metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexane-1,6-di­ammonium bis­­(di­hydrogenarsenate): infinite anionic layers containing R66(24) loops

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 13 February 2007; accepted 14 February 2007; online 28 February 2007)

The title compound, C6H18N22+·2H2AsO4, contains a network of doubly protonated centrosymmetric hexane-1,6-diammonium cations and dihydrogenarsenate anions. These species inter­act by way of cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds, the latter leading to infinite sheets of the H2AsO4 anions.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing studies of hydrogen-bonding inter­actions in the mol­ecular salts of oxo-anions (Wilkinson & Harrison, 2005[Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2023-m2025.]).

[Scheme 1]

The tetra­hedral H2AsO4 anion in (I)[link] [mean As—O = 1.683 (2) Å] shows the usual distinction (Table 1[link]) between the protonated and unprotonated As—O bond lengths. The complete hexane-1,6-diammonium dication has a centre of symmetry at the mid-point of the C3—C3i bond [symmetry code: (i) −x, −y, −z]. The N1—C1—C2—C3 torsion angle of −72.87 (18)° indicates a gauche conformation for these four atoms within the dication, whereas C1—C2—C3—C3i are anti [torsion angle = 179.17 (19)°]

As well as Coulombic forces, the component species in (I)[link] inter­act by way of a network of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]). The H2AsO4 units are linked into infinite sheets (Fig. 2[link]) by way of the O—H⋯O bonds. The O3—H1⋯O2ii bond (see Table 2[link] for symmetry code) results in inversion-generated dimeric pairs of H2AsO4 tetra­hedra linked by a double (i.e. O—H⋯O + O⋯H—O) hydrogen bond. The O4—H2⋯O1iii bond links the dimers into an infinte sheet (Fig. 3[link]) propagating in (100). The As⋯Asii and As⋯Asiii separations are 4.3922 (3) and 4.8900 (3) Å, respectively. A supra­molecular R66(24) loop (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) arises for each circuit of six tetra­hedra within the sheet.

The anionic sheets are bridged by the organic cations, each of which participates in three nearly linear N—H⋯O inter­actions from its –NH3+ group (Table 2[link]), resulting in a layered crystal structure (Fig. 3[link]).

Guanidinium dihydrogenarsenate, CH6N3·H2AsO4 (Wilkinson & Harrison, 2005[Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2023-m2025.]), contains a hydrogen-bonded tetra­hedral sheet topology similar to that in the title compound, despite the different cation–anion ratio in CH6N3·H2AsO4.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius. The hydrogen bond is indicated by a double-dashed line. [Symmetry code: (i) −x, −y, −z.]
[Figure 2]
Figure 2
Detail of a part of a (100) hydrogen-bonded sheet of H2AsO4 groups in (I)[link], with hydrogen bonds indicated by double-dashed lines. Symmetry codes as in Table 2[link]
[Figure 3]
Figure 3
The packing in (I)[link], viewed down [010], showing the (100) dihydrogenarsenate layers mediated by the organic cations. H atoms have been omitted for clarity.

Experimental

An aqueous 1,6-diamino­hexane solution (0.5 M, 10 ml) was added to an aqueous H3AsO4 solution (0.5 M, 10 ml), resulting in a clear solution. A mass of chunks and blocks of (I)[link] grew as the water evaporated over the course of a few days.

Crystal data
  • C6H18N22+·2AsH2O4

  • Mr = 400.10

  • Monoclinic, P 21 /c

  • a = 9.5237 (5) Å

  • b = 10.1029 (5) Å

  • c = 8.0747 (4) Å

  • β = 108.385 (1)°

  • V = 737.27 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.56 mm−1

  • T = 293 (2) K

  • 0.33 × 0.31 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.314, Tmax = 0.589 (expected range = 0.295–0.553)

  • 7129 measured reflections

  • 2649 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.057

  • S = 0.99

  • 2649 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

As1—O1 1.6501 (11)
As1—O2 1.6656 (11)
As1—O4 1.6998 (13)
As1—O3 1.7169 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2ii 0.92 1.70 2.6103 (15) 169
O4—H2⋯O1iii 0.86 1.71 2.5613 (16) 170
N1—H3⋯O2 0.89 2.01 2.8938 (17) 172
N1—H4⋯O2iii 0.89 2.12 2.9681 (19) 159
N1—H5⋯O1iv 0.89 1.89 2.7714 (16) 169
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. The other H atoms were positioned geometrically, with C—H = 0.97 Å and N—H = 0.89 Å, and refined as riding atoms. Uiso(H) = 1.2Ueq(carrier) for all H atoms.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Hexane-1,6-diammonium bis(dihydrogenarsenate) top
Crystal data top
C6H18N22+·2AsH2O4F(000) = 404
Mr = 400.10Dx = 1.802 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4034 reflections
a = 9.5237 (5) Åθ = 2.3–32.5°
b = 10.1029 (5) ŵ = 4.56 mm1
c = 8.0747 (4) ÅT = 293 K
β = 108.385 (1)°Block, colourless
V = 737.27 (6) Å30.33 × 0.31 × 0.13 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2649 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1411
Tmin = 0.314, Tmax = 0.589k = 1510
7129 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difmap and geom
wR(F2) = 0.057H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
2649 reflections(Δ/σ)max = 0.001
83 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.606026 (16)0.386539 (14)0.738786 (17)0.02384 (5)
O10.62562 (15)0.38557 (10)0.94925 (14)0.0325 (2)
O20.43378 (12)0.35753 (10)0.61094 (14)0.0277 (2)
O30.66259 (15)0.54220 (12)0.70262 (14)0.0411 (3)
H10.62180.56750.58830.049*
O40.72953 (15)0.28059 (16)0.69736 (19)0.0584 (4)
H20.69280.23290.60590.070*
N10.30110 (15)0.13220 (12)0.39759 (17)0.0276 (3)
H30.34750.19630.46990.033*
H40.31710.14180.29540.033*
H50.33540.05390.44320.033*
C10.13969 (19)0.13983 (17)0.3713 (2)0.0341 (3)
H1A0.10300.22570.32300.041*
H1B0.12300.13160.48330.041*
C20.05421 (18)0.03200 (17)0.2497 (2)0.0330 (3)
H2A0.10270.05230.28690.040*
H2B0.04450.02660.25960.040*
C30.04181 (19)0.05463 (17)0.0598 (2)0.0349 (3)
H3A0.00810.13820.02170.042*
H3B0.14040.06120.04980.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.02682 (8)0.02320 (8)0.01871 (7)0.00187 (5)0.00318 (5)0.00245 (5)
O10.0462 (7)0.0285 (5)0.0195 (5)0.0035 (5)0.0055 (5)0.0019 (4)
O20.0270 (5)0.0288 (5)0.0230 (5)0.0047 (4)0.0019 (4)0.0001 (4)
O30.0503 (8)0.0394 (7)0.0247 (5)0.0200 (6)0.0007 (5)0.0064 (5)
O40.0353 (7)0.0683 (10)0.0603 (9)0.0106 (6)0.0012 (6)0.0400 (8)
N10.0296 (6)0.0261 (6)0.0238 (6)0.0021 (5)0.0035 (5)0.0016 (4)
C10.0320 (8)0.0372 (9)0.0314 (8)0.0057 (6)0.0077 (6)0.0043 (6)
C20.0256 (7)0.0395 (9)0.0310 (8)0.0040 (6)0.0049 (6)0.0003 (6)
C30.0334 (8)0.0365 (9)0.0303 (8)0.0104 (7)0.0037 (6)0.0006 (6)
Geometric parameters (Å, º) top
As1—O11.6501 (11)C1—C21.520 (2)
As1—O21.6656 (11)C1—H1A0.9700
As1—O41.6998 (13)C1—H1B0.9700
As1—O31.7169 (11)C2—C31.518 (2)
O3—H10.9179C2—H2A0.9700
O4—H20.8586C2—H2B0.9700
N1—C11.486 (2)C3—C3i1.516 (3)
N1—H30.8900C3—H3A0.9700
N1—H40.8900C3—H3B0.9700
N1—H50.8900
O1—As1—O2113.99 (6)C2—C1—H1A109.2
O1—As1—O4109.78 (7)N1—C1—H1B109.2
O2—As1—O4112.00 (6)C2—C1—H1B109.2
O1—As1—O3103.94 (5)H1A—C1—H1B107.9
O2—As1—O3110.87 (5)C3—C2—C1113.58 (14)
O4—As1—O3105.64 (8)C3—C2—H2A108.8
As1—O3—H1111.7C1—C2—H2A108.8
As1—O4—H2113.8C3—C2—H2B108.8
C1—N1—H3109.5C1—C2—H2B108.8
C1—N1—H4109.5H2A—C2—H2B107.7
H3—N1—H4109.5C3i—C3—C2113.04 (17)
C1—N1—H5109.5C3i—C3—H3A109.0
H3—N1—H5109.5C2—C3—H3A109.0
H4—N1—H5109.5C3i—C3—H3B109.0
N1—C1—C2111.98 (13)C2—C3—H3B109.0
N1—C1—H1A109.2H3A—C3—H3B107.8
N1—C1—C2—C372.87 (18)C1—C2—C3—C3i179.17 (19)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2ii0.921.702.6103 (15)169
O4—H2···O1iii0.861.712.5613 (16)170
N1—H3···O20.892.012.8938 (17)172
N1—H4···O2iii0.892.122.9681 (19)159
N1—H5···O1iv0.891.892.7714 (16)169
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2023–m2025.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds