organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Meth­oxy­phen­yl)di­phenyl­phosphine

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: kevin.r.flower@manchester.ac.uk

(Received 12 February 2007; accepted 12 February 2007; online 16 February 2007)

The crystal structure of the title compound, C19H17OP, is stabilized by C—H⋯O and C—H⋯π interactions.

Comment

Triphenyl­phosphine, PPh3, and its derivatives, such as compound (I)[link], have been widely used in many areas of chemistry, especially as ligands in transition-metal-based homogeneous catalysis. Compound (I)[link] was made as part of a larger synthetic investigation into complexes containing substituted phosphines. The structure of (I)[link] has not previously been reported, although the structure of its corresponding oxide has been described (Whitaker et al., 1995[Whitaker, C. M., Kott, K. L. & McMahon, R. J. (1995). J. Org. Chem. 60, 3499-3508.]).

[Scheme 1]

The mol­ecular structure of (I)[link] (Fig. 1[link]) has a slightly distorted pyramidal geometry; the mean C—P—C angle (103.03°) angle is comparable with values of 102.99 and 102.8° for triphenyl­phosphine (Daly, 1964[Daly, J. J. (1964). J. Chem. Soc. A, pp. 3799-3810.]; Dunne & Orpen, 1991[Dunne, B. J. & Orpen, A. G. (1991). Acta Cryst. C47, 345-347.]), as is the mean C—P bond length [1.831 (2) Å compared to 1.828 and 1.831 Å, respectively].

The extended structure exhibits a zigzag pattern where the molecules pack so that the meth­oxy groups of near neighbours pack are as far apart as possible. There is a clear inter­molecular hydrogen bond [C10—H10 = 0.96 (2), H10⋯Oi = 2.694 (1), C10⋯Oi = 3.354 (3) Å and C10—H10⋯Oi 126.5 (5)°; symmetry code: (i) 1 + x, y, z] which links molecules into chains along the a direction. A C—H⋯Cπ inter­action [C2—H2 = 0.98 (2), H2⋯C11ii = 2.874 (1) Å, C2⋯C11ii = 3.354 (5) Å and C2—H2⋯C11ii = 165.41 (9)°; symmetry code: (ii) [3 \over 2] + x, −½ + y, z] is also present. A graphical representation of the extended structure is given in Fig. 2.

[Figure 1]
Figure 1
The structure of (I)[link], with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
View normal to (100) of the extended structure of (I)[link], showing the zigzag packing.

Experimental

Compound (I)[link] was prepared according to a reported method (McEwan et al., 1975[McEwan, W. E., Shiau, W.-I., Yeh, Y.-I., Schulz, D. N., Pagilagan, R. U., Levy, J. L., Symes, C. Jr, Nelson, G. O. & Granoth, I. (1975). J. Am. Chem. Soc. 97, 1787-1794.]). Crystals suitable for the diffraction study were obtained by slow cooling of a hot saturated ethanol solution.

Crystal data
  • C19H17OP

  • Mr = 292.3

  • Orthorhombic, P b c a

  • a = 10.8879 (4) Å

  • b = 11.8128 (4) Å

  • c = 23.9654 (14) Å

  • V = 3082.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 33037 measured reflections

  • 3193 independent reflections

  • 2498 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.05

  • 3193 reflections

  • 258 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

All H atoms were refined isotropically [C—H = 0.94 (2)–1.00 (3) Å].

Data collection: COLLECT (Nonius, 2000[Nonius (20008). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(4-Methoxyphenyl)diphenylphosphine top
Crystal data top
C19H17OPF(000) = 1232
Mr = 292.3Dx = 1.26 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3722 reflections
a = 10.8879 (4) Åθ = 2–27°
b = 11.8128 (4) ŵ = 0.17 mm1
c = 23.9654 (14) ÅT = 293 K
V = 3082.3 (2) Å3Prism, colourless
Z = 80.2 × 0.2 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2498 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.065
Graphite monochromatorθmax = 26.5°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 013
CCD rotation images, thick slices scansk = 014
33037 measured reflectionsl = 030
3193 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.041P)2 + 1.4742P]
where P = (Fo2 + 2Fc2)/3
3193 reflections(Δ/σ)max = 0.002
258 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88214 (16)0.57892 (14)0.64240 (7)0.0337 (4)
C20.99900 (18)0.62695 (16)0.64880 (8)0.0424 (4)
C31.09525 (17)0.56660 (17)0.67109 (9)0.0437 (5)
C41.07743 (16)0.45571 (16)0.68899 (8)0.0375 (4)
C50.96335 (17)0.40543 (16)0.68238 (8)0.0379 (4)
C60.86713 (16)0.46720 (15)0.65923 (8)0.0366 (4)
C71.1591 (2)0.2977 (2)0.73846 (11)0.0539 (5)
C80.62513 (15)0.57439 (14)0.61868 (8)0.0349 (4)
C90.55593 (17)0.56854 (16)0.66757 (9)0.0416 (4)
C100.45233 (18)0.50101 (18)0.67087 (9)0.0475 (5)
C110.41621 (18)0.43818 (18)0.62500 (10)0.0482 (5)
C120.4850 (2)0.44130 (18)0.57668 (10)0.0510 (5)
C130.58858 (18)0.50932 (17)0.57329 (9)0.0437 (4)
C140.79069 (16)0.69045 (14)0.54461 (8)0.0362 (4)
C150.8692 (2)0.6235 (2)0.51312 (9)0.0504 (5)
C160.8938 (2)0.6493 (2)0.45795 (9)0.0592 (6)
C170.8404 (2)0.7429 (2)0.43347 (9)0.0573 (6)
C180.7608 (2)0.8086 (2)0.46334 (10)0.0603 (6)
C190.7362 (2)0.78278 (17)0.51891 (9)0.0490 (5)
O11.17739 (12)0.40407 (12)0.71215 (6)0.0501 (4)
P10.75715 (4)0.67060 (4)0.61893 (2)0.03547 (14)
H21.0096 (19)0.7059 (18)0.6368 (9)0.052 (6)*
H31.178 (2)0.5994 (18)0.6762 (9)0.054 (6)*
H50.9490 (18)0.3257 (18)0.6934 (9)0.046 (5)*
H60.7889 (19)0.4305 (16)0.6562 (8)0.042 (5)*
H7A1.132 (2)0.2382 (19)0.7117 (10)0.056 (6)*
H7B1.095 (2)0.303 (2)0.7666 (11)0.074 (8)*
H7C1.240 (2)0.2778 (19)0.7527 (10)0.063 (6)*
H90.5791 (18)0.6119 (18)0.7006 (9)0.050 (6)*
H100.402 (2)0.4981 (19)0.7037 (10)0.058 (6)*
H110.342 (2)0.3925 (18)0.6269 (9)0.058 (6)*
H120.463 (2)0.3969 (18)0.5438 (10)0.058 (6)*
H130.633 (2)0.5124 (18)0.5387 (10)0.056 (6)*
H150.909 (2)0.560 (2)0.5290 (11)0.072 (7)*
H160.950 (2)0.599 (2)0.4375 (12)0.080 (8)*
H170.861 (2)0.762 (2)0.3941 (11)0.069 (7)*
H180.719 (2)0.873 (2)0.4464 (12)0.089 (9)*
H190.682 (2)0.829 (2)0.5403 (11)0.074 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (9)0.0355 (9)0.0295 (9)0.0016 (7)0.0002 (7)0.0015 (7)
C20.0430 (10)0.0386 (10)0.0456 (11)0.0083 (8)0.0001 (9)0.0042 (9)
C30.0345 (9)0.0487 (11)0.0478 (12)0.0089 (8)0.0030 (8)0.0036 (9)
C40.0330 (9)0.0484 (10)0.0310 (9)0.0007 (8)0.0006 (7)0.0026 (8)
C50.0375 (9)0.0394 (10)0.0369 (10)0.0027 (8)0.0004 (8)0.0060 (8)
C60.0324 (9)0.0381 (9)0.0394 (10)0.0041 (8)0.0014 (8)0.0019 (8)
C70.0493 (12)0.0561 (13)0.0562 (15)0.0059 (10)0.0108 (11)0.0140 (11)
C80.0329 (8)0.0353 (9)0.0365 (9)0.0064 (7)0.0008 (7)0.0039 (8)
C90.0417 (10)0.0447 (10)0.0383 (11)0.0049 (8)0.0006 (8)0.0029 (8)
C100.0395 (10)0.0541 (12)0.0488 (12)0.0041 (9)0.0060 (9)0.0129 (10)
C110.0362 (10)0.0496 (11)0.0589 (14)0.0026 (9)0.0049 (9)0.0137 (10)
C120.0509 (12)0.0514 (12)0.0507 (13)0.0054 (10)0.0109 (10)0.0003 (10)
C130.0445 (10)0.0477 (11)0.0389 (11)0.0005 (9)0.0001 (9)0.0009 (9)
C140.0361 (9)0.0362 (9)0.0364 (10)0.0032 (7)0.0016 (7)0.0019 (7)
C150.0529 (12)0.0579 (13)0.0403 (12)0.0119 (10)0.0049 (9)0.0061 (10)
C160.0555 (13)0.0841 (17)0.0381 (12)0.0065 (12)0.0068 (10)0.0028 (12)
C170.0648 (14)0.0713 (15)0.0358 (12)0.0179 (12)0.0029 (10)0.0124 (11)
C180.0805 (16)0.0524 (12)0.0480 (13)0.0008 (12)0.0137 (12)0.0142 (10)
C190.0590 (12)0.0426 (11)0.0453 (12)0.0068 (10)0.0047 (10)0.0031 (9)
O10.0346 (7)0.0616 (9)0.0541 (9)0.0001 (6)0.0068 (6)0.0148 (7)
P10.0389 (3)0.0329 (2)0.0346 (3)0.00217 (18)0.0016 (2)0.00096 (18)
Geometric parameters (Å, º) top
C1—C61.390 (2)C9—H90.98 (2)
C1—C21.402 (2)C10—C111.384 (3)
C1—P11.8279 (18)C10—H100.96 (2)
C2—C31.375 (3)C11—C121.380 (3)
C2—H20.98 (2)C11—H110.97 (2)
C3—C41.392 (3)C12—C131.387 (3)
C3—H30.99 (2)C12—H120.98 (2)
C4—O11.366 (2)C13—H130.96 (2)
C4—C51.386 (3)C14—C191.386 (3)
C5—C61.392 (3)C14—C151.388 (3)
C5—H50.99 (2)C14—P11.8331 (19)
C6—H60.96 (2)C15—C161.383 (3)
C7—O11.420 (3)C15—H150.94 (2)
C7—H7A1.00 (2)C16—C171.380 (3)
C7—H7B0.98 (3)C16—H160.98 (3)
C7—H7C0.97 (2)C17—C181.366 (3)
C8—C131.390 (3)C17—H171.00 (3)
C8—C91.395 (3)C18—C191.392 (3)
C8—P11.8325 (18)C18—H180.97 (3)
C9—C101.384 (3)C19—H190.95 (3)
C6—C1—C2117.35 (16)C9—C10—H10122.2 (14)
C6—C1—P1124.37 (13)C12—C11—C10119.9 (2)
C2—C1—P1118.02 (13)C12—C11—H11120.3 (14)
C3—C2—C1121.63 (17)C10—C11—H11119.8 (14)
C3—C2—H2121.1 (13)C11—C12—C13120.4 (2)
C1—C2—H2117.3 (13)C11—C12—H12121.8 (13)
C2—C3—C4120.08 (17)C13—C12—H12117.8 (13)
C2—C3—H3122.6 (13)C12—C13—C8120.49 (19)
C4—C3—H3117.3 (12)C12—C13—H13118.9 (13)
O1—C4—C5124.71 (17)C8—C13—H13120.6 (13)
O1—C4—C3115.75 (16)C19—C14—C15118.05 (19)
C5—C4—C3119.54 (17)C19—C14—P1116.57 (15)
C4—C5—C6119.70 (17)C15—C14—P1125.33 (14)
C4—C5—H5121.2 (12)C16—C15—C14120.9 (2)
C6—C5—H5119.1 (12)C16—C15—H15118.2 (16)
C1—C6—C5121.67 (17)C14—C15—H15120.9 (16)
C1—C6—H6120.8 (11)C17—C16—C15120.1 (2)
C5—C6—H6117.5 (11)C17—C16—H16122.2 (16)
O1—C7—H7A112.3 (13)C15—C16—H16117.7 (16)
O1—C7—H7B110.5 (15)C18—C17—C16120.0 (2)
H7A—C7—H7B106 (2)C18—C17—H17121.1 (14)
O1—C7—H7C104.2 (14)C16—C17—H17118.9 (14)
H7A—C7—H7C108.7 (19)C17—C18—C19119.9 (2)
H7B—C7—H7C115 (2)C17—C18—H18121.4 (17)
C13—C8—C9118.38 (17)C19—C18—H18118.7 (17)
C13—C8—P1124.76 (14)C14—C19—C18121.0 (2)
C9—C8—P1116.85 (14)C14—C19—H19118.4 (16)
C10—C9—C8121.1 (2)C18—C19—H19120.6 (16)
C10—C9—H9117.8 (12)C4—O1—C7117.65 (15)
C8—C9—H9121.1 (13)C1—P1—C8102.56 (8)
C11—C10—C9119.7 (2)C1—P1—C14103.10 (8)
C11—C10—H10118.1 (14)C8—P1—C14103.44 (8)
C6—C1—C2—C30.3 (3)C14—C15—C16—C170.3 (4)
P1—C1—C2—C3173.97 (16)C15—C16—C17—C181.6 (4)
C1—C2—C3—C41.3 (3)C16—C17—C18—C191.7 (4)
C2—C3—C4—O1177.96 (18)C15—C14—C19—C180.9 (3)
C2—C3—C4—C52.3 (3)P1—C14—C19—C18176.67 (17)
O1—C4—C5—C6178.64 (18)C17—C18—C19—C140.4 (3)
C3—C4—C5—C61.6 (3)C5—C4—O1—C79.4 (3)
C2—C1—C6—C51.0 (3)C3—C4—O1—C7170.80 (19)
P1—C1—C6—C5172.91 (15)C6—C1—P1—C84.60 (18)
C4—C5—C6—C10.0 (3)C2—C1—P1—C8178.47 (14)
C13—C8—C9—C100.9 (3)C6—C1—P1—C14111.83 (16)
P1—C8—C9—C10177.97 (14)C2—C1—P1—C1474.29 (16)
C8—C9—C10—C110.1 (3)C13—C8—P1—C190.17 (17)
C9—C10—C11—C121.4 (3)C9—C8—P1—C191.05 (15)
C10—C11—C12—C131.7 (3)C13—C8—P1—C1416.80 (17)
C11—C12—C13—C80.6 (3)C9—C8—P1—C14161.97 (14)
C9—C8—C13—C120.6 (3)C19—C14—P1—C1160.33 (15)
P1—C8—C13—C12178.14 (15)C15—C14—P1—C117.01 (19)
C19—C14—C15—C161.0 (3)C19—C14—P1—C893.10 (16)
P1—C14—C15—C16176.35 (18)C15—C14—P1—C889.55 (18)
 

Acknowledgements

PJM thanks the EPSRC for a studentship.

References

First citationDaly, J. J. (1964). J. Chem. Soc. A, pp. 3799–3810.  CrossRef Web of Science Google Scholar
First citationDunne, B. J. & Orpen, A. G. (1991). Acta Cryst. C47, 345–347.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMcEwan, W. E., Shiau, W.-I., Yeh, Y.-I., Schulz, D. N., Pagilagan, R. U., Levy, J. L., Symes, C. Jr, Nelson, G. O. & Granoth, I. (1975). J. Am. Chem. Soc. 97, 1787–1794.  CrossRef Web of Science Google Scholar
First citationNonius (20008). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWhitaker, C. M., Kott, K. L. & McMahon, R. J. (1995). J. Org. Chem. 60, 3499–3508.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds