organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-O-tert-Butyl­di­phenyl­silyl-2-C-hy­droxy­methyl-2,3-O-iso­propyl­­idene-2′-O-tri­fluoro­methane­sulfonyl-D-ribono-1,4-lactone

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: michela_simone@yahoo.co.uk

(Received 22 January 2007; accepted 27 January 2007; online 7 February 2007)

The title compound, C26H31F3O8SSi, provides a unique example of the crystal structure of an organic trifluoro­methane­sulfonate attached to a primary C atom. The absolute configuration is determined by the use of D-ribose as the starting material.

Comment

Sulfonate esters provide a wide range of leaving groups for nucleophilic substitution reactions in organic chemistry (Bentley, 1991[Bentley, T. W. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & S. Rappoport, pp. 671-696. Chichester: Wiley.]). A β-oxygen substituent very substanti­ally retards either SN1 or SN2 reactions (Shaik, 1983[Shaik, S. S. (1983). J. Am. Chem. Soc. 105, 4359-4367.]); in carbohydrate chemistry, where there is always a β-oxygen, nucleophilic substitutions at secondary carbons are usually too slow if a mesylate or a tosyl­ate is used as a leaving group (Richardson, 1969[Richardson, A. C. (1969). Carbohydr. Res. 10, 395-402.]). However trifluoro­methane­sulfonate (Howells & McCown, 1977[Howells, R. D. & McCown, J. D. (1977). Chem. Rev. 77, 69-92.]; Rakita, 2004[Rakita, P. E. (2004). Chim. Oggi, 22, 48-50.]) is an excellent leaving group with a rate increase of around 105 in comparison to tosyl­ate in SN1 (Takeuchi et al., 1988[Takeuchi, K., Ikai, K., Shibata, T. & Tsugeno, A. (1988). J. Org. Chem. 53, 2852-2855.]) and SN2 reactions (Streitwieser et al., 1968[Streitwieser, A., Wilkins, C. L. & Kiehlmann, E. (1968). J. Am. Chem. Soc. 90, 1598-1601.]), and in decarboxylative eliminations (Fleming & Ramarao, 2004[Fleming, I. & Ramarao, C. (2004). Org. Biomol. Chem. 2, 1504-1510.]). Trifluoro­methane­sulfonates are relatively unstable; few crystal structures of organic trifluoro­methane­sulfonates have been reported. The first crystal structure of a secondary trifluoro­methane­sulfonate was reported by Barnes et al. (1996[Barnes, J. C., Brimacombe, J. S. & Kabir, A. K. M. S. (1996). Acta Cryst. C52, 416-418.]) and a further two have been reported (Hung et al., 2001[Hung, S. C., Wang, C. C., Chang, S. W. & Chen, C. S. (2001). Tetrahedron Lett. 42, 1321-1324.]; Tremmel et al., 2003[Tremmel, P., Brand, J., Knapp, V. & Geyer, A. (2003). Eur. J. Org. Chem. pp. 878-884.]). Although two crystal structures of primary trifluoro­methane­sulfonates of carboranes have been published (Herzog et al., 1999[Herzog, A., Knobler, C. B., Hawthorne, M. F., Maderna, A. & Siebert, W. (1999). J. Org. Chem. 64, 1045-1048.]; Kalinin et al., 2005[Kalinin, V. N., Rys, E. G., Tyutyunov, A. A., Starikov, Z. A., Korlyukov, A. A., Ol'shevskaya, V. A., Sung, D. D., Ponomaryov, A. B., Petrovskii, P. V. & Hey-Hawkins, E. (2005). Dalton Trans. pp. 903-908.]), the present paper reports the first example of the crystal structure of a primary trifluoro­methane­sulfonate, (3)[link].

[Scheme 1]

In a study of secondary structures of novel peptides (Jockusch et al., 2006[Jockusch, R. A., Talbot, F. O., Simone, M. I., Rogers, P. S., Fleet, G. W. J. & Simons, J. P. (2006). J. Am. Chem. Soc. 128, 16771-16777.]), the synthesis of a number of carbon-branched sugar amino acids (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]) required displacements by nucleophiles (X = N3, I) of the leaving group in the very hindered neopentyl trifluoro­methane­sulfonate (3)[link], yielding (4)[link]. D-Ribose was converted to the protected hamamelonolactone (1)[link] (Ho, 1979[Ho, P.-T. (1979). Can. J. Chem. 57, 381.], 1985[Ho, P.-T. (1985). Can. J. Chem. 63, 2221-2224.]) as previously described. The less hindered primary alcohol in (1)[link] was selectively protected as the very bulky tert-butyl­diphenyl­silyl ether (2)[link]. Esterification of the remaining neopentyl alcohol in (2)[link] with trifluoro­methane­sulfonic (triflic) anhydride gave the trifluoro­methane­sulfonate (3)[link] as a stable crystalline compound, allowing the first X-ray crystallographic analysis of a primary organic trifluoro­methane­sulfonate. The crystal structure of (3)[link] confirmed the relative stereochemistry and the integrity of the trifluoro­methane­sulfonate functional group; the absolute configuration of (3)[link] was determined by the use of D-ribose as the starting material.

There are no unusual bond lengths or angles in the structure (Fig. 1[link]), the largest differences from the Mogul norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Jie, L., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) being O8—Si1 (0.02 Å; Mogul s.u. 0.01 Å) and S1—O5—O4 (5.9°; Mogul s.u. 3.7°). The Flack parameter refined to −0.04 (7), enabling the absolute configuration of the mol­ecule to be assigned with confidence.

The crystal structure consists of discrete mol­ecules without any specific strong inter­actions between them. The mol­ecules are well separated in the b and c directions, giving the appearance of columns in close contact, parallel to a (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (3), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
Packing diagram of (3) viewed along the c axis, showing the columns of mol­ecules lying parallel to a.

Experimental

Triflic anhydride (97 µl, 0.58 mmol) was added dropwise to a stirred solution of the silyl ether (2) (203 mg, 0.44 mmol) in dichloro­methane (1.7 ml) containing dry pyridine (79 µl) at 243 K under an atmosphere of argon. After 20 min, thin layer chromatography (ethyl acetate/cyclo­hexane, 1:4) indicated the presence of a major UV-active product (Rf = 0.45) and complete consumption of the starting material (Rf = 0.11). The reaction mixture was diluted with dichloro­methane (20 ml), and washed with aqueous hydro­chloric acid solution (1M, 2.0 ml), then with a buffer solution [pH 7, K2H2PO4 (0.51 M)/NaOH (0.38 M), 1.0 ml]. The organic layers were dried (magnesium sulfate) and filtered, and the filtrate was concentrated in vacuo to give a residue which was purified by flash column chromatography (ethyl acetate/cyclo­hexane, 1:6 to 1:3), to yield the trifluoro­methane­sulfonate (3) (239 mg, 91% yield) as a colourless oil which crystallized on standing. M.p. 367–370 K; [α]D25 +9.0 (c, 0.94 in acetonitrile); νmax (thin film): 1785 (s, C=O) cm−1. A sample of (3), suitable for X-ray crystallographic analysis, was obtained via solvent evaporation (ethyl acetate/cyclo­hexane).

Crystal data
  • C26H31F3O8SSi

  • Mr = 588.67

  • Orthorhombic, P 21 21 21

  • a = 7.7889 (1) Å

  • b = 17.0479 (3) Å

  • c = 21.2824 (3) Å

  • V = 2825.97 (7) Å3

  • Z = 4

  • Dx = 1.384 Mg m−3

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 150 K

  • Block, colourless

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.93, Tmax = 0.96

  • 29606 measured reflections

  • 6416 independent reflections

  • 4788 reflections with I > 3σ(I)

  • Rint = 0.055

  • θmax = 27.5°

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.033

  • S = 1.06

  • 4788 reflections

  • 353 parameters

  • H-atom parameters not refined

  • Chebychev polynomial with three parameters (Carruthers & Watkin, 1979[Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.]) 0.297, 0.0573 and 0.0793

  • (Δ/σ)max = 0.002

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2791 Friedel pairs

  • Flack parameter: −0.04 (7)

All H atoms were found in difference Fourier maps, but were repositioned geometrically after each cycle of refinement; C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

5-O-tert-Butyldiphenylsilyl-2-C-hydroxymethyl- 2,3-O-isopropylidene-2'-O-trifluoromethanesulfonyl-D-ribono-1,4-lactone top
Crystal data top
C26H31F3O8SSiDx = 1.384 Mg m3
Mr = 588.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 29606 reflections
a = 7.7889 (1) Åθ = 5–28°
b = 17.0479 (3) ŵ = 0.22 mm1
c = 21.2824 (3) ÅT = 150 K
V = 2825.97 (7) Å3Block, colourless
Z = 40.32 × 0.24 × 0.20 mm
F(000) = 1232
Data collection top
Nonius KappaCCD
diffractometer
4788 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.93, Tmax = 0.96k = 2222
29606 measured reflectionsl = 2727
6416 independent reflections
Refinement top
Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.033 Chebychev polynomial with three parameters (Carruthers & Watkin, 1979) 0.297, 0.0573 and 0.0793
wR(F2) = 0.033(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.32 e Å3
4788 reflectionsΔρmin = 0.31 e Å3
353 parametersAbsolute structure: Flack (1983), 2791 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (7)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1132 (2)0.09395 (8)0.30408 (7)0.0304
C10.1544 (3)0.05246 (12)0.35539 (11)0.0290
C20.0421 (3)0.02148 (11)0.36056 (9)0.0236
C30.0810 (3)0.01558 (11)0.30473 (9)0.0232
C40.0154 (3)0.05425 (11)0.2658 (1)0.0266
O20.2640 (2)0.07288 (9)0.39182 (9)0.0408
C50.1602 (2)0.09126 (12)0.3645 (1)0.0265
O30.05389 (19)0.16164 (8)0.35441 (7)0.0291
S10.11475 (8)0.24270 (3)0.37960 (3)0.0328
O40.0571 (3)0.3005 (1)0.33682 (9)0.0519
O50.2860 (2)0.2394 (1)0.40186 (9)0.0470
C60.0229 (3)0.25115 (14)0.44861 (11)0.0389
F10.0080 (2)0.1936 (1)0.48786 (7)0.0566
F20.18620 (19)0.24919 (11)0.43224 (8)0.0570
F30.0084 (3)0.31886 (9)0.47665 (8)0.0614
O60.06340 (17)0.01953 (8)0.41459 (6)0.0262
O70.24526 (17)0.00347 (8)0.33208 (7)0.0273
C70.2262 (3)0.01392 (12)0.39767 (9)0.0249
C80.3641 (3)0.02811 (14)0.43398 (11)0.0350
C90.2287 (3)0.10197 (12)0.40774 (11)0.0328
C100.0686 (3)0.02992 (12)0.2051 (1)0.0286
O80.19443 (18)0.02857 (8)0.21883 (6)0.0260
Si10.28595 (7)0.08423 (3)0.16397 (3)0.0229
C110.4132 (3)0.15675 (11)0.21083 (9)0.0240
C120.4015 (3)0.23743 (12)0.1981 (1)0.0296
C130.4952 (3)0.29198 (14)0.23258 (12)0.0382
C140.6027 (3)0.26699 (14)0.28012 (11)0.0380
C150.6171 (3)0.18799 (14)0.29389 (11)0.0344
C160.5230 (3)0.13321 (12)0.2595 (1)0.0282
C170.1131 (3)0.13991 (11)0.1223 (1)0.0268
C180.1020 (3)0.15241 (14)0.0574 (1)0.0339
C190.0220 (3)0.20302 (16)0.03243 (12)0.0437
C200.1368 (3)0.24101 (15)0.07124 (13)0.0415
C210.1304 (3)0.22856 (13)0.13519 (12)0.0373
C220.0074 (3)0.17878 (13)0.16037 (11)0.0302
C230.4279 (3)0.02309 (12)0.1115 (1)0.0331
C240.5407 (3)0.07733 (15)0.07131 (13)0.0450
C250.3262 (4)0.03198 (15)0.06794 (13)0.0462
C260.5478 (4)0.02684 (17)0.15282 (14)0.0520
H310.08790.06230.27640.0278*
H410.11550.08820.25470.0319*
H510.21570.09350.40690.0318*
H520.25090.08770.33140.0318*
H810.47880.00560.42280.0421*
H820.34330.02140.48000.0421*
H830.36200.08520.42320.0421*
H910.34360.12320.39550.0394*
H920.20640.11380.45300.0394*
H930.13780.12700.38130.0394*
H1010.12500.07630.18510.0343*
H1020.01970.00800.17590.0343*
H1210.32430.25600.16360.0356*
H1310.48470.34920.22290.0459*
H1410.67040.30620.30470.0456*
H1510.69490.17020.32840.0413*
H1610.53400.07620.26970.0338*
H1810.18360.12490.02860.0407*
H1910.02730.21170.01400.0524*
H2010.22440.27740.05310.0498*
H2110.21440.25540.16350.0448*
H2210.00440.17030.20680.0362*
H2410.61610.04500.04350.0540*
H2420.61370.11060.09940.0540*
H2430.46600.11180.04490.0540*
H2510.40780.06280.04140.0554*
H2520.25550.06870.09390.0554*
H2530.24900.00020.04030.0554*
H2610.62370.05950.12540.0625*
H2620.62000.00840.17950.0625*
H2630.47750.06180.18040.0625*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (8)0.0213 (7)0.0324 (8)0.0046 (7)0.0044 (7)0.0000 (6)
C10.0265 (11)0.024 (1)0.0366 (12)0.0007 (8)0.0010 (9)0.0024 (9)
C20.0252 (9)0.0197 (9)0.026 (1)0.0007 (8)0.0002 (8)0.0007 (8)
C30.024 (1)0.0204 (9)0.025 (1)0.0022 (8)0.0036 (8)0.0006 (8)
C40.0279 (11)0.021 (1)0.0307 (11)0.0018 (8)0.0011 (9)0.0017 (8)
O20.0355 (9)0.0310 (8)0.0559 (11)0.0043 (7)0.0122 (8)0.0044 (8)
C50.024 (1)0.0207 (9)0.0345 (11)0.0005 (8)0.0006 (8)0.0013 (9)
O30.0336 (8)0.0175 (7)0.0361 (8)0.0004 (6)0.0073 (6)0.0029 (6)
S10.0389 (3)0.0194 (2)0.0401 (3)0.0035 (2)0.0035 (2)0.0006 (2)
O40.0789 (14)0.0265 (8)0.050 (1)0.0023 (8)0.0019 (11)0.0130 (8)
O50.0369 (9)0.0346 (9)0.0696 (12)0.0085 (8)0.0065 (9)0.0110 (9)
C60.0456 (14)0.0291 (12)0.0421 (13)0.0050 (11)0.0066 (11)0.0084 (11)
F10.0821 (12)0.0480 (9)0.0398 (8)0.0122 (9)0.0073 (8)0.0050 (7)
F20.0407 (8)0.0683 (11)0.062 (1)0.0083 (8)0.0004 (7)0.0157 (9)
F30.0839 (13)0.0421 (9)0.058 (1)0.0051 (9)0.0043 (9)0.0248 (8)
O60.0255 (7)0.0303 (8)0.0229 (7)0.0035 (6)0.0004 (6)0.0003 (6)
O70.0227 (7)0.0373 (8)0.0219 (7)0.0005 (6)0.0003 (6)0.0025 (6)
C70.0248 (9)0.029 (1)0.0204 (9)0.0032 (8)0.0005 (8)0.0004 (8)
C80.0318 (12)0.0400 (13)0.0334 (12)0.001 (1)0.006 (1)0.001 (1)
C90.0373 (12)0.0280 (11)0.0332 (12)0.0058 (9)0.001 (1)0.0040 (9)
C100.0369 (12)0.022 (1)0.026 (1)0.0082 (9)0.0043 (9)0.0037 (8)
O80.0292 (8)0.0235 (7)0.0252 (7)0.0048 (6)0.0011 (6)0.0004 (6)
Si10.0250 (2)0.0192 (2)0.0244 (3)0.0008 (2)0.0023 (2)0.0000 (2)
C110.022 (1)0.0234 (9)0.027 (1)0.0001 (8)0.0018 (8)0.0003 (8)
C120.0323 (11)0.023 (1)0.0336 (11)0.0007 (9)0.004 (1)0.0039 (8)
C130.0421 (13)0.023 (1)0.0499 (15)0.005 (1)0.0059 (12)0.001 (1)
C140.0355 (12)0.0378 (12)0.0406 (13)0.0091 (11)0.007 (1)0.008 (1)
C150.0290 (11)0.0413 (13)0.0330 (12)0.002 (1)0.005 (1)0.000 (1)
C160.0275 (11)0.0257 (11)0.0313 (11)0.0008 (9)0.0026 (9)0.0026 (9)
C170.029 (1)0.0244 (9)0.027 (1)0.0079 (9)0.0007 (9)0.0011 (8)
C180.0353 (12)0.0389 (12)0.0275 (11)0.005 (1)0.003 (1)0.0002 (9)
C190.0471 (15)0.0461 (14)0.0378 (13)0.0104 (12)0.0190 (12)0.0129 (11)
C200.0305 (12)0.0347 (12)0.0594 (15)0.005 (1)0.0136 (11)0.0123 (12)
C210.0293 (11)0.0308 (12)0.0518 (15)0.0004 (9)0.0043 (11)0.001 (1)
C220.027 (1)0.0280 (11)0.0350 (11)0.0002 (8)0.002 (1)0.0008 (9)
C230.0385 (12)0.026 (1)0.0347 (12)0.0003 (9)0.010 (1)0.0015 (9)
C240.0440 (14)0.0402 (14)0.0509 (15)0.0037 (12)0.0219 (12)0.0045 (12)
C250.0615 (18)0.0327 (12)0.0443 (15)0.0076 (12)0.0170 (13)0.0145 (11)
C260.0543 (16)0.0439 (15)0.0579 (17)0.0234 (13)0.0083 (13)0.0010 (13)
Geometric parameters (Å, º) top
O1—C11.340 (3)Si1—C171.871 (2)
O1—C41.458 (3)Si1—C231.886 (2)
C1—C21.538 (3)C11—C121.405 (3)
C1—O21.205 (3)C11—C161.401 (3)
C2—C31.530 (3)C12—C131.391 (3)
C2—C51.506 (3)C12—H1211.000
C2—O61.414 (2)C13—C141.381 (3)
C3—C41.538 (3)C13—H1311.000
C3—O71.421 (2)C14—C151.383 (3)
C3—H311.0000C14—H1411.000
C4—C101.506 (3)C15—C161.395 (3)
C4—H411.000C15—H1511.000
C5—O31.474 (2)C16—H1611.000
C5—H511.000C17—C181.399 (3)
C5—H521.000C17—C221.407 (3)
O3—S11.5563 (14)C18—C191.400 (3)
S1—O41.4146 (18)C18—H1811.000
S1—O51.4166 (18)C19—C201.379 (4)
S1—C61.824 (3)C19—H1911.000
C6—F11.310 (3)C20—C211.378 (4)
C6—F21.319 (3)C20—H2011.000
C6—F31.322 (3)C21—C221.387 (3)
O6—C71.436 (2)C21—H2111.000
O7—C71.435 (2)C22—H2211.000
C7—C81.505 (3)C23—C241.536 (3)
C7—C91.516 (3)C23—C251.539 (3)
C8—H811.000C23—C261.539 (3)
C8—H821.000C24—H2411.000
C8—H831.000C24—H2421.000
C9—H911.000C24—H2431.000
C9—H921.000C25—H2511.000
C9—H931.000C25—H2521.000
C10—O81.428 (2)C25—H2531.000
C10—H1011.000C26—H2611.000
C10—H1021.000C26—H2621.000
O8—Si11.6648 (14)C26—H2631.000
Si1—C111.872 (2)
C1—O1—C4112.00 (15)C10—O8—Si1123.29 (12)
O1—C1—C2110.79 (18)O8—Si1—C11103.27 (8)
O1—C1—O2122.78 (19)O8—Si1—C17108.29 (9)
C2—C1—O2126.4 (2)C11—Si1—C17107.38 (9)
C1—C2—C3104.29 (16)O8—Si1—C23110.57 (9)
C1—C2—C5107.68 (16)C11—Si1—C23111.7 (1)
C3—C2—C5118.56 (17)C17—Si1—C23114.9 (1)
C1—C2—O6111.69 (16)Si1—C11—C12120.62 (15)
C3—C2—O6105.43 (15)Si1—C11—C16121.83 (15)
C5—C2—O6109.16 (16)C12—C11—C16117.55 (19)
C2—C3—C4105.13 (16)C11—C12—C13121.3 (2)
C2—C3—O7104.81 (15)C11—C12—H121119.4
C4—C3—O7114.04 (16)C13—C12—H121119.4
C2—C3—H31116.77C12—C13—C14119.9 (2)
C4—C3—H31107.99C12—C13—H131120.1
O7—C3—H31108.30C14—C13—H131120.1
O1—C4—C3106.67 (16)C13—C14—C15120.3 (2)
O1—C4—C10107.98 (17)C13—C14—H141119.8
C3—C4—C10113.14 (16)C15—C14—H141119.8
O1—C4—H41113.58C14—C15—C16119.9 (2)
C3—C4—H41108.45C14—C15—H151120.1
C10—C4—H41107.16C16—C15—H151120.1
C2—C5—O3106.94 (15)C11—C16—C15121.12 (19)
C2—C5—H51110.10C11—C16—H161119.4
O3—C5—H51110.10C15—C16—H161119.4
C2—C5—H52110.10Si1—C17—C18126.14 (18)
O3—C5—H52110.10Si1—C17—C22116.46 (16)
H51—C5—H52109.47C18—C17—C22117.1 (2)
C5—O3—S1120.09 (13)C17—C18—C19120.7 (2)
O3—S1—O4107.4 (1)C17—C18—H181119.6
O3—S1—O5111.51 (9)C19—C18—H181119.6
O4—S1—O5122.81 (12)C18—C19—C20120.6 (2)
O3—S1—C699.7 (1)C18—C19—H191119.7
O4—S1—C6106.06 (12)C20—C19—H191119.7
O5—S1—C6106.70 (11)C19—C20—C21119.7 (2)
S1—C6—F1110.25 (17)C19—C20—H201120.2
S1—C6—F2110.61 (16)C21—C20—H201120.2
F1—C6—F2109.1 (2)C20—C21—C22120.1 (2)
S1—C6—F3108.90 (18)C20—C21—H211120.0
F1—C6—F3109.4 (2)C22—C21—H211120.0
F2—C6—F3108.6 (2)C17—C22—C21121.7 (2)
C2—O6—C7108.58 (14)C17—C22—H221119.1
C3—O7—C7109.59 (14)C21—C22—H221119.1
O6—C7—O7104.67 (14)Si1—C23—C24109.42 (15)
O6—C7—C8108.21 (16)Si1—C23—C25113.07 (16)
O7—C7—C8109.10 (17)C24—C23—C25109.1 (2)
O6—C7—C9111.66 (17)Si1—C23—C26108.83 (16)
O7—C7—C9109.92 (16)C24—C23—C26107.7 (2)
C8—C7—C9112.92 (17)C25—C23—C26108.6 (2)
C7—C8—H81109.5C23—C24—H241109.5
C7—C8—H82109.5C23—C24—H242109.5
H81—C8—H82109.5H241—C24—H242109.5
C7—C8—H83109.47C23—C24—H243109.5
H81—C8—H83109.5H241—C24—H243109.5
H82—C8—H83109.5H242—C24—H243109.5
C7—C9—H91109.5C23—C25—H251109.5
C7—C9—H92109.47C23—C25—H252109.5
H91—C9—H92109.5H251—C25—H252109.5
C7—C9—H93109.47C23—C25—H253109.5
H91—C9—H93109.5H251—C25—H253109.5
H92—C9—H93109.5H252—C25—H253109.5
C4—C10—O8108.39 (16)C23—C26—H261109.5
C4—C10—H101109.74C23—C26—H262109.5
O8—C10—H101109.74H261—C26—H262109.5
C4—C10—H102109.74C23—C26—H263109.5
O8—C10—H102109.74H261—C26—H263109.5
H101—C10—H102109.47H262—C26—H263109.5
 

Acknowledgements

Financial support (to MS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarnes, J. C., Brimacombe, J. S. & Kabir, A. K. M. S. (1996). Acta Cryst. C52, 416–418.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBentley, T. W. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & S. Rappoport, pp. 671–696. Chichester: Wiley.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Jie, L., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCarruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698–699.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFleming, I. & Ramarao, C. (2004). Org. Biomol. Chem. 2, 1504–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerzog, A., Knobler, C. B., Hawthorne, M. F., Maderna, A. & Siebert, W. (1999). J. Org. Chem. 64, 1045–1048.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, P.-T. (1979). Can. J. Chem. 57, 381.  CrossRef Web of Science Google Scholar
First citationHo, P.-T. (1985). Can. J. Chem. 63, 2221–2224.  CrossRef CAS Web of Science Google Scholar
First citationHowells, R. D. & McCown, J. D. (1977). Chem. Rev. 77, 69–92.  CrossRef CAS Web of Science Google Scholar
First citationHung, S. C., Wang, C. C., Chang, S. W. & Chen, C. S. (2001). Tetrahedron Lett. 42, 1321–1324.  Web of Science CSD CrossRef CAS Google Scholar
First citationJockusch, R. A., Talbot, F. O., Simone, M. I., Rogers, P. S., Fleet, G. W. J. & Simons, J. P. (2006). J. Am. Chem. Soc. 128, 16771–16777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalinin, V. N., Rys, E. G., Tyutyunov, A. A., Starikov, Z. A., Korlyukov, A. A., Ol'shevskaya, V. A., Sung, D. D., Ponomaryov, A. B., Petrovskii, P. V. & Hey-Hawkins, E. (2005). Dalton Trans. pp. 903–908.  Web of Science CSD CrossRef Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRakita, P. E. (2004). Chim. Oggi, 22, 48–50.  CAS Google Scholar
First citationRichardson, A. C. (1969). Carbohydr. Res. 10, 395–402.  CrossRef CAS Web of Science Google Scholar
First citationShaik, S. S. (1983). J. Am. Chem. Soc. 105, 4359–4367.  CrossRef CAS Web of Science Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationStreitwieser, A., Wilkins, C. L. & Kiehlmann, E. (1968). J. Am. Chem. Soc. 90, 1598–1601.  CrossRef CAS Google Scholar
First citationTakeuchi, K., Ikai, K., Shibata, T. & Tsugeno, A. (1988). J. Org. Chem. 53, 2852–2855.  CrossRef CAS Web of Science Google Scholar
First citationTremmel, P., Brand, J., Knapp, V. & Geyer, A. (2003). Eur. J. Org. Chem. pp. 878–884.  CSD CrossRef Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds