organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-3,5-di­hydroxy­benzoic acid monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 19 January 2007; accepted 22 January 2007; online 23 February 2007)

The crystal packing of the title compound, C7H5BrO4·H2O, is influenced by O—H⋯O hydrogen bonds.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our studies radical-mediated competitive cyclization reactions (Kirsop et al., 2007[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2007). Acta Cryst. E63, o833-o835.]). Some crystal structures containing 4-bromo-3,5-dihydroxy­benzoic acid and its deprotonated anion in combination with 4,4-bipyridine derivatives have been described recently by Varughese & Pedireddi (2006[Varughese, S. & Pedireddi, V. R. (2006). Chem. Eur. J. 12, 1597-1609.]).

[Scheme 1]

Compound (I)[link] possesses normal geometric parameters (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The dihedral angle between the mean plane of the C1–C6 benzne ring and the plane of the C7/O1/O2 grouping is 4.5 (5)°.

The crystal packing of (I)[link] is influenced by O—H⋯O hydrogen bonds (Table 1[link]). First, classical inversion dimers involving O4—H4⋯O3iii and O4iii—Hiii⋯O3 bonds of adjacent head-to-head carboxylic acid groups are formed (Fig. 2[link]) [symmetry code: (iii) 1 − x, 1 − y, 1 − z]. Atom H4 appeared to be well ordered in a difference map, but the C7—O4 bond [1.288 (5) Å] is shorter and the C7=O3 bond [1.252 (5) Å] is longer than expected for a well ordered carboxylic acid group: the mean C—O and C=O bond lengths in carboxylic acid groups bound to an aromatic ring are 1.226 Å (σ = 0.020 Å) and 1.305 Å (σ = 0.020Å), respectively (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). This perhaps suggests partial disordering of H4 in (I)[link], i.e. it is bound to both O3 and O4, but this was not visible in a difference map.

These dimeric pairs of 4-bromo-3,5-dihydroxy­benzoic acid mol­ecules are then linked into an infinite sheet by way of O1—H1⋯O4i bonds (Fig. 2[link]). This results in distinctive R66(32) supra­molecular loops (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The O2–H2 hydroxyl group forms a hydrogen bond to a water mol­ecule O atom. In turn, the water mol­ecule acts as a donor for two more O—H⋯O inter­actions, to result in a three-dimensional network (Fig. 3[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The hydrogen bond is indicated by a double-dashed line.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing an R66(32) supra­molecular loop arising from the connectivity of six organic mol­ecules. Dashed lines indicate hydrogen bonds. [Symmetry codes as in Table 1[link]; additionally: (v) x, y, z − 1.]
[Figure 3]
Figure 3
Unit-cell contents for (I)[link], with O—H⋯O hydrogen bonds indicated by double-dashed lines. [Symmetry codes as in Table 1[link]; additionally: (vi) x, [{1\over 2}] − y, [{1\over 2}] + z; (vii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z.]

Experimental

A commercial sample of 4-bromo-3,5-dihydroxy­benzoic acid was recrystallized from water, to result in slightly translucent needles of (I)[link].

Crystal data
  • C7H5BrO4·H2O

  • Mr = 251.04

  • Monoclinic, P 21 /c

  • a = 3.7065 (1) Å

  • b = 14.4963 (7) Å

  • c = 15.4548 (8) Å

  • β = 94.209 (3)°

  • V = 828.16 (6) Å3

  • Z = 4

  • Dx = 2.013 Mg m−3

  • Mo Kα radiation

  • μ = 4.95 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.12 × 0.02 × 0.01 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.588, Tmax = 0.952

  • 9660 measured reflections

  • 1900 independent reflections

  • 1466 reflections with I > 2σ(I)

  • Rint = 0.085

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.076

  • S = 1.08

  • 1900 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + 1.4241P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.824 (19) 2.19 (3) 2.937 (4) 151 (4)
O2—H2⋯O5ii 0.835 (19) 1.82 (2) 2.641 (4) 169 (4)
O4—H4⋯O3iii 0.834 (19) 1.79 (2) 2.620 (4) 175 (5)
O5—H6⋯O2iv 0.828 (19) 2.18 (3) 2.918 (4) 149 (5)
O5—H7⋯O1 0.840 (19) 2.11 (2) 2.919 (4) 163 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

O-bound H atoms were located in a difference map and their positions were refined with the distance restraint O—H = 0.85 (2) Å. Uiso(H) was set equal to 1.2Ueq(O). C-bound H atoms were placed in idealized positions, with C—H = 0.95 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

4-Bromo-3,5-dihydroxybenzoic acid monohydrate top
Crystal data top
C7H5BrO4·H2OF(000) = 496
Mr = 251.04Dx = 2.013 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1924 reflections
a = 3.7065 (1) Åθ = 2.9–27.5°
b = 14.4963 (7) ŵ = 4.95 mm1
c = 15.4548 (8) ÅT = 120 K
β = 94.209 (3)°Needle, colourless
V = 828.16 (6) Å30.12 × 0.02 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1900 independent reflections
Radiation source: fine-focus sealed tube1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω and φ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 44
Tmin = 0.588, Tmax = 0.952k = 1818
9660 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difmap and geom
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + 1.4241P]
where P = (Fo2 + 2Fc2)/3
1900 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.65 e Å3
6 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9836 (10)0.1596 (3)0.3025 (3)0.0126 (9)
C20.8179 (9)0.2346 (3)0.2596 (3)0.0130 (9)
C30.7138 (10)0.3092 (3)0.3078 (3)0.0130 (9)
H30.59710.36040.27950.016*
C40.7790 (9)0.3094 (3)0.3969 (3)0.0120 (9)
C50.9462 (10)0.2347 (3)0.4396 (3)0.0138 (9)
H50.99060.23550.50100.017*
C61.0481 (10)0.1587 (3)0.3922 (3)0.0136 (9)
C70.6600 (10)0.3905 (3)0.4454 (3)0.0138 (9)
O10.7523 (8)0.23889 (19)0.1721 (2)0.0193 (7)
H10.798 (11)0.192 (2)0.145 (3)0.023*
O21.2073 (7)0.08285 (19)0.42874 (19)0.0185 (7)
H21.261 (11)0.092 (3)0.4814 (14)0.022*
O30.4904 (7)0.45364 (18)0.40498 (19)0.0182 (7)
O40.7399 (8)0.39319 (19)0.5279 (2)0.0208 (7)
H40.668 (11)0.4435 (19)0.546 (3)0.025*
Br11.13095 (10)0.05915 (3)0.23622 (3)0.01626 (13)
O50.4339 (8)0.4063 (2)0.0945 (2)0.0259 (8)
H60.559 (10)0.4521 (19)0.108 (3)0.031*
H70.561 (10)0.360 (2)0.110 (3)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0125 (18)0.009 (2)0.016 (2)0.0006 (15)0.0028 (17)0.0048 (17)
C20.0119 (19)0.0117 (19)0.016 (2)0.0020 (15)0.0017 (17)0.0004 (19)
C30.0139 (18)0.010 (2)0.016 (2)0.0010 (15)0.0024 (17)0.0059 (18)
C40.0131 (18)0.009 (2)0.014 (2)0.0002 (15)0.0047 (17)0.0015 (17)
C50.0149 (19)0.011 (2)0.015 (3)0.0008 (16)0.0021 (17)0.0003 (18)
C60.0153 (19)0.009 (2)0.016 (2)0.0005 (15)0.0003 (17)0.0036 (18)
C70.0142 (19)0.011 (2)0.016 (3)0.0023 (16)0.0020 (17)0.0001 (18)
O10.0331 (16)0.0136 (16)0.0111 (18)0.0046 (13)0.0005 (13)0.0024 (13)
O20.0272 (15)0.0150 (16)0.0127 (17)0.0028 (12)0.0032 (13)0.0031 (13)
O30.0242 (14)0.0116 (16)0.0184 (18)0.0038 (12)0.0005 (13)0.0024 (13)
O40.0350 (17)0.0121 (16)0.0154 (19)0.0052 (13)0.0027 (14)0.0045 (14)
Br10.0178 (2)0.0136 (2)0.0172 (2)0.00327 (18)0.00002 (15)0.0047 (2)
O50.0401 (19)0.0128 (16)0.023 (2)0.0043 (13)0.0081 (16)0.0011 (15)
Geometric parameters (Å, º) top
C1—C61.388 (6)C5—H50.9500
C1—C21.393 (5)C6—O21.352 (5)
C1—Br11.885 (4)C7—O31.252 (5)
C2—O11.356 (5)C7—O41.288 (5)
C2—C31.384 (5)O1—H10.824 (19)
C3—C41.381 (6)O2—H20.835 (19)
C3—H30.9500O4—H40.834 (19)
C4—C51.390 (5)O5—H60.828 (19)
C4—C71.479 (5)O5—H70.840 (19)
C5—C61.391 (5)
C6—C1—C2121.4 (4)C4—C5—H5120.2
C6—C1—Br1120.0 (3)C6—C5—H5120.2
C2—C1—Br1118.6 (3)O2—C6—C1117.6 (4)
O1—C2—C3117.6 (4)O2—C6—C5123.4 (4)
O1—C2—C1123.5 (4)C1—C6—C5119.0 (4)
C3—C2—C1118.9 (4)O3—C7—O4122.9 (4)
C4—C3—C2120.2 (4)O3—C7—C4119.1 (4)
C4—C3—H3119.9O4—C7—C4118.0 (4)
C2—C3—H3119.9C2—O1—H1116 (3)
C3—C4—C5120.8 (4)C6—O2—H2110 (3)
C3—C4—C7118.0 (4)C7—O4—H4108 (3)
C5—C4—C7121.2 (4)H6—O5—H7106 (3)
C4—C5—C6119.7 (4)
C6—C1—C2—O1179.4 (3)C2—C1—C6—O2179.4 (3)
Br1—C1—C2—O10.8 (5)Br1—C1—C6—O22.0 (5)
C6—C1—C2—C30.5 (5)C2—C1—C6—C50.3 (6)
Br1—C1—C2—C3179.1 (3)Br1—C1—C6—C5178.2 (3)
O1—C2—C3—C4179.0 (3)C4—C5—C6—O2179.1 (3)
C1—C2—C3—C41.0 (5)C4—C5—C6—C10.7 (5)
C2—C3—C4—C50.6 (5)C3—C4—C7—O33.4 (5)
C2—C3—C4—C7179.6 (3)C5—C4—C7—O3175.5 (3)
C3—C4—C5—C60.2 (5)C3—C4—C7—O4175.9 (3)
C7—C4—C5—C6178.7 (3)C5—C4—C7—O45.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.82 (2)2.19 (3)2.937 (4)151 (4)
O2—H2···O5ii0.84 (2)1.82 (2)2.641 (4)169 (4)
O4—H4···O3iii0.83 (2)1.79 (2)2.620 (4)175 (5)
O5—H6···O2iv0.83 (2)2.18 (3)2.918 (4)149 (5)
O5—H7···O10.84 (2)2.11 (2)2.919 (4)163 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the EPSRC's UK National Crystallography Service, University of Southampton, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2007). Acta Cryst. E63, o833–o835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVarughese, S. & Pedireddi, V. R. (2006). Chem. Eur. J. 12, 1597–1609.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds