metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac,cis-Bromidotri­carbonyl­bis­(tri­benzyl­phosphine)rhenium(I)

CROSSMARK_Color_square_no_text.svg

aChemistry Department, University of Wales, Bangor LL57 2UW, Wales, bSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, and cSchool of Chemistry, University of Leeds, LS2 9JT, England
*Correspondence e-mail: light@soton.ac.uk

(Received 9 February 2007; accepted 12 February 2007; online 16 February 2007)

Crystals of the title compound, fac,cis-[ReBr(C21H21P)2(CO)3], were obtained by recrystallization of a sample from CHCl3 layered with hexane. The geometry about the d6 ReI centre is (distorted) octa­hedral with the three CO ligands fac and the two tribenzyl­phosphine ligands cis. In accordance with the trans influence, the Re—C bond trans to Br is significantly shorter than those trans to the organophos­phine ligands.

Comment

In recent reports, we have described the synthesis and spectroscopic characterization of a series of tricarbonyl­bis(triorganophosphine)halides of MnI and ReI, together with structural studies on selected compounds: mer,trans-[MnBr(CO)3{P(C6H4Cl-4)3}2], fac,cis-[MnBr(CO)3(dppe)], fac,cis-[MnBr(CO)3(dppf)], fac,cis-[ReBr(CO)3{P(C6H4OMe-4)2}2] and fac,cis-[ReBr(CO)3(dppf)] (Beckett et al., 2003[Beckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. & Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174-180.]), and fac,cis-[MnBr0.3Cl0.7(CO)3(dppp)] (Light et al., 2004[Light, M. E., Hursthouse, M. B., Beckett, M. A. & Brassington, D. S. (2004). Acta Cryst. E60, m1245-m1247.]). The synthesis and spectroscopic characterization of fac,cis-[ReBr(CO)3{P(CH2C6H5)3}2], (I)[link], was described in an earlier publication, but crystals suitable for X-ray diffraction were unavailable at the time. We can now report a crystallographic study of (I)[link].

[Scheme 1]

The molecular structure of (I)[link] is shown in Fig. 1[link]. The overall fac,cis geometry about an octa­hedral d6 ReI centre, as was indicated by earlier spectroscopic (IR and NMR) evidence, is confirmed by this crystallographic study. The octa­hedral geometry is considerably distorted [cis angles range from 81.055 (14) to 98.32 (2)°, with P1—Re1—P2 the largest, and trans angles range from 169.03 (8) to 173.81 (8)°], but bond lengths and angles are well within previously reported ranges for related compounds (Beckett et al., 2003[Beckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. & Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174-180.]; Carballo et al., 2001[Carballo, R., Castineiras, A., Garcia-Fontan, S., Losanda-Gonzalez, P., Abram, U. & Vazquez-Lopez, E. M. (2001). Polyhedron, 20, 2371-2383.]; Gibson et al. 2001[Gibson, D. H., He, H. & Masuta, M. S. (2001). Organometallics, 20, 1456-1461.]). The Re1—C1 bond trans to Br is significantly shorter than the Re1—C2 and Re1—C3 bonds trans to P.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms have been omitted for clarity

Experimental

fac,cis-[ReBr(CO)3{P(CH2C6H5)3}2], (I)[link], was prepared by adapting a standard literature method (Angelici et al., 1963[Angelici, R. J., Basolo, F. & Poe, A. J. (1963). J. Am. Chem. Soc. 85, 2215-2219.]) and its physical and spectroscopic properties have been reported previously (Beckett et al., 2003[Beckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. & Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174-180.]). Orange single crystals suitable for X-ray diffraction studies were obtained by slow diffusion of hexane (layered) into a chloro­form solution of (I)[link] at 279 K.

Crystal data
  • [ReBr(C21H21P)2(CO)3]

  • Mr = 958.84

  • Triclinic, [P \overline 1]

  • a = 10.158 (1) Å

  • b = 10.373 (1) Å

  • c = 19.289 (2) Å

  • α = 103.046 (5)°

  • β = 94.822 (6)°

  • γ = 92.164 (6)°

  • V = 1969.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.22 mm−1

  • T = 150 (2) K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.664, Tmax = 0.714

  • 32577 measured reflections

  • 6638 independent reflections

  • 6477 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.049

  • S = 1.07

  • 6638 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Selected bond angles (°)

C2—Re1—C3 93.80 (11)
C2—Re1—C1 85.52 (11)
C3—Re1—C1 86.38 (12)
C2—Re1—P2 92.78 (8)
C3—Re1—P2 85.19 (8)
C1—Re1—P2 171.28 (9)
C2—Re1—P1 96.39 (8)
C3—Re1—P1 169.03 (8)
C1—Re1—P1 90.37 (9)
P2—Re1—P1 98.32 (2)
C2—Re1—Br1 173.81 (8)
C3—Re1—Br1 88.40 (8)
C1—Re1—Br1 88.85 (9)
P2—Re1—Br1 93.160 (18)
P1—Re1—Br1 81.055 (18)

All H atoms were placed in idealized positions (C–H = 0.95–0.99 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The deepest residual electron-density hole is located 0.93 Å from atom Re1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

fac-Bromidootricarbonylbis(tribenzylphosphine-κP)rhenium(I) top
Crystal data top
[ReBr(C21H21P)2(CO)3]Z = 2
Mr = 958.84F(000) = 952
Triclinic, P1Dx = 1.617 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.158 (1) ÅCell parameters from 6638 reflections
b = 10.373 (1) Åθ = 2.9–25.0°
c = 19.289 (2) ŵ = 4.22 mm1
α = 103.046 (5)°T = 150 K
β = 94.822 (6)°Block, colourless
γ = 92.164 (6)°0.10 × 0.08 × 0.08 mm
V = 1969.6 (3) Å3
Data collection top
Bruker–Nonius CCD camera on κ-goniostat
diffractometer
6638 independent reflections
Radiation source: fine-focus sealed tube6477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 2.9°
φ and ω scans to fill the asymmetric unith = 012
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1212
Tmin = 0.664, Tmax = 0.714l = 2222
6638 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0155P)2 + 2.6094P]
where P = (Fo2 + 2Fc2)/3
6638 reflections(Δ/σ)max = 0.005
469 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 1.09 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0450 (3)0.0953 (3)0.87704 (16)0.0255 (6)
C21.0029 (3)0.1519 (3)0.87778 (14)0.0198 (6)
C31.2052 (3)0.0217 (3)0.80536 (14)0.0207 (6)
C40.7497 (3)0.2293 (2)0.81734 (14)0.0183 (5)
H4A0.70590.29790.77690.022*
H4B0.83760.26000.83020.022*
C50.6690 (3)0.2190 (3)0.88019 (14)0.0227 (6)
C60.5342 (3)0.2461 (3)0.87048 (19)0.0349 (7)
H60.49010.27360.82370.042*
C70.4621 (4)0.2324 (4)0.9311 (3)0.0591 (12)
H70.36890.25050.92560.071*
C80.5298 (6)0.1919 (5)0.9989 (2)0.0699 (15)
H80.48150.18011.03980.084*
C90.6626 (6)0.1692 (5)1.0079 (2)0.0679 (14)
H90.70720.14501.05470.081*
C100.7327 (4)0.1811 (3)0.94939 (16)0.0419 (8)
H100.82590.16330.95590.050*
C110.7020 (3)0.1151 (3)0.69143 (13)0.0178 (5)
H11A0.66160.03550.68080.021*
H11B0.77500.13560.66050.021*
C120.5990 (3)0.2295 (2)0.67042 (13)0.0166 (5)
C130.6381 (3)0.3553 (3)0.63834 (14)0.0231 (6)
H130.72800.36680.62960.028*
C140.5470 (3)0.4631 (3)0.61921 (15)0.0283 (7)
H140.57450.54760.59660.034*
C150.4164 (3)0.4482 (3)0.63291 (16)0.0304 (7)
H150.35440.52250.62040.036*
C160.3762 (3)0.3245 (3)0.66499 (16)0.0282 (7)
H160.28660.31390.67470.034*
C170.4675 (3)0.2158 (3)0.68306 (14)0.0224 (6)
H170.43910.13090.70440.027*
C180.6525 (3)0.0344 (2)0.83373 (13)0.0166 (5)
H18A0.56550.01560.82420.020*
H18B0.67850.05030.88570.020*
C190.6353 (3)0.1670 (2)0.81524 (13)0.0169 (5)
C200.6965 (3)0.2821 (3)0.85946 (14)0.0227 (6)
H200.75240.27620.90050.027*
C210.6775 (3)0.4054 (3)0.84466 (16)0.0293 (7)
H210.71920.48300.87580.035*
C220.5979 (3)0.4151 (3)0.78459 (16)0.0282 (7)
H220.58620.49920.77390.034*
C230.5354 (3)0.3023 (3)0.74003 (15)0.0241 (6)
H230.48070.30870.69870.029*
C240.5529 (3)0.1797 (3)0.75586 (14)0.0191 (5)
H240.50780.10290.72560.023*
C250.8579 (3)0.2131 (3)0.69043 (14)0.0195 (6)
H25A0.78440.14450.68260.023*
H25B0.84260.28130.73350.023*
C260.8495 (3)0.2773 (3)0.62743 (14)0.0195 (6)
C270.9074 (3)0.4030 (3)0.63119 (14)0.0200 (6)
H270.95210.45180.67500.024*
C280.9006 (3)0.4578 (3)0.57154 (15)0.0247 (6)
H280.94250.54260.57450.030*
C290.8326 (3)0.3891 (3)0.50777 (15)0.0264 (6)
H290.82730.42660.46710.032*
C300.7728 (3)0.2654 (3)0.50383 (15)0.0284 (7)
H300.72530.21830.46040.034*
C310.7814 (3)0.2095 (3)0.56274 (15)0.0236 (6)
H310.74050.12410.55910.028*
C321.1414 (3)0.2737 (3)0.73241 (13)0.0189 (5)
H32A1.22890.23570.72740.023*
H32B1.12840.32830.69670.023*
C331.1447 (3)0.3643 (3)0.80622 (14)0.0217 (6)
C341.2524 (3)0.3653 (3)0.85597 (15)0.0274 (6)
H341.32280.30960.84320.033*
C351.2580 (3)0.4472 (3)0.92417 (17)0.0368 (8)
H351.33210.44700.95760.044*
C361.1566 (4)0.5286 (3)0.94344 (16)0.0359 (8)
H361.16020.58330.99030.043*
C371.0501 (3)0.5304 (3)0.89464 (16)0.0318 (7)
H370.98050.58700.90770.038*
C381.0446 (3)0.4490 (3)0.82605 (15)0.0258 (6)
H380.97140.45150.79240.031*
C391.0502 (3)0.0409 (3)0.62038 (14)0.0218 (6)
H39A1.07090.04980.62450.026*
H39B0.96860.03260.58750.026*
C401.1609 (3)0.0950 (3)0.58586 (13)0.0193 (6)
C411.2900 (3)0.0610 (3)0.59931 (14)0.0273 (6)
H411.30840.00590.63170.033*
C421.3923 (3)0.1064 (4)0.56616 (17)0.0385 (8)
H421.47980.08120.57550.046*
C431.3676 (4)0.1882 (3)0.51945 (17)0.0397 (9)
H431.43770.21970.49680.048*
C441.2404 (4)0.2234 (3)0.50620 (16)0.0352 (8)
H441.22260.27980.47440.042*
C451.1380 (3)0.1773 (3)0.53878 (14)0.0248 (6)
H451.05060.20230.52890.030*
O11.0737 (2)0.1429 (2)0.92452 (12)0.0407 (6)
O20.9960 (2)0.23532 (19)0.92824 (10)0.0272 (4)
O31.3187 (2)0.0273 (2)0.80676 (11)0.0312 (5)
P10.77483 (7)0.07233 (6)0.78622 (3)0.01423 (13)
P21.01289 (7)0.13525 (6)0.71007 (3)0.01552 (14)
Br11.02464 (3)0.22602 (3)0.706163 (15)0.02625 (7)
Re11.015147 (9)0.000364 (9)0.801968 (5)0.01501 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (16)0.0228 (15)0.0348 (17)0.0033 (11)0.0009 (12)0.0063 (13)
C20.0154 (15)0.0258 (15)0.0205 (14)0.0002 (11)0.0021 (10)0.0107 (12)
C30.0209 (18)0.0200 (14)0.0196 (14)0.0002 (11)0.0027 (11)0.0012 (11)
C40.0195 (15)0.0160 (13)0.0202 (13)0.0008 (10)0.0016 (10)0.0062 (10)
C50.0369 (18)0.0135 (13)0.0194 (14)0.0009 (11)0.0074 (12)0.0057 (10)
C60.032 (2)0.0286 (17)0.052 (2)0.0045 (13)0.0171 (15)0.0198 (15)
C70.046 (3)0.046 (2)0.103 (4)0.0124 (18)0.041 (2)0.039 (2)
C80.111 (5)0.067 (3)0.046 (3)0.027 (3)0.051 (3)0.023 (2)
C90.108 (4)0.067 (3)0.033 (2)0.006 (3)0.025 (2)0.013 (2)
C100.061 (3)0.043 (2)0.0220 (16)0.0019 (17)0.0030 (15)0.0094 (14)
C110.0187 (15)0.0200 (13)0.0152 (13)0.0020 (10)0.0026 (10)0.0046 (10)
C120.0199 (15)0.0185 (13)0.0106 (12)0.0010 (10)0.0010 (10)0.0026 (10)
C130.0272 (17)0.0224 (14)0.0196 (14)0.0043 (11)0.0049 (11)0.0031 (11)
C140.040 (2)0.0175 (14)0.0252 (15)0.0038 (12)0.0013 (13)0.0008 (11)
C150.0329 (19)0.0254 (16)0.0298 (16)0.0099 (13)0.0093 (13)0.0063 (13)
C160.0164 (16)0.0333 (17)0.0325 (16)0.0015 (12)0.0039 (12)0.0057 (13)
C170.0205 (16)0.0219 (14)0.0227 (14)0.0028 (11)0.0028 (11)0.0022 (11)
C180.0149 (14)0.0183 (13)0.0175 (13)0.0026 (10)0.0054 (10)0.0044 (10)
C190.0145 (14)0.0182 (13)0.0181 (13)0.0012 (10)0.0082 (10)0.0021 (10)
C200.0228 (16)0.0230 (14)0.0203 (14)0.0031 (11)0.0025 (11)0.0006 (11)
C210.0357 (19)0.0171 (14)0.0306 (16)0.0035 (12)0.0041 (13)0.0034 (12)
C220.0330 (18)0.0172 (14)0.0360 (17)0.0047 (12)0.0085 (13)0.0067 (12)
C230.0228 (16)0.0230 (15)0.0281 (15)0.0029 (11)0.0044 (11)0.0086 (12)
C240.0179 (15)0.0169 (13)0.0215 (13)0.0002 (10)0.0035 (10)0.0017 (10)
C250.0196 (15)0.0179 (13)0.0216 (13)0.0007 (10)0.0048 (10)0.0048 (11)
C260.0162 (15)0.0225 (14)0.0202 (13)0.0047 (10)0.0063 (10)0.0033 (11)
C270.0235 (16)0.0185 (13)0.0175 (13)0.0028 (11)0.0018 (10)0.0026 (10)
C280.0270 (17)0.0193 (14)0.0293 (15)0.0023 (11)0.0064 (12)0.0074 (12)
C290.0297 (17)0.0324 (16)0.0192 (14)0.0071 (13)0.0023 (11)0.0093 (12)
C300.0275 (17)0.0333 (17)0.0218 (15)0.0024 (13)0.0048 (12)0.0033 (12)
C310.0196 (16)0.0225 (14)0.0274 (15)0.0005 (11)0.0001 (11)0.0038 (11)
C320.0208 (15)0.0183 (13)0.0159 (13)0.0033 (10)0.0040 (10)0.0003 (10)
C330.0292 (16)0.0154 (13)0.0188 (13)0.0069 (11)0.0045 (11)0.0007 (11)
C340.0268 (17)0.0243 (15)0.0270 (15)0.0041 (12)0.0033 (12)0.0018 (12)
C350.039 (2)0.0364 (18)0.0265 (16)0.0094 (15)0.0077 (13)0.0040 (13)
C360.049 (2)0.0271 (16)0.0223 (15)0.0048 (14)0.0017 (14)0.0110 (12)
C370.047 (2)0.0201 (15)0.0250 (15)0.0025 (13)0.0090 (14)0.0042 (12)
C380.0378 (18)0.0189 (14)0.0196 (14)0.0001 (12)0.0027 (12)0.0023 (11)
C390.0242 (16)0.0194 (14)0.0185 (13)0.0016 (11)0.0039 (11)0.0028 (11)
C400.0216 (16)0.0186 (13)0.0141 (12)0.0002 (11)0.0038 (10)0.0042 (10)
C410.0283 (18)0.0347 (17)0.0150 (13)0.0065 (13)0.0011 (11)0.0025 (12)
C420.0213 (18)0.057 (2)0.0281 (17)0.0009 (15)0.0031 (12)0.0088 (15)
C430.039 (2)0.044 (2)0.0294 (17)0.0156 (16)0.0185 (14)0.0081 (15)
C440.054 (2)0.0288 (17)0.0244 (16)0.0009 (15)0.0169 (14)0.0052 (13)
C450.0310 (17)0.0242 (15)0.0189 (14)0.0070 (12)0.0061 (11)0.0021 (11)
O10.0386 (15)0.0463 (14)0.0442 (14)0.0032 (11)0.0086 (10)0.0306 (12)
O20.0327 (13)0.0262 (11)0.0205 (10)0.0014 (9)0.0050 (8)0.0002 (9)
O30.0179 (13)0.0366 (12)0.0378 (12)0.0005 (9)0.0044 (9)0.0051 (9)
P10.0137 (4)0.0140 (3)0.0148 (3)0.0002 (2)0.0021 (2)0.0029 (2)
P20.0172 (4)0.0147 (3)0.0133 (3)0.0016 (3)0.0038 (2)0.0001 (2)
Br10.02517 (17)0.01728 (14)0.03362 (16)0.00298 (11)0.00645 (12)0.00132 (11)
Re10.01352 (7)0.01471 (7)0.01646 (6)0.00017 (4)0.00179 (4)0.00291 (4)
Geometric parameters (Å, º) top
C1—O11.156 (4)C24—H240.9500
C1—Re11.942 (3)C25—C261.510 (4)
C2—O21.156 (3)C25—P21.846 (3)
C2—Re11.906 (3)C25—H25A0.9900
C3—O31.149 (3)C25—H25B0.9900
C3—Re11.929 (3)C26—C271.393 (4)
C4—C51.507 (4)C26—C311.397 (4)
C4—P11.874 (2)C27—C281.392 (4)
C4—H4A0.9900C27—H270.9500
C4—H4B0.9900C28—C291.386 (4)
C5—C61.376 (5)C28—H280.9500
C5—C101.398 (4)C29—C301.382 (4)
C6—C71.414 (5)C29—H290.9500
C6—H60.9500C30—C311.385 (4)
C7—C81.393 (7)C30—H300.9500
C7—H70.9500C31—H310.9500
C8—C91.350 (7)C32—C331.515 (3)
C8—H80.9500C32—P21.854 (3)
C9—C101.369 (5)C32—H32A0.9900
C9—H90.9500C32—H32B0.9900
C10—H100.9500C33—C381.391 (4)
C11—C121.512 (4)C33—C341.391 (4)
C11—P11.862 (3)C34—C351.391 (4)
C11—H11A0.9900C34—H340.9500
C11—H11B0.9900C35—C361.378 (5)
C12—C171.385 (4)C35—H350.9500
C12—C131.399 (4)C36—C371.377 (5)
C13—C141.386 (4)C36—H360.9500
C13—H130.9500C37—C381.395 (4)
C14—C151.382 (5)C37—H370.9500
C14—H140.9500C38—H380.9500
C15—C161.385 (4)C39—C401.506 (4)
C15—H150.9500C39—P21.862 (3)
C16—C171.394 (4)C39—H39A0.9900
C16—H160.9500C39—H39B0.9900
C17—H170.9500C40—C411.389 (4)
C18—C191.510 (4)C40—C451.392 (4)
C18—P11.856 (3)C41—C421.386 (5)
C18—H18A0.9900C41—H410.9500
C18—H18B0.9900C42—C431.385 (5)
C19—C201.391 (4)C42—H420.9500
C19—C241.395 (4)C43—C441.375 (5)
C20—C211.389 (4)C43—H430.9500
C20—H200.9500C44—C451.383 (4)
C21—C221.381 (4)C44—H440.9500
C21—H210.9500C45—H450.9500
C22—C231.381 (4)P1—Re12.5005 (7)
C22—H220.9500P2—Re12.4931 (7)
C23—C241.388 (4)Br1—Re12.6508 (4)
C23—H230.9500
O1—C1—Re1172.9 (2)C29—C28—C27120.2 (3)
O2—C2—Re1173.2 (2)C29—C28—H28119.9
O3—C3—Re1176.4 (2)C27—C28—H28119.9
C5—C4—P1115.43 (18)C30—C29—C28119.5 (3)
C5—C4—H4A108.4C30—C29—H29120.3
P1—C4—H4A108.4C28—C29—H29120.3
C5—C4—H4B108.4C29—C30—C31120.5 (3)
P1—C4—H4B108.4C29—C30—H30119.7
H4A—C4—H4B107.5C31—C30—H30119.7
C6—C5—C10119.8 (3)C30—C31—C26120.8 (3)
C6—C5—C4121.1 (3)C30—C31—H31119.6
C10—C5—C4119.1 (3)C26—C31—H31119.6
C5—C6—C7119.1 (4)C33—C32—P2116.41 (18)
C5—C6—H6120.4C33—C32—H32A108.2
C7—C6—H6120.4P2—C32—H32A108.2
C8—C7—C6119.0 (4)C33—C32—H32B108.2
C8—C7—H7120.5P2—C32—H32B108.2
C6—C7—H7120.5H32A—C32—H32B107.3
C9—C8—C7121.4 (4)C38—C33—C34118.3 (3)
C9—C8—H8119.3C38—C33—C32122.3 (3)
C7—C8—H8119.3C34—C33—C32119.4 (3)
C8—C9—C10119.8 (4)C35—C34—C33120.6 (3)
C8—C9—H9120.1C35—C34—H34119.7
C10—C9—H9120.1C33—C34—H34119.7
C9—C10—C5120.9 (4)C36—C35—C34120.4 (3)
C9—C10—H10119.6C36—C35—H35119.8
C5—C10—H10119.6C34—C35—H35119.8
C12—C11—P1116.92 (17)C37—C36—C35119.9 (3)
C12—C11—H11A108.1C37—C36—H36120.1
P1—C11—H11A108.1C35—C36—H36120.1
C12—C11—H11B108.1C36—C37—C38119.9 (3)
P1—C11—H11B108.1C36—C37—H37120.1
H11A—C11—H11B107.3C38—C37—H37120.1
C17—C12—C13118.4 (2)C33—C38—C37120.9 (3)
C17—C12—C11122.7 (2)C33—C38—H38119.5
C13—C12—C11118.9 (2)C37—C38—H38119.5
C14—C13—C12120.7 (3)C40—C39—P2118.06 (18)
C14—C13—H13119.6C40—C39—H39A107.8
C12—C13—H13119.6P2—C39—H39A107.8
C15—C14—C13120.2 (3)C40—C39—H39B107.8
C15—C14—H14119.9P2—C39—H39B107.8
C13—C14—H14119.9H39A—C39—H39B107.1
C14—C15—C16119.8 (3)C41—C40—C45117.9 (3)
C14—C15—H15120.1C41—C40—C39120.2 (3)
C16—C15—H15120.1C45—C40—C39121.9 (3)
C15—C16—C17119.9 (3)C42—C41—C40121.0 (3)
C15—C16—H16120.1C42—C41—H41119.5
C17—C16—H16120.1C40—C41—H41119.5
C12—C17—C16121.0 (3)C43—C42—C41120.3 (3)
C12—C17—H17119.5C43—C42—H42119.8
C16—C17—H17119.5C41—C42—H42119.8
C19—C18—P1116.85 (17)C44—C43—C42119.2 (3)
C19—C18—H18A108.1C44—C43—H43120.4
P1—C18—H18A108.1C42—C43—H43120.4
C19—C18—H18B108.1C43—C44—C45120.5 (3)
P1—C18—H18B108.1C43—C44—H44119.7
H18A—C18—H18B107.3C45—C44—H44119.7
C20—C19—C24117.7 (2)C44—C45—C40121.1 (3)
C20—C19—C18120.5 (2)C44—C45—H45119.5
C24—C19—C18121.7 (2)C40—C45—H45119.5
C21—C20—C19121.2 (3)C18—P1—C11103.78 (12)
C21—C20—H20119.4C18—P1—C4102.14 (12)
C19—C20—H20119.4C11—P1—C4104.09 (12)
C22—C21—C20120.0 (3)C18—P1—Re1120.77 (9)
C22—C21—H21120.0C11—P1—Re1114.05 (9)
C20—C21—H21120.0C4—P1—Re1110.19 (9)
C21—C22—C23119.9 (3)C25—P2—C32104.72 (13)
C21—C22—H22120.0C25—P2—C39103.24 (13)
C23—C22—H22120.0C32—P2—C39103.34 (12)
C22—C23—C24119.8 (3)C25—P2—Re1117.55 (8)
C22—C23—H23120.1C32—P2—Re1112.68 (9)
C24—C23—H23120.1C39—P2—Re1113.82 (9)
C23—C24—C19121.3 (2)C2—Re1—C393.80 (11)
C23—C24—H24119.3C2—Re1—C185.52 (11)
C19—C24—H24119.3C3—Re1—C186.38 (12)
C26—C25—P2117.58 (18)C2—Re1—P292.78 (8)
C26—C25—H25A107.9C3—Re1—P285.19 (8)
P2—C25—H25A107.9C1—Re1—P2171.28 (9)
C26—C25—H25B107.9C2—Re1—P196.39 (8)
P2—C25—H25B107.9C3—Re1—P1169.03 (8)
H25A—C25—H25B107.2C1—Re1—P190.37 (9)
C27—C26—C31118.2 (2)P2—Re1—P198.32 (2)
C27—C26—C25122.4 (2)C2—Re1—Br1173.81 (8)
C31—C26—C25119.4 (2)C3—Re1—Br188.40 (8)
C28—C27—C26120.8 (3)C1—Re1—Br188.85 (9)
C28—C27—H27119.6P2—Re1—Br193.160 (18)
C26—C27—H27119.6P1—Re1—Br181.055 (18)
 

Acknowledgements

The authors thank the EPSRC for a studentship (DSB).

References

First citationAngelici, R. J., Basolo, F. & Poe, A. J. (1963). J. Am. Chem. Soc. 85, 2215–2219.  CrossRef CAS Web of Science Google Scholar
First citationBeckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. & Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCarballo, R., Castineiras, A., Garcia-Fontan, S., Losanda-Gonzalez, P., Abram, U. & Vazquez-Lopez, E. M. (2001). Polyhedron, 20, 2371–2383.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGibson, D. H., He, H. & Masuta, M. S. (2001). Organometallics, 20, 1456–1461.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, The Netherlands.  Google Scholar
First citationLight, M. E., Hursthouse, M. B., Beckett, M. A. & Brassington, D. S. (2004). Acta Cryst. E60, m1245–m1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds