metal-organic compounds
Bis(diethylenetriamine-κ3N)copper(II) bis(sulfadiazinate)
aDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh, and bSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com
In the title compound, [Cu(C4H13N3)2](C10H9N4O2S)2, the Cu atom (site symmetry ) displays a Jahn–Teller distorted octahedral CuN6 geometry arising from the two tridentate diethylenetriamine ligands. The cation and anion interact by way of N—H⋯N and N—H⋯O hydrogen bonds.
Comment
We have attempted to show the coordination behaviour of sulfadiazine with the copper(II) ion in the presence of diethylenetriamine. In the title complex, (I), the diethylenetriamine molecule coordinates directly with the Cu atom and the sulfadiazine molecule acts as counter-ion. The of (I) contains [Cu(dien)2]2+ cations and sdz− counter-ions (dien = diethylenetriamine and sdzH = sulfadiazine), forming a salt.
The CuII centre (site symmetry ) is octahedrally coordinated by two tridentate dien molecules, with the Cu—N bond distances (Table 1) showing a typical Jahn–Teller distortion (Ye et al., 1998). The central N atom of the ligand displays the shortest Cu—N bond. The cis N—Cu—N angles vary from 80.49 (9) to 99.51 (9)°. The dihedral angle between the aromatic rings of the anion is 71.10 (14)°.
The cation and anion interact by way of N—H⋯N and N—H⋯O hydrogen bonds (Table 2), resulting in a three-dimensional framework (Fig. 2). A weak N—H⋯N bond between the anions also occurs. Compound (I) is the first copper complex containing sulfadiazine acting as a counter-ion.
Experimental
The sodium salt of sulfadiazine (Nasdz, 5.446 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methanol solution (10 ml) of CuCl2·2H2O (1.705 g, 1 mmol) was added slowly with constant stirring on a hot plate. A red precipitate was formed and the mixture was stirred for a futher 6 h. The precipitate was filtered off and dried over silica gel; it was then dissolved in dimethylformamide solution (50 ml), diethylenetriamine (5 ml) was added and the mixture stirred for 30 min. A week later, blue block-shaped crystals of (I) were filtered off and dried over silica gel.
Crystal data
|
Refinement
|
|
The H atoms were positioned geometrically (C—H = 0.95–0.99 and N—H = 0.88–0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C,N).
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807006551/hb2285sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807006551/hb2285Isup2.hkl
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C4H13N3)2](C10H9N4O2S)2 | F(000) = 806 |
Mr = 768.43 | Dx = 1.500 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3882 reflections |
a = 14.5949 (3) Å | θ = 2.9–27.5° |
b = 7.8231 (2) Å | µ = 0.82 mm−1 |
c = 15.9672 (5) Å | T = 150 K |
β = 111.065 (1)° | Block, blue |
V = 1701.26 (8) Å3 | 0.18 × 0.15 × 0.12 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 3882 independent reflections |
Radiation source: fine-focus sealed tube | 2736 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω and φ scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −18→15 |
Tmin = 0.866, Tmax = 0.908 | k = −9→8 |
12097 measured reflections | l = −20→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0363P)2 + 1.8984P] where P = (Fo2 + 2Fc2)/3 |
3882 reflections | (Δ/σ)max = 0.002 |
223 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.0000 | 0.01426 (13) | |
S11 | 0.22755 (5) | 0.49540 (8) | 0.17688 (4) | 0.01740 (17) | |
O11 | 0.16332 (15) | 0.5537 (3) | 0.22203 (14) | 0.0298 (5) | |
O12 | 0.21618 (15) | 0.3150 (2) | 0.15310 (14) | 0.0284 (5) | |
N11 | 0.20855 (17) | 0.6196 (3) | 0.09376 (15) | 0.0193 (5) | |
N12 | 0.23381 (18) | 0.7153 (3) | −0.03169 (16) | 0.0236 (5) | |
N13 | 0.32361 (18) | 0.4708 (3) | 0.04694 (16) | 0.0233 (5) | |
N14 | 0.63905 (19) | 0.5729 (3) | 0.42756 (18) | 0.0361 (7) | |
H14A | 0.6738 | 0.6611 | 0.4220 | 0.043* | |
H14B | 0.6662 | 0.4941 | 0.4683 | 0.043* | |
C11 | 0.2580 (2) | 0.5981 (3) | 0.03619 (18) | 0.0178 (6) | |
C12 | 0.2792 (2) | 0.6999 (4) | −0.09041 (19) | 0.0270 (7) | |
H12 | 0.2634 | 0.7787 | −0.1388 | 0.032* | |
C13 | 0.3484 (2) | 0.5741 (4) | −0.0842 (2) | 0.0318 (7) | |
H13 | 0.3805 | 0.5657 | −0.1263 | 0.038* | |
C14 | 0.3677 (2) | 0.4622 (4) | −0.0134 (2) | 0.0293 (7) | |
H14 | 0.4148 | 0.3745 | −0.0070 | 0.035* | |
C15 | 0.34896 (19) | 0.5224 (3) | 0.25256 (17) | 0.0160 (5) | |
C16 | 0.3897 (2) | 0.4008 (4) | 0.31956 (19) | 0.0244 (6) | |
H16 | 0.3517 | 0.3052 | 0.3242 | 0.029* | |
C17 | 0.4846 (2) | 0.4186 (4) | 0.3790 (2) | 0.0267 (7) | |
H17 | 0.5113 | 0.3357 | 0.4248 | 0.032* | |
C18 | 0.5426 (2) | 0.5580 (4) | 0.37272 (19) | 0.0235 (6) | |
C19 | 0.4993 (2) | 0.6831 (4) | 0.30793 (19) | 0.0238 (6) | |
H19 | 0.5359 | 0.7818 | 0.3048 | 0.029* | |
C20 | 0.4042 (2) | 0.6649 (3) | 0.24866 (19) | 0.0216 (6) | |
H20 | 0.3762 | 0.7505 | 0.2047 | 0.026* | |
N1 | 0.13525 (19) | −0.0258 (3) | 0.13378 (19) | 0.0310 (6) | |
H1A | 0.1653 | −0.1300 | 0.1362 | 0.037* | |
H1B | 0.1803 | 0.0591 | 0.1377 | 0.037* | |
N2 | −0.06940 (17) | 0.0168 (3) | 0.08940 (15) | 0.0184 (5) | |
H2 | −0.1193 | 0.0972 | 0.0675 | 0.022* | |
N3 | −0.02299 (19) | −0.2660 (3) | 0.00658 (16) | 0.0273 (6) | |
H3A | −0.0704 | −0.3026 | −0.0459 | 0.033* | |
H3B | 0.0342 | −0.3244 | 0.0142 | 0.033* | |
C1 | 0.0981 (2) | −0.0106 (4) | 0.2073 (2) | 0.0272 (7) | |
H1C | 0.1462 | 0.0529 | 0.2576 | 0.033* | |
H1D | 0.0901 | −0.1260 | 0.2292 | 0.033* | |
C2 | 0.0005 (2) | 0.0817 (4) | 0.17680 (19) | 0.0253 (7) | |
H2A | −0.0294 | 0.0684 | 0.2231 | 0.030* | |
H2B | 0.0119 | 0.2052 | 0.1710 | 0.030* | |
C3 | −0.1161 (2) | −0.1497 (4) | 0.0942 (2) | 0.0236 (6) | |
H3C | −0.1819 | −0.1547 | 0.0464 | 0.028* | |
H3D | −0.1247 | −0.1591 | 0.1528 | 0.028* | |
C4 | −0.0547 (2) | −0.2989 (4) | 0.0834 (2) | 0.0243 (6) | |
H4A | 0.0035 | −0.3135 | 0.1389 | 0.029* | |
H4B | −0.0939 | −0.4054 | 0.0728 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0160 (3) | 0.0133 (2) | 0.0130 (2) | 0.00058 (18) | 0.00470 (18) | −0.00037 (17) |
S11 | 0.0140 (3) | 0.0193 (3) | 0.0172 (3) | −0.0019 (3) | 0.0035 (3) | 0.0007 (3) |
O11 | 0.0179 (11) | 0.0489 (13) | 0.0250 (11) | 0.0028 (10) | 0.0106 (9) | 0.0044 (9) |
O12 | 0.0305 (12) | 0.0177 (10) | 0.0285 (12) | −0.0083 (9) | 0.0002 (10) | 0.0009 (8) |
N11 | 0.0192 (12) | 0.0186 (11) | 0.0189 (12) | 0.0042 (9) | 0.0055 (10) | 0.0015 (9) |
N12 | 0.0275 (14) | 0.0209 (12) | 0.0198 (13) | 0.0031 (10) | 0.0055 (11) | 0.0043 (9) |
N13 | 0.0225 (13) | 0.0234 (13) | 0.0246 (13) | 0.0086 (10) | 0.0094 (11) | 0.0022 (9) |
N14 | 0.0225 (15) | 0.0298 (14) | 0.0405 (17) | −0.0073 (12) | −0.0073 (13) | 0.0074 (12) |
C11 | 0.0150 (14) | 0.0181 (13) | 0.0169 (14) | −0.0003 (11) | 0.0015 (11) | −0.0011 (10) |
C12 | 0.0321 (18) | 0.0295 (16) | 0.0187 (15) | −0.0017 (13) | 0.0080 (14) | 0.0035 (12) |
C13 | 0.038 (2) | 0.0379 (18) | 0.0262 (17) | −0.0002 (15) | 0.0191 (15) | −0.0013 (14) |
C14 | 0.0300 (18) | 0.0324 (16) | 0.0277 (17) | 0.0088 (13) | 0.0130 (14) | −0.0005 (12) |
C15 | 0.0144 (13) | 0.0179 (13) | 0.0149 (13) | 0.0012 (10) | 0.0044 (11) | −0.0018 (10) |
C16 | 0.0244 (16) | 0.0211 (15) | 0.0255 (16) | −0.0053 (12) | 0.0064 (13) | 0.0034 (11) |
C17 | 0.0250 (17) | 0.0250 (15) | 0.0251 (16) | −0.0018 (13) | 0.0029 (13) | 0.0064 (12) |
C18 | 0.0203 (16) | 0.0213 (14) | 0.0247 (16) | −0.0022 (12) | 0.0029 (13) | −0.0040 (11) |
C19 | 0.0225 (16) | 0.0200 (14) | 0.0260 (16) | −0.0054 (12) | 0.0051 (13) | 0.0011 (11) |
C20 | 0.0213 (15) | 0.0172 (13) | 0.0239 (15) | 0.0005 (11) | 0.0052 (13) | 0.0029 (11) |
N1 | 0.0255 (15) | 0.0162 (12) | 0.0562 (19) | −0.0038 (10) | 0.0207 (14) | −0.0067 (11) |
N2 | 0.0160 (12) | 0.0220 (12) | 0.0162 (12) | 0.0038 (9) | 0.0045 (10) | 0.0007 (9) |
N3 | 0.0226 (14) | 0.0356 (15) | 0.0189 (13) | 0.0044 (11) | 0.0016 (11) | −0.0055 (10) |
C1 | 0.0263 (16) | 0.0243 (15) | 0.0243 (16) | −0.0032 (13) | 0.0010 (13) | 0.0024 (12) |
C2 | 0.0255 (17) | 0.0315 (16) | 0.0195 (15) | −0.0023 (13) | 0.0088 (13) | −0.0049 (12) |
C3 | 0.0174 (15) | 0.0298 (16) | 0.0235 (15) | −0.0002 (12) | 0.0071 (12) | 0.0057 (12) |
C4 | 0.0203 (16) | 0.0248 (15) | 0.0230 (15) | 0.0001 (12) | 0.0020 (13) | 0.0043 (11) |
Cu1—N2 | 2.030 (2) | C16—H16 | 0.9500 |
Cu1—N3 | 2.116 (3) | C17—C18 | 1.406 (4) |
Cu1—N1 | 2.339 (3) | C17—H17 | 0.9500 |
Cu1—N1i | 2.339 (3) | C18—C19 | 1.399 (4) |
Cu1—N2i | 2.030 (2) | C19—C20 | 1.377 (4) |
Cu1—N3i | 2.116 (3) | C19—H19 | 0.9500 |
S11—O11 | 1.446 (2) | C20—H20 | 0.9500 |
S11—O12 | 1.456 (2) | N1—C1 | 1.464 (4) |
S11—N11 | 1.587 (2) | N1—H1A | 0.9200 |
S11—C15 | 1.762 (3) | N1—H1B | 0.9200 |
N11—C11 | 1.368 (3) | N2—C2 | 1.491 (4) |
N12—C12 | 1.334 (4) | N2—C3 | 1.485 (3) |
N12—C11 | 1.366 (3) | N2—H2 | 0.9300 |
N13—C14 | 1.339 (4) | N3—C4 | 1.481 (4) |
N13—C11 | 1.349 (3) | N3—H3A | 0.9200 |
N14—C18 | 1.370 (4) | N3—H3B | 0.9200 |
N14—H14A | 0.8800 | C1—C2 | 1.512 (4) |
N14—H14B | 0.8800 | C1—H1C | 0.9900 |
C12—C13 | 1.387 (4) | C1—H1D | 0.9900 |
C12—H12 | 0.9500 | C2—H2A | 0.9900 |
C13—C14 | 1.376 (4) | C2—H2B | 0.9900 |
C13—H13 | 0.9500 | C3—C4 | 1.519 (4) |
C14—H14 | 0.9500 | C3—H3C | 0.9900 |
C15—C20 | 1.390 (4) | C3—H3D | 0.9900 |
C15—C16 | 1.395 (4) | C4—H4A | 0.9900 |
C16—C17 | 1.376 (4) | C4—H4B | 0.9900 |
N1—Cu1—N1i | 180.0 | C19—C18—C17 | 118.2 (3) |
N2i—Cu1—N2 | 180.0 | C20—C19—C18 | 120.7 (3) |
N3i—Cu1—N3 | 180.0 | C20—C19—H19 | 119.6 |
N1i—Cu1—N2 | 99.56 (9) | C18—C19—H19 | 119.6 |
N1—Cu1—N2 | 80.44 (9) | C19—C20—C15 | 120.6 (3) |
N1i—Cu1—N2i | 80.44 (9) | C19—C20—H20 | 119.7 |
N1—Cu1—N2i | 99.56 (9) | C15—C20—H20 | 119.7 |
N1i—Cu1—N3 | 91.92 (9) | C1—N1—Cu1 | 106.90 (18) |
N1—Cu1—N3 | 88.08 (9) | C1—N1—H1A | 110.3 |
N1i—Cu1—N3i | 88.08 (9) | Cu1—N1—H1A | 110.3 |
N1—Cu1—N3i | 91.92 (9) | C1—N1—H1B | 110.3 |
N2i—Cu1—N3i | 84.30 (9) | Cu1—N1—H1B | 110.3 |
N2—Cu1—N3i | 95.70 (9) | H1A—N1—H1B | 108.6 |
N2i—Cu1—N3 | 95.70 (9) | C2—N2—C3 | 115.0 (2) |
N2—Cu1—N3 | 84.30 (9) | C2—N2—Cu1 | 109.48 (17) |
O11—S11—O12 | 113.71 (13) | C3—N2—Cu1 | 109.50 (16) |
O11—S11—N11 | 105.91 (12) | C2—N2—H2 | 107.5 |
O12—S11—N11 | 113.97 (12) | C3—N2—H2 | 107.5 |
O11—S11—C15 | 107.01 (12) | Cu1—N2—H2 | 107.5 |
O12—S11—C15 | 106.70 (12) | C4—N3—Cu1 | 108.35 (17) |
N11—S11—C15 | 109.30 (12) | C4—N3—H3A | 110.0 |
C11—N11—S11 | 120.72 (18) | Cu1—N3—H3A | 110.0 |
C12—N12—C11 | 116.4 (2) | C4—N3—H3B | 110.0 |
C14—N13—C11 | 116.6 (2) | Cu1—N3—H3B | 110.0 |
C18—N14—H14A | 120.0 | H3A—N3—H3B | 108.4 |
C18—N14—H14B | 120.0 | N1—C1—C2 | 111.0 (2) |
H14A—N14—H14B | 120.0 | N1—C1—H1C | 109.4 |
N13—C11—N12 | 124.5 (3) | C2—C1—H1C | 109.4 |
N13—C11—N11 | 121.8 (2) | N1—C1—H1D | 109.4 |
N12—C11—N11 | 113.7 (2) | C2—C1—H1D | 109.4 |
N12—C12—C13 | 123.1 (3) | H1C—C1—H1D | 108.0 |
N12—C12—H12 | 118.4 | N2—C2—C1 | 112.8 (2) |
C13—C12—H12 | 118.4 | N2—C2—H2A | 109.0 |
C14—C13—C12 | 116.0 (3) | C1—C2—H2A | 109.0 |
C14—C13—H13 | 122.0 | N2—C2—H2B | 109.0 |
C12—C13—H13 | 122.0 | C1—C2—H2B | 109.0 |
N13—C14—C13 | 123.3 (3) | H2A—C2—H2B | 107.8 |
N13—C14—H14 | 118.3 | N2—C3—C4 | 111.6 (2) |
C13—C14—H14 | 118.3 | N2—C3—H3C | 109.3 |
C20—C15—C16 | 119.1 (3) | C4—C3—H3C | 109.3 |
C20—C15—S11 | 121.5 (2) | N2—C3—H3D | 109.3 |
C16—C15—S11 | 119.4 (2) | C4—C3—H3D | 109.3 |
C17—C16—C15 | 120.4 (3) | H3C—C3—H3D | 108.0 |
C17—C16—H16 | 119.8 | N3—C4—C3 | 109.5 (2) |
C15—C16—H16 | 119.8 | N3—C4—H4A | 109.8 |
C16—C17—C18 | 120.8 (3) | C3—C4—H4A | 109.8 |
C16—C17—H17 | 119.6 | N3—C4—H4B | 109.8 |
C18—C17—H17 | 119.6 | C3—C4—H4B | 109.8 |
N14—C18—C19 | 120.0 (3) | H4A—C4—H4B | 108.2 |
N14—C18—C17 | 121.8 (3) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O12 | 0.92 | 2.06 | 2.887 (3) | 149 |
N1—H1A···N11ii | 0.92 | 2.24 | 3.121 (3) | 161 |
N2—H2···N12iii | 0.93 | 2.14 | 3.068 (3) | 174 |
N3—H3B···N11ii | 0.92 | 2.44 | 3.283 (3) | 152 |
N3—H3A···O12i | 0.92 | 2.20 | 3.071 (3) | 157 |
N14—H14A···N13iv | 0.88 | 2.47 | 3.161 (3) | 136 |
Symmetry codes: (i) −x, −y, −z; (ii) x, y−1, z; (iii) −x, −y+1, −z; (iv) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors acknowledge the School of Chemistry, Cardiff University, Wales.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Ye, B.-H., Ji, L.-N., Xue, F. & Mak, T. C. W. (1998). Polyhedron, 17, 2687–2692. Web of Science CSD CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.