.70 (m, 2H, Cy ring), 1.95 [dd, (JHH = 1.70 + 3.40 Hz), 2H, Cy ring], 3.20 [quintet, (JHH = 3.20 Hz), 1H, Cy ring], 5.65 (s, 1H, Ar), 5.75 [d, (JHH = 5.77 Hz), 1H, NH], 7.45 [t, (JHH = 7.50 Hz), 1H, Ar], 7.60 [t, (JHH = 7.60 Hz), 1H, Ar], 7.90 [d, (JHH = 7.90 Hz), 1H, Ar] and 7.95 [d, (JHH = 8.00 Hz), 1H, Ar]. 13C NMR (CDCl3): δ 24.56, 25.46, 31.64, 31.86, 51.12, 100.73, 126.07, 126.21, 130.56, 131.56, 133.66, 134.67, 146.67, 182.09, 182.82. IR (KBr) cm-1: 3342, 3041, 2926, 2856, 1671, 1619, 1597, 1571, 1522, 1441, 1350, 1304, 1267, 1250, 1120, 1098, 1002, 952, 890, 862, 778, 726, 669, 635 and 565.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62825 (14)0.2358 (2)1.01432 (8)0.0225 (3)
H1A0.60590.11300.98700.027*
C20.54304 (13)0.3009 (2)1.06508 (8)0.0218 (3)
C30.57619 (13)0.4910 (2)1.10630 (7)0.0188 (3)
C40.49385 (14)0.5627 (2)1.15364 (8)0.0243 (4)
H40.41780.48501.16100.029*
C50.52166 (15)0.7429 (2)1.18922 (8)0.0272 (4)
H50.46600.79311.22230.033*
C60.63093 (15)0.8536 (3)1.17734 (8)0.0279 (4)
H60.64870.98371.20140.033*
C70.71608 (14)0.7814 (2)1.13138 (8)0.0233 (3)
H70.79250.85911.12460.028*
C80.68908 (13)0.5990 (2)1.09624 (7)0.0189 (3)
C90.78112 (13)0.5186 (2)1.04880 (8)0.0189 (3)
C100.73880 (13)0.3397 (2)1.00320 (7)0.0192 (3)
C110.80372 (14)0.1429 (2)0.89982 (8)0.0205 (3)
H110.71020.09860.89300.025*
C120.88468 (16)0.0420 (2)0.92266 (9)0.0280 (4)
H12A0.85460.10350.96600.034*
H12B0.97670.00190.93380.034*
C130.87457 (16)0.2031 (2)0.86481 (9)0.0318 (4)
H13A0.78370.25530.85730.038*
H13B0.93140.32420.87990.038*
C140.91285 (15)0.1184 (3)0.79535 (9)0.0290 (4)
H14A1.00560.07550.80140.035*
H14B0.90210.23020.75870.035*
C150.83056 (15)0.0644 (2)0.77231 (8)0.0264 (4)
H15A0.73860.01920.76210.032*
H15B0.85920.12510.72840.032*
C160.84189 (14)0.2266 (2)0.82992 (8)0.0219 (3)
H16A0.78540.34810.81480.026*
H16B0.93300.27790.83710.026*
N10.81963 (11)0.30046 (19)0.95388 (7)0.0238 (3)
H10.88970.38010.95500.029*
O10.44263 (10)0.20911 (18)1.07492 (6)0.0347 (3)
O20.88904 (9)0.59166 (16)1.04622 (6)0.0265 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (8)0.0203 (7)0.0222 (8)0.0047 (6)0.0055 (6)0.0034 (6)
C20.0224 (8)0.0225 (7)0.0214 (8)0.0028 (6)0.0058 (6)0.0004 (6)
C30.0203 (7)0.0209 (7)0.0151 (8)0.0024 (6)0.0014 (6)0.0004 (6)
C40.0195 (7)0.0299 (8)0.0240 (9)0.0020 (6)0.0046 (6)0.0011 (7)
C50.0254 (8)0.0322 (8)0.0244 (9)0.0057 (7)0.0048 (6)0.0066 (7)
C60.0312 (8)0.0256 (8)0.0262 (9)0.0045 (7)0.0005 (7)0.0063 (7)
C70.0256 (8)0.0216 (7)0.0226 (8)0.0006 (6)0.0023 (6)0.0013 (6)
C80.0211 (7)0.0204 (7)0.0150 (8)0.0017 (6)0.0015 (6)0.0008 (6)
C90.0208 (7)0.0196 (7)0.0167 (8)0.0028 (6)0.0036 (6)0.0026 (6)
C100.0205 (7)0.0211 (7)0.0166 (8)0.0001 (6)0.0042 (6)0.0008 (6)
C110.0220 (7)0.0221 (7)0.0187 (8)0.0049 (6)0.0075 (6)0.0048 (6)
C120.0358 (9)0.0242 (8)0.0235 (9)0.0030 (7)0.0015 (7)0.0015 (6)
C130.0363 (9)0.0198 (8)0.0387 (11)0.0008 (7)0.0015 (8)0.0048 (7)
C140.0238 (8)0.0290 (8)0.0347 (10)0.0001 (7)0.0056 (7)0.0136 (7)
C150.0281 (8)0.0308 (8)0.0212 (9)0.0047 (7)0.0067 (6)0.0051 (7)
C160.0246 (7)0.0207 (7)0.0212 (8)0.0008 (6)0.0055 (6)0.0005 (6)
N10.0245 (7)0.0239 (6)0.0249 (7)0.0095 (5)0.0112 (5)0.0086 (5)
O10.0315 (6)0.0334 (6)0.0423 (8)0.0142 (5)0.0190 (5)0.0103 (5)
O20.0237 (6)0.0269 (6)0.0301 (7)0.0069 (5)0.0092 (4)0.0069 (5)
Geometric parameters (Å, º) top
C1—C101.3535 (19)C11—N11.4281 (18)
C1—C21.433 (2)C11—C121.477 (2)
C1—H1A0.9500C11—C161.519 (2)
C2—O11.2201 (16)C11—H111.0000
C2—C31.457 (2)C12—C131.494 (2)
C3—C41.378 (2)C12—H12A0.9900
C3—C81.3820 (19)C12—H12B0.9900
C4—C51.342 (2)C13—C141.514 (2)
C4—H40.9500C13—H13A0.9900
C5—C61.367 (2)C13—H13B0.9900
C5—H50.9500C14—C151.475 (2)
C6—C71.381 (2)C14—H14A0.9900
C6—H60.9500C14—H14B0.9900
C7—C81.349 (2)C15—C161.495 (2)
C7—H70.9500C15—H15A0.9900
C8—C91.468 (2)C15—H15B0.9900
C9—O21.2120 (16)C16—H16A0.9900
C9—C101.464 (2)C16—H16B0.9900
C10—N11.3419 (18)N1—H10.8800
C10—C1—C2123.59 (13)C16—C11—H11108.8
C10—C1—H1A118.2C11—C12—C13109.52 (13)
C2—C1—H1A118.2C11—C12—H12A109.8
O1—C2—C1123.94 (13)C13—C12—H12A109.8
O1—C2—C3117.81 (13)C11—C12—H12B109.8
C1—C2—C3118.23 (12)C13—C12—H12B109.8
C4—C3—C8120.97 (13)H12A—C12—H12B108.2
C4—C3—C2119.79 (13)C12—C13—C14113.14 (13)
C8—C3—C2119.23 (13)C12—C13—H13A109.0
C5—C4—C3119.67 (14)C14—C13—H13A108.9
C5—C4—H4120.2C12—C13—H13B108.9
C3—C4—H4120.2C14—C13—H13B108.9
C4—C5—C6119.30 (15)H13A—C13—H13B107.8
C4—C5—H5120.4C15—C14—C13109.90 (13)
C6—C5—H5120.4C15—C14—H14A109.7
C5—C6—C7121.76 (15)C13—C14—H14A109.7
C5—C6—H6119.1C15—C14—H14B109.7
C7—C6—H6119.1C13—C14—H14B109.7
C8—C7—C6118.97 (14)H14A—C14—H14B108.2
C8—C7—H7120.5C14—C15—C16109.05 (13)
C6—C7—H7120.5C14—C15—H15A109.9
C7—C8—C3119.27 (14)C16—C15—H15A109.9
C7—C8—C9119.16 (13)C14—C15—H15B109.9
C3—C8—C9121.57 (13)C16—C15—H15B109.9
O2—C9—C10119.27 (13)H15A—C15—H15B108.3
O2—C9—C8123.40 (13)C15—C16—C11112.98 (12)
C10—C9—C8117.33 (12)C15—C16—H16A109.0
N1—C10—C1128.03 (14)C11—C16—H16A109.0
N1—C10—C9112.78 (12)C15—C16—H16B109.0
C1—C10—C9119.19 (13)C11—C16—H16B109.0
N1—C11—C12109.08 (12)H16A—C16—H16B107.8
N1—C11—C16111.20 (12)C10—N1—C11126.73 (12)
C12—C11—C16109.97 (12)C10—N1—H1116.6
N1—C11—H11108.8C11—N1—H1116.6
C12—C11—H11108.8
C10—C1—C2—O1179.28 (14)C3—C8—C9—C1010.3 (2)
C10—C1—C2—C30.9 (2)C2—C1—C10—N1174.88 (14)
O1—C2—C3—C41.0 (2)C2—C1—C10—C95.2 (2)
C1—C2—C3—C4177.50 (14)O2—C9—C10—N111.0 (2)
O1—C2—C3—C8179.79 (13)C8—C9—C10—N1169.59 (12)
C1—C2—C3—C81.3 (2)O2—C9—C10—C1168.95 (13)
C8—C3—C4—C51.7 (2)C8—C9—C10—C110.5 (2)
C2—C3—C4—C5177.05 (13)N1—C11—C12—C13176.86 (12)
C3—C4—C5—C60.6 (2)C16—C11—C12—C1354.66 (16)
C4—C5—C6—C72.2 (2)C11—C12—C13—C1456.74 (18)
C5—C6—C7—C81.4 (2)C12—C13—C14—C1557.82 (17)
C6—C7—C8—C31.0 (2)C13—C14—C15—C1656.06 (16)
C6—C7—C8—C9178.34 (13)C14—C15—C16—C1157.67 (17)
C4—C3—C8—C72.5 (2)N1—C11—C16—C15178.25 (12)
C2—C3—C8—C7176.24 (13)C12—C11—C16—C1557.32 (16)
C4—C3—C8—C9176.77 (13)C1—C10—N1—C112.6 (2)
C2—C3—C8—C94.4 (2)C9—C10—N1—C11177.49 (13)
C7—C8—C9—O210.2 (2)C12—C11—N1—C1099.26 (17)
C3—C8—C9—O2169.11 (13)C16—C11—N1—C10139.29 (15)
C7—C8—C9—C10170.40 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.882.192.5917 (16)107
 

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002). Acta Cryst. C58, o704–o707.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReynolds, G. A. & Van Allan, J. A. (1964). J. Org. Chem. 29, 3591–3593.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds