metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazinium hydrogenarsenate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 14 February 2007; accepted 15 February 2007; online 28 February 2007)

In the title compound, C4H12N22+·HAsO42−·H2O, the component species inter­act by way of N—H⋯O and O—H⋯O hydrogen bonds, the latter leading to infinite sheets of HAsO42− anions and water mol­ecules containing R66(18) loops. The asymmetric unit contains one anion, one water molecule and half each of two centrosymmetric cations.

Comment

The AsV-containing title compound, (I)[link], (Fig. 1[link]), arose unexpectedly as a result of atmospheric oxidation from a solution-mediated reaction containing AsIII (Lee & Harrison, 2004[Lee, C. & Harrison, W. T. A. (2004). Acta Cryst. C60, m215-m218.]). It complements C4H12N2·2H2AsO4, (II) (Wilkinson & Harrison, 2007[Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m26-m28.]), which contains the same organic cation accompanied by monovalent dihydrogenarsenate anions. Compound (I)[link] is isostructural with its hydrogenphosphate analogue (Riou et al., 1993[Riou, D., Loiseau, T. & Ferey, G. (1993). Acta Cryst. C49, 1237-1238.]).

[Scheme 1]

The tetra­hedral HAsO42− anion in (I)[link] shows three short As—O links with formal partial double-bond character, and one longer As—OH bond (Table 1[link]). The mean As—O bond lengths in (I)[link] [1.683 (2) Å] and (II) [1.684 (2) Å] are indistinguishable.

The asymmetric unit contains one anion, one water molecule and half each of two centrosymmetric cations. Each cation adopts a typical chair conformation.

As well as Coulombic forces, the component species in (I)[link] inter­act by way of a network of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]). The HAsO42− dianions and water mol­ecules are linked into infinite sheets (Fig. 2[link]) propagating in (010) by way of the O—H⋯O bonds. The water mol­ecule accepts one hydrogen bond and makes two hydrogen bonds. Unlike the case in many related mol­ecular salts (Lee & Harrison, 2003[Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m1151-m1153.]), there are no direct hydrogen-bond links between hydrogenarsenate groups. A supra­molecular R66(18) loop (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) arises from this hydrogen-bond topology.

The hydrogenarsenate–water sheets are bridged by the piperazinium cations, which participate in two strong N—H⋯O inter­actions from each of their NH2 groups to O atoms of nearby hydrogenarsenate tetra­hedra. Thus, there are no hydrogen-bond links between organic cations and water mol­ecules in (I)[link]. Overall, a layered architecture (Fig. 3[link]) results, in which layers of organic and inorganic species alternate along [010]. Compound (II) also possesses alternating inorganic and organic layers; in this compound, supra­molecular R66(24) loops arise for each circuit of six H2AsO4 tetra­hedra within a sheet.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are showwn as spheres of arbitrary radius. Hydrogen bonds are indicated by double-dashed lines. [Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) −x, 2 − y, 1 − z.]
[Figure 2]
Figure 2
Detail of a part of an (010) hydrogen-bonded sheet of HAsO42− groups and water mol­ecules in (I)[link], with H bonds indicated by double-dashed lines. (Symmetry codes as in Table 1[link].)
[Figure 3]
Figure 3
A view down [100] of the unit-cell packing in (I)[link], showing the (010) hydrogenarsenate–water layers mediated by the organic cations. Hydrogen bonds are indicated by double-dashed lines and C-bound H atoms have been omitted for clarity.

Experimental

In an attempt to synthesize an analogue of (H3NCH2CH2NH3)[AsO2]2 (Lee & Harrison, 2004[Lee, C. & Harrison, W. T. A. (2004). Acta Cryst. C60, m215-m218.]), aqueous solutions of piperazine (0.1 M) and AsIII2O3 (0.1 M) were mixed, resulting in a colourless mixture. Translucent faceted truncated cubes of As2O3 recrystallized after one day. After several months, colourless slabs of (I)[link] were dredged from the viscous liquor.

Crystal data
  • C4H12N22+·HAsO42−·H2O

  • Mr = 246.10

  • Monoclinic, P 21 /n

  • a = 6.5093 (2) Å

  • b = 12.5329 (3) Å

  • c = 11.2873 (3) Å

  • β = 97.0816 (16)°

  • V = 913.80 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 120 (2) K

  • 0.40 × 0.28 × 0.14 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.318, Tmax = 0.625

  • 15415 measured reflections

  • 2094 independent reflections

  • 1898 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 1.09

  • 2094 reflections

  • 119 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

As1—O1 1.6627 (12)
As1—O2 1.6680 (12)
As1—O3 1.6760 (11)
As1—O4 1.7264 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O5i 0.842 (10) 1.812 (10) 2.6492 (19) 173 (2)
N1—H1C⋯O2 0.92 1.73 2.6482 (18) 171
N1—H1D⋯O3ii 0.92 1.76 2.6722 (18) 173
N2—H2C⋯O1iii 0.92 1.77 2.6788 (18) 169
N2—H2D⋯O3 0.92 1.74 2.6548 (18) 172
O5—H2⋯O2 0.842 (10) 1.863 (10) 2.6998 (18) 173 (2)
O5—H3⋯O1iv 0.836 (10) 1.892 (12) 2.7065 (18) 164 (2)
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

O-bound H atoms were found in difference maps and their positions were refined with the restraint O—H = 0.85 (1) Å. C- and N-bonded H atoms were positioned geometrically, with C—H = 0.99 Å and N—H = 0.92 Å, and refined as riding atoms. Uiso(H) = 1.2Ueq(carrier) for all H atoms.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Piperazinium hydrogenarsenate monohydrate top
Crystal data top
C4H12N22+·HAsO42·H2OF(000) = 504
Mr = 246.10Dx = 1.789 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2149 reflections
a = 6.5093 (2) Åθ = 2.9–27.5°
b = 12.5329 (3) ŵ = 3.71 mm1
c = 11.2873 (3) ÅT = 120 K
β = 97.0816 (16)°Slab, colourless
V = 913.80 (4) Å30.40 × 0.28 × 0.14 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2094 independent reflections
Radiation source: fine-focus sealed tube1898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.318, Tmax = 0.625k = 1616
15415 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0187P)2 + 0.7794P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2094 reflectionsΔρmax = 0.46 e Å3
119 parametersΔρmin = 0.47 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.14908 (2)0.754902 (12)0.858124 (14)0.00805 (8)
O10.2714 (2)0.73938 (9)0.99528 (11)0.0136 (3)
O20.26775 (19)0.69220 (10)0.75530 (11)0.0159 (3)
O30.10970 (18)0.88403 (9)0.82395 (10)0.0124 (2)
O40.09090 (19)0.69654 (10)0.85928 (12)0.0179 (3)
H10.175 (3)0.7282 (16)0.8085 (17)0.021*
C10.0938 (3)0.51032 (14)0.60902 (14)0.0139 (4)
H1A0.18340.57380.59300.017*
H1B0.10970.48410.69010.017*
C20.1611 (3)0.57581 (13)0.48176 (15)0.0141 (3)
H2A0.30980.59160.48060.017*
H2B0.08180.64190.46070.017*
N10.1258 (2)0.54061 (11)0.60339 (13)0.0133 (3)
H1C0.16170.59490.65680.016*
H1D0.20960.48310.62550.016*
N20.0015 (2)0.92247 (11)0.59340 (12)0.0105 (3)
H2C0.06430.86580.55320.013*
H2D0.03520.90270.67190.013*
C30.1939 (3)0.94754 (13)0.54065 (15)0.0124 (3)
H3A0.28240.88320.54260.015*
H3B0.27201.00400.58830.015*
C40.1414 (3)1.01496 (13)0.58730 (15)0.0119 (3)
H4A0.07591.07400.63660.014*
H4B0.27010.99440.62000.014*
O50.6199 (2)0.78709 (11)0.70613 (12)0.0190 (3)
H20.509 (2)0.7551 (15)0.715 (2)0.023*
H30.645 (4)0.7727 (17)0.6371 (11)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.00945 (11)0.00745 (10)0.00729 (12)0.00101 (6)0.00113 (7)0.00033 (5)
O10.0173 (6)0.0141 (6)0.0086 (6)0.0030 (5)0.0012 (5)0.0016 (4)
O20.0163 (6)0.0169 (6)0.0152 (6)0.0024 (5)0.0046 (5)0.0073 (5)
O30.0169 (6)0.0074 (5)0.0120 (6)0.0004 (4)0.0019 (5)0.0021 (4)
O40.0135 (6)0.0175 (6)0.0225 (7)0.0050 (5)0.0016 (5)0.0069 (5)
C10.0163 (9)0.0145 (8)0.0118 (9)0.0017 (6)0.0057 (7)0.0008 (6)
C20.0147 (8)0.0116 (8)0.0161 (9)0.0020 (6)0.0025 (7)0.0008 (6)
N10.0163 (7)0.0109 (7)0.0118 (7)0.0020 (6)0.0023 (6)0.0022 (5)
N20.0132 (7)0.0087 (6)0.0089 (7)0.0002 (5)0.0008 (5)0.0004 (5)
C30.0114 (8)0.0133 (8)0.0127 (8)0.0019 (6)0.0016 (6)0.0009 (6)
C40.0132 (8)0.0118 (8)0.0112 (8)0.0021 (6)0.0037 (6)0.0004 (6)
O50.0142 (6)0.0283 (7)0.0149 (7)0.0046 (6)0.0038 (5)0.0034 (6)
Geometric parameters (Å, º) top
As1—O11.6627 (12)N1—H1D0.9200
As1—O21.6680 (12)N2—C41.482 (2)
As1—O31.6760 (11)N2—C31.485 (2)
As1—O41.7264 (12)N2—H2C0.9200
O4—H10.842 (10)N2—H2D0.9200
C1—N11.488 (2)C3—C4ii1.517 (2)
C1—C2i1.515 (2)C3—H3A0.9900
C1—H1A0.9900C3—H3B0.9900
C1—H1B0.9900C4—C3ii1.517 (2)
C2—N11.487 (2)C4—H4A0.9900
C2—C1i1.515 (2)C4—H4B0.9900
C2—H2A0.9900O5—H20.842 (10)
C2—H2B0.9900O5—H30.836 (10)
N1—H1C0.9200
O1—As1—O2112.53 (6)C2—N1—H1D109.2
O1—As1—O3111.68 (6)C1—N1—H1D109.2
O2—As1—O3111.44 (6)H1C—N1—H1D107.9
O1—As1—O4105.86 (6)C4—N2—C3111.79 (12)
O2—As1—O4107.62 (6)C4—N2—H2C109.3
O3—As1—O4107.33 (6)C3—N2—H2C109.3
As1—O4—H1108.0 (16)C4—N2—H2D109.3
N1—C1—C2i110.60 (13)C3—N2—H2D109.3
N1—C1—H1A109.5H2C—N2—H2D107.9
C2i—C1—H1A109.5N2—C3—C4ii110.19 (13)
N1—C1—H1B109.5N2—C3—H3A109.6
C2i—C1—H1B109.5C4ii—C3—H3A109.6
H1A—C1—H1B108.1N2—C3—H3B109.6
N1—C2—C1i110.39 (13)C4ii—C3—H3B109.6
N1—C2—H2A109.6H3A—C3—H3B108.1
C1i—C2—H2A109.6N2—C4—C3ii110.66 (13)
N1—C2—H2B109.6N2—C4—H4A109.5
C1i—C2—H2B109.6C3ii—C4—H4A109.5
H2A—C2—H2B108.1N2—C4—H4B109.5
C2—N1—C1111.96 (13)C3ii—C4—H4B109.5
C2—N1—H1C109.2H4A—C4—H4B108.1
C1—N1—H1C109.2H2—O5—H3107 (2)
C1i—C2—N1—C156.31 (19)C4—N2—C3—C4ii56.50 (19)
C2i—C1—N1—C256.43 (19)C3—N2—C4—C3ii56.77 (19)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O5iii0.84 (1)1.81 (1)2.6492 (19)173 (2)
N1—H1C···O20.921.732.6482 (18)171
N1—H1D···O3iv0.921.762.6722 (18)173
N2—H2C···O1v0.921.772.6788 (18)169
N2—H2D···O30.921.742.6548 (18)172
O5—H2···O20.84 (1)1.86 (1)2.6998 (18)173 (2)
O5—H3···O1vi0.84 (1)1.89 (1)2.7065 (18)164 (2)
Symmetry codes: (iii) x1, y, z; (iv) x+1/2, y1/2, z+3/2; (v) x1/2, y+3/2, z1/2; (vi) x+1/2, y+3/2, z1/2.
 

Acknowledgements

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m1151–m1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2004). Acta Cryst. C60, m215–m218.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRiou, D., Loiseau, T. & Ferey, G. (1993). Acta Cryst. C49, 1237–1238.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m26–m28.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds