metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ3-iodo-tetra­kis[(cyclo­hexyl­di­phenyl­phosphine-κP)copper(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, King Fahd University of Petroleum and Minerals, PO Box 5048, Dhahran 31261, Saudi Arabia, bDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh, and cSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 24 January 2007; accepted 5 February 2007; online 14 February 2007)

The molecule of the title compound, [Cu4I4(C18H21P)4], which lies on a crystallographic twofold rotation axis, displays a cubane-like Cu4I4 core.

Comment

Phosphine complexes of copper(I) halides [(CuXLn)m] (X = halogen and L = phosphine), which display a wide range of coordination geometries, are useful as catalysts, as precursors to organocopper reagents (Taylor, 1994[Taylor, R. J. K. (1994). Organocopper Reagents. A Practical Approach. Oxford University Press.]) and as starting materials for the preparation of heterometallic complexes (Albano et al., 1995[Albano, V. G., Busetto, L., Sabatino, M. C., Schmitz, P. & Zanotti, V. (1995). J. Chem. Soc. Dalton Trans. pp. 287-2093.]; Kudinov et al., 1993[Kudinov, A., Muratov, D., Rybinskaya, M. & Turpeinen, U. (1993). Mendeleev Commun. 2, 39-40.]). It was proposed that the title complex, (I)[link], has an irregular cubane structure (Churchill & Kalra, 1974a[Churchill, M. R. & Kalra, K. L. (1974a). Inorg. Chem. 13, 1065-1071.],b[Churchill, M. R. & Kalra, K. L. (1974b). Inorg. Chem. 13, 1427-1434.],c[Churchill, M. R. & Kalra, K. L. (1974c). Inorg. Chem. 13, 1899-1904.]; Churchill & Rotella, 1977[Churchill, M. R. & Rotella, F. J. (1977). Inorg. Chem. 16, 3267-3273.]), which is confirmed in the present study. The tetra­nuclear molecule lies on a crystallographic twofold rotation axis (Fig. 1[link]).

[Scheme 1]

The Cu4I4 core is a slightly irregular cubane with alternating copper(I) and iodide ions. The Cu atom exists in a tetra­hedral environment, being linked to three I atoms and to the P atom of the cyclo­hexyl­diphenyl­phosphine ligand.

The copper–iodine bond lengths show a significant range of values. The average of the bond lengths is in good agreement with the values of 2.6837 (13) and 2.6767 (15) Å in the Cu4I4 cores of other regular cubane-like adducts (Churchill & Kalra, 1974a[Churchill, M. R. & Kalra, K. L. (1974a). Inorg. Chem. 13, 1065-1071.],b[Churchill, M. R. & Kalra, K. L. (1974b). Inorg. Chem. 13, 1427-1434.],c[Churchill, M. R. & Kalra, K. L. (1974c). Inorg. Chem. 13, 1899-1904.]; Churchill & Rotella, 1977[Churchill, M. R. & Rotella, F. J. (1977). Inorg. Chem. 16, 3267-3273.]). The six copper–copper contact distances are similar to reported values. The iodine–iodine contacts are also comparable to reported values, as are the copper–phospho­rus bond distances.

There are van der Waals repulsive forces that may be responsible for the distortion of the six faces of the cubane core; the distortion manifests itself in the small Cu—I—Cu angles and in the non-planarity of the four-membered rings defining the faces of the cube.

[Figure 1]
Figure 1
The central coren of (I)[link], showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The symmetry code is given in Table 1[link].
[Figure 2]
Figure 2
The molecular structure of complex (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Experimental

Cyclo­hexyl­diphenyl­phosphine (0.235 g, 1 mmol) and copper(I) iodide (0.135 g, 2 mmol) were dissolved in 30 ml of acetone. After refluxing the mixture for one day, the hot solution was filtered. Cuboidal crystals were obtained upon recrystallization from the same solvent.

Crystal data
  • [Cu4I4(C18H21P)4]

  • Mr = 1835.03

  • Monoclinic, C 2/c

  • a = 22.7712 (3) Å

  • b = 15.6704 (3) Å

  • c = 21.9311 (5) Å

  • β = 116.054 (1)°

  • V = 7030.5 (2) Å3

  • Z = 4

  • Dx = 1.734 Mg m−3

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 150 (2) K

  • Cuboid, colorless

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.501, Tmax = 0.578 (expected range = 0.469–0.540)

  • 63740 measured reflections

  • 8032 independent reflections

  • 6289 reflections with I > 2σ(I)

  • Rint = 0.127

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.125

  • S = 1.21

  • 8032 reflections

  • 331 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + 97.862P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—Cu1 2.6976 (11)
I1—Cu1i 2.6849 (10)
I1—Cu2 2.6645 (10)
I2—Cu2 2.6543 (11)
I2—Cu1 2.7077 (10)
I2—Cu2i 2.7667 (11)
Cu1—Cu2 2.8631 (13)
Cu1—Cu2i 3.0292 (13)
Cu2—Cu2i 3.0570 (18)
Cu1i—I1—Cu1 70.07 (4)
Cu2—I1—Cu1i 68.98 (3)
Cu2—I1—Cu1 64.54 (3)
Cu2—I2—Cu1 64.54 (3)
Cu2—I2—Cu2i 68.62 (3)
Cu1—I2—Cu2i 67.18 (3)
I1i—Cu1—I1 103.98 (3)
I1i—Cu1—I2 107.90 (3)
I1—Cu1—I2 112.27 (4)
I1i—Cu1—Cu2 107.34 (4)
I1—Cu1—Cu2 57.17 (3)
I2—Cu1—Cu2 56.83 (3)
I1i—Cu1—Cu2i 55.19 (3)
I1—Cu1—Cu2i 102.49 (4)
I2—Cu1—Cu2i 57.34 (3)
Cu2—Cu1—Cu2i 62.43 (4)
I2—Cu2—I1 115.10 (4)
I2—Cu2—I2i 104.49 (3)
I1—Cu2—I2i 106.78 (4)
I2—Cu2—Cu1 58.64 (3)
I1—Cu2—Cu1 58.29 (3)
I2i—Cu2—Cu1 107.27 (4)
I2—Cu2—Cu1i 105.64 (4)
I1—Cu2—Cu1i 55.83 (3)
I2i—Cu2—Cu1i 55.48 (3)
Cu1—Cu2—Cu1i 63.18 (4)
I2—Cu2—Cu2i 57.43 (3)
I1—Cu2—Cu2i 102.56 (2)
I2i—Cu2—Cu2i 53.95 (3)
Cu1—Cu2—Cu2i 61.45 (3)
Cu1i—Cu2—Cu2i 56.12 (3)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

The data did not diffract well and the mosaicity was high so the Rint value was high. H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding atoms, with Uiso(H) values of 1.2Ueq of the attached C atoms. The final difference Fourier map had a large peak/hole 1.00 Å from atom C14..

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Tetra-µ3-iodo-tetrakis[(cyclohexyldiphenylphosphine-κP)copper(I)] top
Crystal data top
[Cu4I4(C18H21P)4]F(000) = 3616
Mr = 1835.03Dx = 1.734 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8077 reflections
a = 22.7712 (3) Åθ = 2.9–27.5°
b = 15.6704 (3) ŵ = 3.08 mm1
c = 21.9311 (5) ÅT = 150 K
β = 116.054 (1)°Cuboid, colorless
V = 7030.5 (2) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
8032 independent reflections
Radiation source: fine-focus sealed tube6289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.127
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scanh = 2929
Tmin = 0.501, Tmax = 0.578k = 2019
63740 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + 97.862P]
where P = (Fo2 + 2Fc2)/3
8032 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 1.01 e Å3
24 restraintsΔρmin = 0.92 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50557 (2)0.49256 (3)0.65599 (2)0.03452 (13)
I20.39523 (2)0.69922 (3)0.70308 (2)0.03321 (12)
Cu10.42457 (5)0.53083 (6)0.71218 (5)0.0394 (2)
Cu20.49587 (5)0.65787 (6)0.67853 (5)0.0381 (2)
P10.33129 (9)0.45435 (12)0.66404 (9)0.0316 (4)
P20.51053 (10)0.72918 (12)0.59690 (10)0.0360 (4)
C10.2712 (2)0.4907 (3)0.58054 (19)0.0334 (16)
C20.2911 (2)0.5474 (3)0.5445 (2)0.046 (2)
H20.33490.56720.56360.055*
C30.2467 (3)0.5752 (3)0.4806 (2)0.064 (3)
H30.26030.61400.45600.076*
C40.1825 (3)0.5463 (4)0.4526 (2)0.064 (3)
H40.15220.56530.40890.076*
C50.1626 (2)0.4896 (4)0.4886 (3)0.056 (2)
H50.11870.46980.46950.068*
C60.2069 (2)0.4618 (3)0.5526 (2)0.050 (2)
H60.19340.42300.57720.060*
C70.2815 (3)0.4538 (3)0.7114 (3)0.0413 (18)
C80.2564 (3)0.5324 (3)0.7178 (3)0.053 (2)
H80.26660.58220.69970.063*
C90.2163 (3)0.5379 (4)0.7505 (3)0.071 (3)
H90.19910.59160.75490.085*
C100.2013 (3)0.4650 (5)0.7769 (3)0.078 (3)
H100.17400.46880.79930.094*
C110.2265 (3)0.3864 (4)0.7706 (3)0.061 (3)
H110.21620.33650.78860.073*
C120.2665 (3)0.3808 (3)0.7378 (3)0.059 (2)
H120.28370.32710.73350.071*
C130.3412 (3)0.3405 (4)0.6489 (3)0.0362 (16)
H130.30010.31090.64260.043*
C140.3493 (5)0.3264 (4)0.5848 (3)0.056 (2)
H14A0.38790.35850.58780.067*
H14B0.31030.34870.54550.067*
C150.3578 (5)0.2322 (5)0.5734 (3)0.063 (3)
H15A0.36620.22590.53300.075*
H15B0.31700.20120.56450.075*
C160.4143 (5)0.1931 (6)0.6349 (4)0.077 (3)
H16A0.41710.13130.62720.093*
H16B0.45590.22000.64120.093*
C170.4044 (4)0.2062 (4)0.6986 (3)0.051 (2)
H17A0.36480.17480.69390.061*
H17B0.44230.18260.73830.061*
C180.3967 (4)0.3002 (4)0.7104 (3)0.0455 (19)
H18A0.43810.33040.72000.055*
H18B0.38790.30650.75050.055*
C190.5802 (2)0.6838 (3)0.5874 (3)0.045 (2)
C200.5708 (3)0.6110 (3)0.5480 (3)0.055 (2)
H200.52810.58860.52300.066*
C210.6240 (4)0.5710 (3)0.5451 (3)0.070 (3)
H210.61760.52120.51810.084*
C220.6866 (3)0.6037 (4)0.5816 (4)0.081 (4)
H220.72290.57640.57970.097*
C230.6959 (2)0.6765 (4)0.6210 (3)0.072 (3)
H230.73870.69890.64600.086*
C240.6427 (3)0.7166 (3)0.6239 (3)0.048 (2)
H240.64910.76630.65090.057*
C250.5256 (3)0.8451 (2)0.6111 (3)0.047 (2)
C260.5547 (3)0.8937 (3)0.5788 (3)0.0433 (19)
H260.57080.86680.55040.052*
C270.5602 (3)0.9816 (3)0.5881 (3)0.054 (2)
H270.58011.01470.56610.065*
C280.5366 (3)1.0209 (2)0.6297 (3)0.048 (2)
H280.54041.08100.63610.057*
C290.5075 (3)0.9724 (3)0.6620 (3)0.052 (2)
H290.49130.99930.69040.062*
C300.5019 (3)0.8845 (3)0.6526 (3)0.0422 (19)
H300.48200.85130.67470.051*
C310.4444 (3)0.7277 (6)0.5117 (3)0.051 (2)
H310.43580.66520.50340.062*
C320.4591 (4)0.7531 (6)0.4546 (3)0.060 (3)
H32A0.49360.71480.45430.072*
H32B0.47700.81170.46310.072*
C330.4022 (4)0.7507 (6)0.3855 (3)0.068 (3)
H33A0.41370.78380.35390.081*
H33B0.39490.69090.36950.081*
C340.3397 (4)0.7850 (6)0.3821 (4)0.074 (3)
H34A0.30350.76760.33840.088*
H34B0.34180.84810.38260.088*
C350.3240 (3)0.7565 (7)0.4384 (4)0.075 (3)
H35A0.28870.79300.43870.090*
H35C0.30720.69730.42910.090*
C360.3807 (3)0.7593 (6)0.5073 (3)0.052 (2)
H36C0.38670.81910.52360.062*
H36A0.36960.72500.53870.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0349 (3)0.0310 (2)0.0335 (2)0.0004 (2)0.0113 (2)0.00226 (19)
I20.0356 (3)0.0336 (2)0.0289 (2)0.0052 (2)0.01262 (19)0.00124 (19)
Cu10.0346 (5)0.0368 (5)0.0397 (5)0.0026 (4)0.0099 (4)0.0012 (4)
Cu20.0452 (6)0.0348 (5)0.0365 (5)0.0001 (4)0.0199 (4)0.0016 (4)
P10.0307 (10)0.0329 (9)0.0297 (9)0.0001 (8)0.0118 (8)0.0014 (8)
P20.0447 (12)0.0320 (10)0.0338 (10)0.0043 (9)0.0196 (9)0.0018 (8)
C10.033 (4)0.035 (4)0.028 (3)0.002 (3)0.010 (3)0.002 (3)
C20.051 (5)0.054 (5)0.030 (4)0.000 (4)0.016 (4)0.004 (4)
C30.087 (8)0.063 (6)0.039 (5)0.011 (6)0.026 (5)0.015 (4)
C40.065 (7)0.076 (7)0.032 (4)0.027 (5)0.004 (4)0.005 (4)
C50.038 (5)0.071 (6)0.049 (5)0.003 (5)0.009 (4)0.014 (5)
C60.047 (5)0.056 (5)0.034 (4)0.001 (4)0.006 (4)0.001 (4)
C70.043 (5)0.052 (5)0.034 (4)0.003 (4)0.021 (4)0.004 (4)
C80.063 (6)0.054 (5)0.050 (5)0.003 (5)0.033 (5)0.004 (4)
C90.082 (8)0.078 (7)0.066 (7)0.010 (6)0.044 (6)0.003 (6)
C100.071 (8)0.109 (9)0.080 (8)0.009 (7)0.055 (7)0.000 (7)
C110.045 (5)0.089 (7)0.057 (6)0.006 (5)0.030 (5)0.014 (5)
C120.066 (7)0.064 (6)0.059 (6)0.005 (5)0.038 (5)0.005 (5)
C130.040 (4)0.031 (4)0.038 (4)0.002 (3)0.018 (3)0.001 (3)
C140.069 (6)0.052 (5)0.036 (4)0.009 (5)0.013 (4)0.006 (4)
C150.076 (7)0.048 (5)0.051 (5)0.011 (5)0.016 (5)0.018 (4)
C160.094 (8)0.058 (6)0.062 (6)0.032 (6)0.017 (6)0.004 (5)
C170.043 (5)0.045 (5)0.063 (6)0.015 (4)0.022 (4)0.015 (4)
C180.051 (5)0.038 (4)0.046 (5)0.001 (4)0.021 (4)0.001 (4)
C190.061 (6)0.035 (4)0.051 (5)0.002 (4)0.036 (4)0.002 (4)
C200.078 (7)0.049 (5)0.051 (5)0.002 (5)0.039 (5)0.005 (4)
C210.091 (9)0.058 (6)0.072 (7)0.021 (6)0.046 (7)0.005 (5)
C220.098 (10)0.083 (8)0.080 (8)0.039 (7)0.056 (8)0.019 (7)
C230.060 (7)0.060 (6)0.103 (9)0.001 (5)0.041 (6)0.004 (6)
C240.053 (5)0.041 (4)0.045 (5)0.006 (4)0.019 (4)0.009 (4)
C250.062 (6)0.036 (4)0.048 (5)0.006 (4)0.030 (4)0.003 (4)
C260.050 (5)0.039 (4)0.044 (5)0.008 (4)0.023 (4)0.006 (4)
C270.075 (7)0.038 (4)0.060 (5)0.002 (4)0.040 (5)0.008 (4)
C280.048 (5)0.034 (4)0.056 (5)0.012 (4)0.017 (4)0.007 (4)
C290.074 (6)0.035 (4)0.060 (5)0.006 (4)0.042 (5)0.002 (4)
C300.059 (5)0.035 (4)0.045 (5)0.006 (4)0.034 (4)0.000 (3)
C310.053 (5)0.064 (6)0.033 (4)0.013 (5)0.016 (4)0.001 (4)
C320.088 (8)0.049 (5)0.039 (5)0.001 (5)0.024 (5)0.001 (4)
C330.089 (8)0.055 (6)0.054 (6)0.020 (6)0.027 (6)0.004 (5)
C340.100 (9)0.050 (6)0.042 (5)0.003 (6)0.005 (5)0.004 (4)
C350.057 (6)0.084 (8)0.067 (7)0.003 (6)0.010 (5)0.024 (6)
C360.059 (6)0.047 (5)0.042 (5)0.008 (4)0.015 (4)0.007 (4)
Geometric parameters (Å, º) top
I1—Cu12.6976 (11)C15—H15A0.9900
I1—Cu1i2.6849 (10)C15—H15B0.9900
I1—Cu22.6645 (10)C16—C171.523 (8)
I2—Cu22.6543 (11)C16—H16A0.9900
I2—Cu12.7077 (10)C16—H16B0.9900
I2—Cu2i2.7667 (11)C17—C181.519 (7)
Cu1—P12.257 (2)C17—H17A0.9900
Cu1—I1i2.6849 (10)C17—H17B0.9900
Cu1—Cu22.8631 (13)C18—H18A0.9900
Cu1—Cu2i3.0292 (13)C18—H18B0.9900
Cu2—P22.256 (2)C19—C201.3900
Cu2—I2i2.7667 (11)C19—C241.3900
Cu2—Cu1i3.0292 (13)C20—C211.3900
Cu2—Cu2i3.0570 (18)C20—H200.9500
P1—C11.830 (4)C21—C221.3900
P1—C71.844 (4)C21—H210.9500
P1—C131.846 (6)C22—C231.3900
P2—C311.814 (7)C22—H220.9500
P2—C191.831 (5)C23—C241.3900
P2—C251.849 (4)C23—H230.9500
C1—C21.3900C24—H240.9500
C1—C61.3900C25—C261.3900
C2—C31.3900C25—C301.3900
C2—H20.9500C26—C271.3900
C3—C41.3900C26—H260.9500
C3—H30.9500C27—C281.3900
C4—C51.3900C27—H270.9500
C4—H40.9500C28—C291.3900
C5—C61.3900C28—H280.9500
C5—H50.9500C29—C301.3900
C6—H60.9500C29—H290.9500
C7—C81.3900C30—H300.9500
C7—C121.3900C31—C321.485 (7)
C8—C91.3900C31—C361.494 (7)
C8—H80.9500C31—H311.0000
C9—C101.3900C32—C331.500 (7)
C9—H90.9500C32—H32A0.9900
C10—C111.3900C32—H32B0.9900
C10—H100.9500C33—C341.491 (8)
C11—C121.3900C33—H33A0.9900
C11—H110.9500C33—H33B0.9900
C12—H120.9500C34—C351.496 (8)
C13—C141.511 (7)C34—H34A0.9900
C13—C181.523 (7)C34—H34B0.9900
C13—H131.0000C35—C361.496 (7)
C14—C151.523 (7)C35—H35A0.9900
C14—H14A0.9900C35—H35C0.9900
C14—H14B0.9900C36—H36C0.9900
C15—C161.526 (8)C36—H36A0.9900
Cu1i—I1—Cu170.07 (4)C13—C14—H14B109.3
Cu2—I1—Cu1i68.98 (3)C15—C14—H14B109.3
Cu2—I1—Cu164.54 (3)H14A—C14—H14B107.9
Cu2—I2—Cu164.54 (3)C14—C15—C16111.3 (6)
Cu2—I2—Cu2i68.62 (3)C14—C15—H15A109.4
Cu1—I2—Cu2i67.18 (3)C16—C15—H15A109.4
P1—Cu1—I1i112.08 (6)C14—C15—H15B109.4
P1—Cu1—I1111.11 (6)C16—C15—H15B109.4
I1i—Cu1—I1103.98 (3)H15A—C15—H15B108.0
P1—Cu1—I2109.39 (6)C17—C16—C15110.4 (6)
I1i—Cu1—I2107.90 (3)C17—C16—H16A109.6
I1—Cu1—I2112.27 (4)C15—C16—H16A109.6
P1—Cu1—Cu2140.58 (6)C17—C16—H16B109.6
I1i—Cu1—Cu2107.34 (4)C15—C16—H16B109.6
I1—Cu1—Cu257.17 (3)H16A—C16—H16B108.1
I2—Cu1—Cu256.83 (3)C18—C17—C16111.1 (5)
P1—Cu1—Cu2i146.32 (7)C18—C17—H17A109.4
I1i—Cu1—Cu2i55.19 (3)C16—C17—H17A109.4
I1—Cu1—Cu2i102.49 (4)C18—C17—H17B109.4
I2—Cu1—Cu2i57.34 (3)C16—C17—H17B109.4
Cu2—Cu1—Cu2i62.43 (4)H17A—C17—H17B108.0
P2—Cu2—I2118.81 (7)C17—C18—C13111.4 (5)
P2—Cu2—I1106.33 (6)C17—C18—H18A109.4
I2—Cu2—I1115.10 (4)C13—C18—H18A109.4
P2—Cu2—I2i104.17 (6)C17—C18—H18B109.4
I2—Cu2—I2i104.49 (3)C13—C18—H18B109.4
I1—Cu2—I2i106.78 (4)H18A—C18—H18B108.0
P2—Cu2—Cu1147.91 (7)C20—C19—C24120.0
I2—Cu2—Cu158.64 (3)C20—C19—P2119.1 (3)
I1—Cu2—Cu158.29 (3)C24—C19—P2120.7 (3)
I2i—Cu2—Cu1107.27 (4)C19—C20—C21120.0
P2—Cu2—Cu1i135.06 (7)C19—C20—H20120.0
I2—Cu2—Cu1i105.64 (4)C21—C20—H20120.0
I1—Cu2—Cu1i55.83 (3)C20—C21—C22120.0
I2i—Cu2—Cu1i55.48 (3)C20—C21—H21120.0
Cu1—Cu2—Cu1i63.18 (4)C22—C21—H21120.0
P2—Cu2—Cu2i148.19 (6)C23—C22—C21120.0
I2—Cu2—Cu2i57.43 (3)C23—C22—H22120.0
I1—Cu2—Cu2i102.56 (2)C21—C22—H22120.0
I2i—Cu2—Cu2i53.95 (3)C22—C23—C24120.0
Cu1—Cu2—Cu2i61.45 (3)C22—C23—H23120.0
Cu1i—Cu2—Cu2i56.12 (3)C24—C23—H23120.0
C1—P1—C7101.0 (3)C23—C24—C19120.0
C1—P1—C13102.6 (3)C23—C24—H24120.0
C7—P1—C13104.6 (3)C19—C24—H24120.0
C1—P1—Cu1116.07 (18)C26—C25—C30120.0
C7—P1—Cu1115.1 (2)C26—C25—P2123.1 (3)
C13—P1—Cu1115.6 (2)C30—C25—P2116.7 (3)
C31—P2—C19104.2 (3)C27—C26—C25120.0
C31—P2—C25101.2 (4)C27—C26—H26120.0
C19—P2—C25107.2 (3)C25—C26—H26120.0
C31—P2—Cu2117.8 (3)C28—C27—C26120.0
C19—P2—Cu2109.6 (2)C28—C27—H27120.0
C25—P2—Cu2115.74 (18)C26—C27—H27120.0
C2—C1—C6120.0C27—C28—C29120.0
C2—C1—P1118.7 (3)C27—C28—H28120.0
C6—C1—P1121.3 (3)C29—C28—H28120.0
C3—C2—C1120.0C30—C29—C28120.0
C3—C2—H2120.0C30—C29—H29120.0
C1—C2—H2120.0C28—C29—H29120.0
C4—C3—C2120.0C29—C30—C25120.0
C4—C3—H3120.0C29—C30—H30120.0
C2—C3—H3120.0C25—C30—H30120.0
C5—C4—C3120.0C32—C31—C36115.4 (5)
C5—C4—H4120.0C32—C31—P2118.2 (5)
C3—C4—H4120.0C36—C31—P2113.9 (5)
C4—C5—C6120.0C32—C31—H31101.9
C4—C5—H5120.0C36—C31—H31101.9
C6—C5—H5120.0P2—C31—H31101.9
C5—C6—C1120.0C31—C32—C33115.5 (6)
C5—C6—H6120.0C31—C32—H32A108.4
C1—C6—H6120.0C33—C32—H32A108.4
C8—C7—C12120.0C31—C32—H32B108.4
C8—C7—P1115.7 (3)C33—C32—H32B108.4
C12—C7—P1124.2 (3)H32A—C32—H32B107.5
C9—C8—C7120.0C34—C33—C32115.1 (6)
C9—C8—H8120.0C34—C33—H33A108.5
C7—C8—H8120.0C32—C33—H33A108.5
C10—C9—C8120.0C34—C33—H33B108.5
C10—C9—H9120.0C32—C33—H33B108.5
C8—C9—H9120.0H33A—C33—H33B107.5
C9—C10—C11120.0C33—C34—C35114.8 (6)
C9—C10—H10120.0C33—C34—H34A108.6
C11—C10—H10120.0C35—C34—H34A108.6
C10—C11—C12120.0C33—C34—H34B108.6
C10—C11—H11120.0C35—C34—H34B108.6
C12—C11—H11120.0H34A—C34—H34B107.6
C11—C12—C7120.0C36—C35—C34114.3 (6)
C11—C12—H12120.0C36—C35—H35A108.7
C7—C12—H12120.0C34—C35—H35A108.7
C14—C13—C18111.7 (5)C36—C35—H35C108.7
C14—C13—P1112.6 (4)C34—C35—H35C108.7
C18—C13—P1111.2 (4)H35A—C35—H35C107.6
C14—C13—H13107.0C31—C36—C35115.9 (5)
C18—C13—H13107.0C31—C36—H36C108.3
P1—C13—H13107.0C35—C36—H36C108.3
C13—C14—C15111.8 (6)C31—C36—H36A108.3
C13—C14—H14A109.3C35—C36—H36A108.3
C15—C14—H14A109.3H36C—C36—H36A107.4
Cu2—I1—Cu1—P1137.42 (7)I2—Cu2—P2—C2562.0 (2)
Cu1i—I1—Cu1—P1147.05 (6)I1—Cu2—P2—C25166.3 (2)
Cu2—I1—Cu1—I1i101.82 (4)I2i—Cu2—P2—C2553.7 (2)
Cu1i—I1—Cu1—I1i26.29 (4)Cu1—Cu2—P2—C25138.1 (2)
Cu2—I1—Cu1—I214.56 (3)Cu1i—Cu2—P2—C25108.6 (2)
Cu1i—I1—Cu1—I290.08 (3)Cu2i—Cu2—P2—C2511.8 (3)
Cu1i—I1—Cu1—Cu275.53 (3)C7—P1—C1—C2140.6 (3)
Cu2—I1—Cu1—Cu2i45.01 (4)C13—P1—C1—C2111.6 (4)
Cu1i—I1—Cu1—Cu2i30.52 (4)Cu1—P1—C1—C215.5 (4)
Cu2—I2—Cu1—P1138.44 (7)C7—P1—C1—C640.3 (4)
Cu2i—I2—Cu1—P1145.31 (7)C13—P1—C1—C667.5 (4)
Cu2—I2—Cu1—I1i99.38 (4)Cu1—P1—C1—C6165.4 (2)
Cu2i—I2—Cu1—I1i23.13 (3)C6—C1—C2—C30.0
Cu2—I2—Cu1—I114.61 (3)P1—C1—C2—C3179.1 (4)
Cu2i—I2—Cu1—I190.86 (4)C1—C2—C3—C40.0
Cu2i—I2—Cu1—Cu276.25 (4)C2—C3—C4—C50.0
Cu2—I2—Cu1—Cu2i76.25 (4)C3—C4—C5—C60.0
Cu1—I2—Cu2—P2142.86 (8)C4—C5—C6—C10.0
Cu2i—I2—Cu2—P2143.09 (7)C2—C1—C6—C50.0
Cu1—I2—Cu2—I115.13 (3)P1—C1—C6—C5179.1 (4)
Cu2i—I2—Cu2—I189.18 (3)C1—P1—C7—C861.8 (4)
Cu1—I2—Cu2—I2i101.63 (4)C13—P1—C7—C8168.0 (3)
Cu2i—I2—Cu2—I2i27.58 (4)Cu1—P1—C7—C864.0 (3)
Cu2i—I2—Cu2—Cu174.05 (3)C1—P1—C7—C12115.8 (4)
Cu1—I2—Cu2—Cu1i44.01 (4)C13—P1—C7—C129.6 (4)
Cu2i—I2—Cu2—Cu1i30.04 (4)Cu1—P1—C7—C12118.4 (3)
Cu1—I2—Cu2—Cu2i74.05 (3)C12—C7—C8—C90.0
Cu1i—I1—Cu2—P2133.84 (7)P1—C7—C8—C9177.7 (4)
Cu1—I1—Cu2—P2148.96 (7)C7—C8—C9—C100.0
Cu1i—I1—Cu2—I292.39 (4)C8—C9—C10—C110.0
Cu1—I1—Cu2—I215.19 (3)C9—C10—C11—C120.0
Cu1i—I1—Cu2—I2i23.07 (3)C10—C11—C12—C70.0
Cu1—I1—Cu2—I2i100.27 (4)C8—C7—C12—C110.0
Cu1i—I1—Cu2—Cu177.20 (4)P1—C7—C12—C11177.5 (5)
Cu1—I1—Cu2—Cu1i77.20 (4)C1—P1—C13—C1446.0 (6)
Cu1i—I1—Cu2—Cu2i32.70 (4)C7—P1—C13—C14151.1 (5)
Cu1—I1—Cu2—Cu2i44.50 (4)Cu1—P1—C13—C1481.3 (6)
P1—Cu1—Cu2—P214.99 (18)C1—P1—C13—C18172.3 (5)
I1i—Cu1—Cu2—P2164.42 (12)C7—P1—C13—C1882.7 (5)
I1—Cu1—Cu2—P268.70 (13)Cu1—P1—C13—C1845.0 (5)
I2—Cu1—Cu2—P295.17 (13)C18—C13—C14—C1553.7 (9)
Cu2i—Cu1—Cu2—P2162.46 (14)P1—C13—C14—C15179.7 (6)
P1—Cu1—Cu2—I280.18 (10)C13—C14—C15—C1654.8 (11)
I1i—Cu1—Cu2—I2100.41 (4)C14—C15—C16—C1756.0 (11)
I1—Cu1—Cu2—I2163.87 (4)C15—C16—C17—C1856.7 (10)
Cu2i—Cu1—Cu2—I267.29 (3)C16—C17—C18—C1355.9 (9)
P1—Cu1—Cu2—I183.69 (10)C14—C13—C18—C1754.3 (8)
I1i—Cu1—Cu2—I195.73 (4)P1—C13—C18—C17179.0 (5)
I2—Cu1—Cu2—I1163.87 (4)C31—P2—C19—C2044.7 (4)
Cu2i—Cu1—Cu2—I1128.84 (4)C25—P2—C19—C20151.5 (3)
P1—Cu1—Cu2—I2i176.92 (9)Cu2—P2—C19—C2082.2 (3)
I1i—Cu1—Cu2—I2i3.67 (5)C31—P2—C19—C24141.2 (4)
I1—Cu1—Cu2—I2i99.39 (4)C25—P2—C19—C2434.5 (4)
I2—Cu1—Cu2—I2i96.74 (4)Cu2—P2—C19—C2491.8 (3)
Cu2i—Cu1—Cu2—I2i29.45 (3)C24—C19—C20—C210.0
P1—Cu1—Cu2—Cu1i148.38 (11)P2—C19—C20—C21174.1 (4)
I1i—Cu1—Cu2—Cu1i31.03 (4)C19—C20—C21—C220.0
I1—Cu1—Cu2—Cu1i64.69 (3)C20—C21—C22—C230.0
I2—Cu1—Cu2—Cu1i131.44 (4)C21—C22—C23—C240.0
Cu2i—Cu1—Cu2—Cu1i64.15 (4)C22—C23—C24—C190.0
P1—Cu1—Cu2—Cu2i147.47 (11)C20—C19—C24—C230.0
I1i—Cu1—Cu2—Cu2i33.12 (4)P2—C19—C24—C23174.0 (4)
I1—Cu1—Cu2—Cu2i128.84 (4)C31—P2—C25—C2671.7 (4)
I2—Cu1—Cu2—Cu2i67.29 (3)C19—P2—C25—C2637.2 (4)
I1i—Cu1—P1—C1166.9 (2)Cu2—P2—C25—C26159.8 (3)
I1—Cu1—P1—C177.2 (2)C31—P2—C25—C30103.8 (4)
I2—Cu1—P1—C147.3 (2)C19—P2—C25—C30147.3 (3)
Cu2—Cu1—P1—C113.7 (2)Cu2—P2—C25—C3024.7 (4)
Cu2i—Cu1—P1—C1107.0 (2)C30—C25—C26—C270.0
I1i—Cu1—P1—C749.3 (2)P2—C25—C26—C27175.4 (5)
I1—Cu1—P1—C7165.2 (2)C25—C26—C27—C280.0
I2—Cu1—P1—C770.3 (2)C26—C27—C28—C290.0
Cu2—Cu1—P1—C7131.3 (2)C27—C28—C29—C300.0
Cu2i—Cu1—P1—C710.6 (3)C28—C29—C30—C250.0
I1i—Cu1—P1—C1372.9 (2)C26—C25—C30—C290.0
I1—Cu1—P1—C1343.0 (2)P2—C25—C30—C29175.6 (4)
I2—Cu1—P1—C13167.5 (2)C19—P2—C31—C3241.9 (8)
Cu2—Cu1—P1—C13106.5 (2)C25—P2—C31—C3269.2 (7)
Cu2i—Cu1—P1—C13132.7 (2)Cu2—P2—C31—C32163.6 (6)
I2—Cu2—P2—C3157.8 (3)C19—P2—C31—C36177.8 (6)
I1—Cu2—P2—C3173.9 (3)C25—P2—C31—C3671.1 (6)
I2i—Cu2—P2—C31173.5 (3)Cu2—P2—C31—C3656.1 (7)
Cu1—Cu2—P2—C3118.2 (4)C36—C31—C32—C3340.0 (11)
Cu1i—Cu2—P2—C31131.5 (3)P2—C31—C32—C33179.8 (7)
Cu2i—Cu2—P2—C31131.6 (3)C31—C32—C33—C3442.1 (11)
I2—Cu2—P2—C19176.71 (19)C32—C33—C34—C3544.2 (12)
I1—Cu2—P2—C1945.0 (2)C33—C34—C35—C3644.2 (12)
I2i—Cu2—P2—C1967.6 (2)C32—C31—C36—C3540.6 (11)
Cu1—Cu2—P2—C19100.7 (2)P2—C31—C36—C35177.9 (7)
Cu1i—Cu2—P2—C1912.7 (2)C34—C35—C36—C3142.5 (12)
Cu2i—Cu2—P2—C19109.5 (2)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

ZSS acknowledges King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for financial support.

References

First citationAlbano, V. G., Busetto, L., Sabatino, M. C., Schmitz, P. & Zanotti, V. (1995). J. Chem. Soc. Dalton Trans. pp. 287–2093.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChurchill, M. R. & Kalra, K. L. (1974a). Inorg. Chem. 13, 1065–1071.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Kalra, K. L. (1974b). Inorg. Chem. 13, 1427–1434.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Kalra, K. L. (1974c). Inorg. Chem. 13, 1899–1904.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Rotella, F. J. (1977). Inorg. Chem. 16, 3267–3273.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKudinov, A., Muratov, D., Rybinskaya, M. & Turpeinen, U. (1993). Mendeleev Commun. 2, 39–40.  CSD CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTaylor, R. J. K. (1994). Organocopper Reagents. A Practical Approach. Oxford University Press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds