organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Iodo­butyl)pyrimidin-1-ium iodide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 30 January 2007; accepted 30 January 2007; online 7 February 2007)

The title mol­ecular salt, C8H12IN2+·I, features weak C—H⋯N and C—H⋯I inter­actions in the crystal structure.

Comment

As part of our investigations of substituted pyrimidines (Brown, 1994[Brown, D. J. (1994). The Pyrimidines. New York: Wiley-Interscience.]), the title compound, (I)[link], C8H12IN2+·I, has been synthesized and structurally characterized (Fig. 1[link]). Compound (I)[link] possesses normal geometrical parameters (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The pyrimidine ring (C5–C8/N1/N2; centroid Cg) is almost planar (r.m.s. deviation from the mean plane = 0.007 Å). The bond-angle sum at N1 of 360.0° implies the expected sp2-hybridization. The dihedral angle between the aromatic ring and the mean plane of the side-chain atoms (C1–C4/I1) is 53.63 (11)°.

[Scheme 1]

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] identified some short C—H⋯N and C—H⋯I inter­actions (Table 1[link]) that might influence the crystal packing. Conversely, there are no ππ stacking inter­actions in (I)[link], the shortest CgCg separation being greater than 5.2 Å. The shortest I1⋯I2 contact of 3.7418 (3) Å in (I)[link] is significantly less than the Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) van der Waals I⋯I contact distance of 3.96 Å.

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link] showing the atom labelling and 50% probability displacement ellipsoids.

Experimental

Pyrimidine (2.50 mmol, 0.200 g) was carefully added to dry aceto­nitrile (60 ml) with stirring under nitro­gen. The flask was degassed to remove any air and was stirred for 10 min. 1,4-Diiodo­butane (10.1 mmol, 3.15 g) was then slowly added to the solution and the mixture was refluxed at 363 K for 8 h, monitoring the product using thin-layer chromatography (1:1 v/v, methanol, ethyl acetate, Rf = 0.5). The reaction vessel was covered with aluminium foil, as 1,4-diiodo­butane is light-sensitive.

To ensure the complete consumption of pyrimidine, the reaction was stirred for a further 48 h. After this time, the reaction mixture was cooled to room temperature, revealing an orange crystalline product. The crystals were filtered off, washed with cold ethyl acetate (2 × 5 ml) and placed under reduced pressure to dry, yielding (I)[link]. The crystal quality was poor and not suitable for X-ray data collection.

The remaining filtrate was reduced in vacuo and washed with ethyl acetate (3 × 10 ml) to remove the excess 1,4-diiodo­butane, producing an orange solid. This was dissolved in hot acetonitrile (20 ml), and recrystallization, initialized by a few drops of cold ethyl acetate, yielded orange rosettes in intergrown plates crystals of (I)[link]. The overall yield of both batches was 0.534 g (52%), m.p. 410–412 K. νmax (KBr, cm−1) 678 (alkyl-I), 817 (isolated aryl-H), 1431 (CH2), 1619 (C=N, conjugated, cyclic), 2920 (CH2), 3048 (CH-halogen).

Crystal data
  • C8H12IN2+·I

  • Mr = 390.00

  • Monoclinic, P 21 /c

  • a = 16.9178 (6) Å

  • b = 9.1694 (3) Å

  • c = 7.6303 (2) Å

  • β = 97.329 (2)°

  • V = 1173.99 (6) Å3

  • Z = 4

  • Dx = 2.207 Mg m−3

  • Mo Kα radiation

  • μ = 5.32 mm−1

  • T = 120 (2) K

  • Plate, orange

  • 0.22 × 0.18 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.388, Tmax = 0.900

  • 12760 measured reflections

  • 2674 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.043

  • S = 1.09

  • 2674 reflections

  • 110 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0082P)2 + 0.8187P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.66 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00174 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N2i 0.95 2.58 3.396 (4) 144
C7—H7⋯I2ii 0.95 3.03 3.952 (3) 164
C8—H8⋯I2iii 0.95 3.04 3.792 (3) 138
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

All H atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

1-(4-Iodobutyl)pyrimidin-1-ium iodide top
Crystal data top
C8H12IN2+·IF(000) = 720
Mr = 390.00Dx = 2.207 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2769 reflections
a = 16.9178 (6) Åθ = 2.9–27.5°
b = 9.1694 (3) ŵ = 5.32 mm1
c = 7.6303 (2) ÅT = 120 K
β = 97.329 (2)°Slab, orange
V = 1173.99 (6) Å30.22 × 0.18 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2674 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2121
Tmin = 0.388, Tmax = 0.900k = 1111
12760 measured reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: none
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0082P)2 + 0.8187P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2674 reflectionsΔρmax = 0.78 e Å3
110 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00174 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54275 (18)0.3242 (3)0.3053 (4)0.0204 (7)
H1A0.56770.30960.42860.024*
H1B0.54560.23060.24170.024*
C20.58877 (17)0.4387 (3)0.2187 (4)0.0178 (7)
H2A0.58250.53430.27570.021*
H2B0.56710.44730.09240.021*
C30.67736 (18)0.3991 (3)0.2346 (4)0.0210 (7)
H3A0.69760.37930.35990.025*
H3B0.68420.30950.16580.025*
C40.72465 (19)0.5222 (3)0.1668 (4)0.0225 (7)
H4A0.70740.53560.03890.027*
H4B0.71330.61370.22770.027*
C50.8421 (2)0.3727 (3)0.1321 (4)0.0255 (7)
H50.80810.30340.06800.031*
C60.9232 (2)0.3494 (4)0.1607 (4)0.0298 (8)
H60.94610.26320.12000.036*
C70.9699 (2)0.4549 (4)0.2501 (4)0.0314 (8)
H71.02600.44050.26990.038*
C80.8615 (2)0.5916 (3)0.2825 (4)0.0262 (7)
H80.83880.67660.32660.031*
N10.81170 (15)0.4937 (3)0.1953 (3)0.0188 (6)
N20.93938 (17)0.5776 (3)0.3106 (4)0.0344 (7)
I10.419543 (11)0.38361 (2)0.30573 (2)0.01817 (7)
I20.204826 (12)0.48311 (2)0.30184 (3)0.02537 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (17)0.0191 (16)0.0256 (16)0.0038 (13)0.0066 (13)0.0007 (13)
C20.0153 (17)0.0203 (16)0.0177 (15)0.0008 (12)0.0016 (12)0.0009 (12)
C30.0161 (18)0.0191 (16)0.0278 (17)0.0011 (13)0.0031 (13)0.0014 (13)
C40.0132 (18)0.0243 (17)0.0302 (18)0.0038 (13)0.0035 (13)0.0038 (14)
C50.0209 (19)0.0222 (18)0.0338 (19)0.0023 (14)0.0047 (14)0.0002 (14)
C60.021 (2)0.0267 (18)0.042 (2)0.0095 (15)0.0071 (16)0.0021 (16)
C70.0135 (19)0.041 (2)0.040 (2)0.0024 (16)0.0027 (15)0.0084 (17)
C80.023 (2)0.0217 (17)0.0341 (19)0.0017 (14)0.0035 (15)0.0007 (14)
N10.0136 (15)0.0193 (14)0.0233 (14)0.0009 (11)0.0013 (11)0.0041 (11)
N20.0206 (17)0.0363 (18)0.0458 (19)0.0064 (14)0.0032 (14)0.0017 (14)
I10.01703 (13)0.01706 (12)0.02101 (12)0.00227 (8)0.00464 (8)0.00121 (8)
I20.01859 (14)0.02792 (13)0.03015 (13)0.00015 (9)0.00529 (9)0.00106 (9)
Geometric parameters (Å, º) top
C1—C21.509 (4)C4—H4B0.9900
C1—I12.155 (3)C5—N11.339 (4)
C1—H1A0.9900C5—C61.379 (4)
C1—H1B0.9900C5—H50.9500
C2—C31.532 (4)C6—C71.374 (5)
C2—H2A0.9900C6—H60.9500
C2—H2B0.9900C7—N21.344 (4)
C3—C41.512 (4)C7—H70.9500
C3—H3A0.9900C8—N21.313 (4)
C3—H3B0.9900C8—N11.348 (4)
C4—N11.484 (4)C8—H80.9500
C4—H4A0.9900
C2—C1—I1112.19 (19)C3—C4—H4A109.2
C2—C1—H1A109.2N1—C4—H4B109.2
I1—C1—H1A109.2C3—C4—H4B109.2
C2—C1—H1B109.2H4A—C4—H4B107.9
I1—C1—H1B109.2N1—C5—C6119.5 (3)
H1A—C1—H1B107.9N1—C5—H5120.3
C1—C2—C3110.8 (2)C6—C5—H5120.3
C1—C2—H2A109.5C7—C6—C5117.9 (3)
C3—C2—H2A109.5C7—C6—H6121.1
C1—C2—H2B109.5C5—C6—H6121.1
C3—C2—H2B109.5N2—C7—C6122.5 (3)
H2A—C2—H2B108.1N2—C7—H7118.7
C4—C3—C2110.5 (2)C6—C7—H7118.7
C4—C3—H3A109.5N2—C8—N1124.5 (3)
C2—C3—H3A109.5N2—C8—H8117.7
C4—C3—H3B109.5N1—C8—H8117.7
C2—C3—H3B109.5C5—N1—C8119.0 (3)
H3A—C3—H3B108.1C5—N1—C4120.8 (3)
N1—C4—C3112.2 (2)C8—N1—C4120.1 (3)
N1—C4—H4A109.2C8—N2—C7116.6 (3)
I1—C1—C2—C3175.21 (19)N2—C8—N1—C50.2 (5)
C1—C2—C3—C4173.5 (3)N2—C8—N1—C4178.4 (3)
C2—C3—C4—N1174.7 (2)C3—C4—N1—C556.1 (4)
N1—C5—C6—C71.7 (5)C3—C4—N1—C8125.3 (3)
C5—C6—C7—N20.5 (5)N1—C8—N2—C71.4 (5)
C6—C5—N1—C81.4 (4)C6—C7—N2—C81.0 (5)
C6—C5—N1—C4180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.952.583.396 (4)144
C7—H7···I2ii0.953.033.952 (3)164
C8—H8···I2iii0.953.043.792 (3)138
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrown, D. J. (1994). The Pyrimidines. New York: Wiley-Interscience.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds