metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­ethyl­enetri­amine-κ3N)copper(II) bis­­(sulfadiazinate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh, and bSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 1 February 2007; accepted 7 February 2007; online 14 February 2007)

In the title compound, [Cu(C4H13N3)2](C10H9N4O2S)2, the Cu atom (site symmetry [\overline{1}]) displays a Jahn–Teller distorted octa­hedral CuN6 geometry arising from the two tridentate diethyl­enetriamine ligands. The cation and anion inter­act by way of N—H⋯N and N—H⋯O hydrogen bonds.

Comment

We have attempted to show the coordination behaviour of sulfadiazine with the copper(II) ion in the presence of diethylenetriamine. In the title complex, (I)[link], the diethylenetriamine molecule coordinates directly with the Cu atom and the sulfadiazine molecule acts as counter-ion. The crystal structure of (I)[link] contains [Cu(dien)2]2+ cations and sdz counter-ions (dien = diethyl­enetriamine and sdzH = sulfadiazine), forming a salt.

[Scheme 1]

The CuII centre (site symmetry [\overline{1}]) is octa­hedrally coordin­ated by two tridentate dien mol­ecules, with the Cu—N bond distances (Table 1[link]) showing a typical Jahn–Teller distortion (Ye et al., 1998[Ye, B.-H., Ji, L.-N., Xue, F. & Mak, T. C. W. (1998). Polyhedron, 17, 2687-2692.]). The central N atom of the ligand displays the shortest Cu—N bond. The cis N—Cu—N angles vary from 80.49 (9) to 99.51 (9)°. The dihedral angle between the aromatic rings of the anion is 71.10 (14)°.

The cation and anion inter­act by way of N—H⋯N and N—H⋯O hydrogen bonds (Table 2[link]), resulting in a three-dimensional framework (Fig. 2[link]). A weak N—H⋯N bond between the anions also occurs. Compound (I)[link] is the first copper complex containing sulfadiazine acting as a counter-ion.

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing 50% displacement ellipsoids (arbitrary spheres for the H atoms) [symmetry code: (i) −x, −y, −z]. Hydrogen bonds are indicated by dashed lines.
[Figure 2]
Figure 2
The packing of (I)[link], viewed along the b axis. Dashed lines indicate the hydrogen-bonding inter­actions.

Experimental

The sodium salt of sulfadiazine (Nasdz, 5.446 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methanol solution (10 ml) of CuCl2·2H2O (1.705 g, 1 mmol) was added slowly with constant stirring on a hot plate. A red precipitate was formed and the mixture was stirred for a futher 6 h. The precipitate was filtered off and dried over silica gel; it was then dissolved in dimethyl­formamide solution (50 ml), diethyl­enetriamine (5 ml) was added and the mixture stirred for 30 min. A week later, blue block-shaped crystals of (I)[link] were filtered off and dried over silica gel.

Crystal data
  • [Cu(C4H13N3)2](C10H9N4O2S)2

  • Mr = 768.43

  • Monoclinic, P 21 /c

  • a = 14.5949 (3) Å

  • b = 7.8231 (2) Å

  • c = 15.9672 (5) Å

  • β = 111.065 (1)°

  • V = 1701.26 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 150 (2) K

  • 0.18 × 0.15 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.866, Tmax = 0.908

  • 12097 measured reflections

  • 3882 independent reflections

  • 2736 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.112

  • S = 1.04

  • 3882 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 2.030 (2)
Cu1—N3 2.116 (3)
Cu1—N1 2.339 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O12 0.92 2.06 2.887 (3) 149
N1—H1A⋯N11i 0.92 2.24 3.121 (3) 161
N2—H2⋯N12ii 0.93 2.14 3.068 (3) 174
N3—H3B⋯N11i 0.92 2.44 3.283 (3) 152
N3—H3A⋯O12iii 0.92 2.20 3.071 (3) 157
N14—H14A⋯N13iv 0.88 2.47 3.161 (3) 136
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z; (iii) -x, -y, -z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The H atoms were positioned geometrically (C—H = 0.95–0.99 and N—H = 0.88–0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Bis(diethylenetriamine-κ3N)copper(II) bis(disulfadiazinate) top
Crystal data top
[Cu(C4H13N3)2](C10H9N4O2S)2F(000) = 806
Mr = 768.43Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3882 reflections
a = 14.5949 (3) Åθ = 2.9–27.5°
b = 7.8231 (2) ŵ = 0.82 mm1
c = 15.9672 (5) ÅT = 150 K
β = 111.065 (1)°Block, blue
V = 1701.26 (8) Å30.18 × 0.15 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3882 independent reflections
Radiation source: fine-focus sealed tube2736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω and φ scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1815
Tmin = 0.866, Tmax = 0.908k = 98
12097 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0363P)2 + 1.8984P]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.61 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.01426 (13)
S110.22755 (5)0.49540 (8)0.17688 (4)0.01740 (17)
O110.16332 (15)0.5537 (3)0.22203 (14)0.0298 (5)
O120.21618 (15)0.3150 (2)0.15310 (14)0.0284 (5)
N110.20855 (17)0.6196 (3)0.09376 (15)0.0193 (5)
N120.23381 (18)0.7153 (3)0.03169 (16)0.0236 (5)
N130.32361 (18)0.4708 (3)0.04694 (16)0.0233 (5)
N140.63905 (19)0.5729 (3)0.42756 (18)0.0361 (7)
H14A0.67380.66110.42200.043*
H14B0.66620.49410.46830.043*
C110.2580 (2)0.5981 (3)0.03619 (18)0.0178 (6)
C120.2792 (2)0.6999 (4)0.09041 (19)0.0270 (7)
H120.26340.77870.13880.032*
C130.3484 (2)0.5741 (4)0.0842 (2)0.0318 (7)
H130.38050.56570.12630.038*
C140.3677 (2)0.4622 (4)0.0134 (2)0.0293 (7)
H140.41480.37450.00700.035*
C150.34896 (19)0.5224 (3)0.25256 (17)0.0160 (5)
C160.3897 (2)0.4008 (4)0.31956 (19)0.0244 (6)
H160.35170.30520.32420.029*
C170.4846 (2)0.4186 (4)0.3790 (2)0.0267 (7)
H170.51130.33570.42480.032*
C180.5426 (2)0.5580 (4)0.37272 (19)0.0235 (6)
C190.4993 (2)0.6831 (4)0.30793 (19)0.0238 (6)
H190.53590.78180.30480.029*
C200.4042 (2)0.6649 (3)0.24866 (19)0.0216 (6)
H200.37620.75050.20470.026*
N10.13525 (19)0.0258 (3)0.13378 (19)0.0310 (6)
H1A0.16530.13000.13620.037*
H1B0.18030.05910.13770.037*
N20.06940 (17)0.0168 (3)0.08940 (15)0.0184 (5)
H20.11930.09720.06750.022*
N30.02299 (19)0.2660 (3)0.00658 (16)0.0273 (6)
H3A0.07040.30260.04590.033*
H3B0.03420.32440.01420.033*
C10.0981 (2)0.0106 (4)0.2073 (2)0.0272 (7)
H1C0.14620.05290.25760.033*
H1D0.09010.12600.22920.033*
C20.0005 (2)0.0817 (4)0.17680 (19)0.0253 (7)
H2A0.02940.06840.22310.030*
H2B0.01190.20520.17100.030*
C30.1161 (2)0.1497 (4)0.0942 (2)0.0236 (6)
H3C0.18190.15470.04640.028*
H3D0.12470.15910.15280.028*
C40.0547 (2)0.2989 (4)0.0834 (2)0.0243 (6)
H4A0.00350.31350.13890.029*
H4B0.09390.40540.07280.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0160 (3)0.0133 (2)0.0130 (2)0.00058 (18)0.00470 (18)0.00037 (17)
S110.0140 (3)0.0193 (3)0.0172 (3)0.0019 (3)0.0035 (3)0.0007 (3)
O110.0179 (11)0.0489 (13)0.0250 (11)0.0028 (10)0.0106 (9)0.0044 (9)
O120.0305 (12)0.0177 (10)0.0285 (12)0.0083 (9)0.0002 (10)0.0009 (8)
N110.0192 (12)0.0186 (11)0.0189 (12)0.0042 (9)0.0055 (10)0.0015 (9)
N120.0275 (14)0.0209 (12)0.0198 (13)0.0031 (10)0.0055 (11)0.0043 (9)
N130.0225 (13)0.0234 (13)0.0246 (13)0.0086 (10)0.0094 (11)0.0022 (9)
N140.0225 (15)0.0298 (14)0.0405 (17)0.0073 (12)0.0073 (13)0.0074 (12)
C110.0150 (14)0.0181 (13)0.0169 (14)0.0003 (11)0.0015 (11)0.0011 (10)
C120.0321 (18)0.0295 (16)0.0187 (15)0.0017 (13)0.0080 (14)0.0035 (12)
C130.038 (2)0.0379 (18)0.0262 (17)0.0002 (15)0.0191 (15)0.0013 (14)
C140.0300 (18)0.0324 (16)0.0277 (17)0.0088 (13)0.0130 (14)0.0005 (12)
C150.0144 (13)0.0179 (13)0.0149 (13)0.0012 (10)0.0044 (11)0.0018 (10)
C160.0244 (16)0.0211 (15)0.0255 (16)0.0053 (12)0.0064 (13)0.0034 (11)
C170.0250 (17)0.0250 (15)0.0251 (16)0.0018 (13)0.0029 (13)0.0064 (12)
C180.0203 (16)0.0213 (14)0.0247 (16)0.0022 (12)0.0029 (13)0.0040 (11)
C190.0225 (16)0.0200 (14)0.0260 (16)0.0054 (12)0.0051 (13)0.0011 (11)
C200.0213 (15)0.0172 (13)0.0239 (15)0.0005 (11)0.0052 (13)0.0029 (11)
N10.0255 (15)0.0162 (12)0.0562 (19)0.0038 (10)0.0207 (14)0.0067 (11)
N20.0160 (12)0.0220 (12)0.0162 (12)0.0038 (9)0.0045 (10)0.0007 (9)
N30.0226 (14)0.0356 (15)0.0189 (13)0.0044 (11)0.0016 (11)0.0055 (10)
C10.0263 (16)0.0243 (15)0.0243 (16)0.0032 (13)0.0010 (13)0.0024 (12)
C20.0255 (17)0.0315 (16)0.0195 (15)0.0023 (13)0.0088 (13)0.0049 (12)
C30.0174 (15)0.0298 (16)0.0235 (15)0.0002 (12)0.0071 (12)0.0057 (12)
C40.0203 (16)0.0248 (15)0.0230 (15)0.0001 (12)0.0020 (13)0.0043 (11)
Geometric parameters (Å, º) top
Cu1—N22.030 (2)C16—H160.9500
Cu1—N32.116 (3)C17—C181.406 (4)
Cu1—N12.339 (3)C17—H170.9500
Cu1—N1i2.339 (3)C18—C191.399 (4)
Cu1—N2i2.030 (2)C19—C201.377 (4)
Cu1—N3i2.116 (3)C19—H190.9500
S11—O111.446 (2)C20—H200.9500
S11—O121.456 (2)N1—C11.464 (4)
S11—N111.587 (2)N1—H1A0.9200
S11—C151.762 (3)N1—H1B0.9200
N11—C111.368 (3)N2—C21.491 (4)
N12—C121.334 (4)N2—C31.485 (3)
N12—C111.366 (3)N2—H20.9300
N13—C141.339 (4)N3—C41.481 (4)
N13—C111.349 (3)N3—H3A0.9200
N14—C181.370 (4)N3—H3B0.9200
N14—H14A0.8800C1—C21.512 (4)
N14—H14B0.8800C1—H1C0.9900
C12—C131.387 (4)C1—H1D0.9900
C12—H120.9500C2—H2A0.9900
C13—C141.376 (4)C2—H2B0.9900
C13—H130.9500C3—C41.519 (4)
C14—H140.9500C3—H3C0.9900
C15—C201.390 (4)C3—H3D0.9900
C15—C161.395 (4)C4—H4A0.9900
C16—C171.376 (4)C4—H4B0.9900
N1—Cu1—N1i180.0C19—C18—C17118.2 (3)
N2i—Cu1—N2180.0C20—C19—C18120.7 (3)
N3i—Cu1—N3180.0C20—C19—H19119.6
N1i—Cu1—N299.56 (9)C18—C19—H19119.6
N1—Cu1—N280.44 (9)C19—C20—C15120.6 (3)
N1i—Cu1—N2i80.44 (9)C19—C20—H20119.7
N1—Cu1—N2i99.56 (9)C15—C20—H20119.7
N1i—Cu1—N391.92 (9)C1—N1—Cu1106.90 (18)
N1—Cu1—N388.08 (9)C1—N1—H1A110.3
N1i—Cu1—N3i88.08 (9)Cu1—N1—H1A110.3
N1—Cu1—N3i91.92 (9)C1—N1—H1B110.3
N2i—Cu1—N3i84.30 (9)Cu1—N1—H1B110.3
N2—Cu1—N3i95.70 (9)H1A—N1—H1B108.6
N2i—Cu1—N395.70 (9)C2—N2—C3115.0 (2)
N2—Cu1—N384.30 (9)C2—N2—Cu1109.48 (17)
O11—S11—O12113.71 (13)C3—N2—Cu1109.50 (16)
O11—S11—N11105.91 (12)C2—N2—H2107.5
O12—S11—N11113.97 (12)C3—N2—H2107.5
O11—S11—C15107.01 (12)Cu1—N2—H2107.5
O12—S11—C15106.70 (12)C4—N3—Cu1108.35 (17)
N11—S11—C15109.30 (12)C4—N3—H3A110.0
C11—N11—S11120.72 (18)Cu1—N3—H3A110.0
C12—N12—C11116.4 (2)C4—N3—H3B110.0
C14—N13—C11116.6 (2)Cu1—N3—H3B110.0
C18—N14—H14A120.0H3A—N3—H3B108.4
C18—N14—H14B120.0N1—C1—C2111.0 (2)
H14A—N14—H14B120.0N1—C1—H1C109.4
N13—C11—N12124.5 (3)C2—C1—H1C109.4
N13—C11—N11121.8 (2)N1—C1—H1D109.4
N12—C11—N11113.7 (2)C2—C1—H1D109.4
N12—C12—C13123.1 (3)H1C—C1—H1D108.0
N12—C12—H12118.4N2—C2—C1112.8 (2)
C13—C12—H12118.4N2—C2—H2A109.0
C14—C13—C12116.0 (3)C1—C2—H2A109.0
C14—C13—H13122.0N2—C2—H2B109.0
C12—C13—H13122.0C1—C2—H2B109.0
N13—C14—C13123.3 (3)H2A—C2—H2B107.8
N13—C14—H14118.3N2—C3—C4111.6 (2)
C13—C14—H14118.3N2—C3—H3C109.3
C20—C15—C16119.1 (3)C4—C3—H3C109.3
C20—C15—S11121.5 (2)N2—C3—H3D109.3
C16—C15—S11119.4 (2)C4—C3—H3D109.3
C17—C16—C15120.4 (3)H3C—C3—H3D108.0
C17—C16—H16119.8N3—C4—C3109.5 (2)
C15—C16—H16119.8N3—C4—H4A109.8
C16—C17—C18120.8 (3)C3—C4—H4A109.8
C16—C17—H17119.6N3—C4—H4B109.8
C18—C17—H17119.6C3—C4—H4B109.8
N14—C18—C19120.0 (3)H4A—C4—H4B108.2
N14—C18—C17121.8 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O120.922.062.887 (3)149
N1—H1A···N11ii0.922.243.121 (3)161
N2—H2···N12iii0.932.143.068 (3)174
N3—H3B···N11ii0.922.443.283 (3)152
N3—H3A···O12i0.922.203.071 (3)157
N14—H14A···N13iv0.882.473.161 (3)136
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the School of Chemistry, Cardiff University, Wales.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYe, B.-H., Ji, L.-N., Xue, F. & Mak, T. C. W. (1998). Polyhedron, 17, 2687–2692.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds