organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (E)-4-(2-acetyl­phen­­oxy)but-2-enoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 15 February 2007; accepted 16 February 2007; online 23 February 2007)

The crystal packing in the title compound, C14H16O4, is controlled by van der Waals inter­actions.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing studies of cyclization reactions (Williamson et al., 2007[Williamson, C., Storey, J. M. D. & Harrison, W. T. A. (2007). Acta Cryst. E63, o1426-o1427.]). The dihedral angles between the mean plane of the C3–C8 benzene ring and the planes of the C1/C2/O1 and the C12/O3/O4 groups are 4.26 (6) and 9.63 (12)°, respectively. The C11—C12 bond length of 1.4787 (16) Å implies that there is little, if any, delocalization of electrons between the C12/O3/O4 and C10/C11 groups in the side chain. A similar result was found for the equivalent bond in ethyl (E)-4-(2-formyl­phen­oxy)but-2-enoate (Williamson et al., 2005[Williamson, C., Storey, J. M. D. & Harrison, W. T. A. (2005). Acta Cryst. E61, o1566-o1568.]). Otherwise, the geometrical parameters for (I)[link] may be regarded as normal (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

There are no clear-cut directional intermolecular bonding inter­actions in the crystal structure of (I)[link]. The minimum separation of the centroids of the benzene rings of nearby mol­ecules is greater than 5.4 Å.

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing 50% displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radius.

Experimental

A dry two-necked flask was charged with NaH (0.360 g, 15 mmol) and washed with dry petrol (3 × 1 ml). Dry DMF (40 ml) was added, and the suspension cooled to 273 K. 2-Hydroxy­acetophenone (1.361 g, 1.20 ml, 10 mmol) was added and the solution stirred for 20 min. Ethyl 4-bromo­crotonate (2.82 g, 2.01 ml, 11 mmol) was added in one portion. The solution was allowed to warm to room temperature, and stirred for 18 h. H2O (60 ml) was added, followed by extraction with Et2O (3 × 50 ml). The combined organics were washed with saturated brine (75 ml), dried over MgSO4, and the solvent removed in vacuo. Chromatographic elution with 20% EtOAc in hexane, and collecting the fraction with RF = 0.22 yielded the desired product as colourless needles (1.263 g, 51%), which were recrystallized from EtOH; analysis calculated for C14H16O4: C 67.73, H 6.50%; found C 67.61, H 6.59%;

Crystal data
  • C14H16O4

  • Mr = 248.27

  • Monoclinic, C 2/c

  • a = 23.7480 (8) Å

  • b = 7.2686 (3) Å

  • c = 15.8710 (4) Å

  • β = 112.2400 (13)°

  • V = 2535.76 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • 0.48 × 0.42 × 0.24 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.978

  • 25327 measured reflections

  • 2909 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.06

  • 2909 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

All H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate but not to tip, to best fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Ethyl (E)-4-(2-acetylphenoxy)but-2-enoate top
Crystal data top
C14H16O4F(000) = 1056
Mr = 248.27Dx = 1.301 Mg m3
Monoclinic, C2/cMelting point = 325–327 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.7480 (8) ÅCell parameters from 5501 reflections
b = 7.2686 (3) Åθ = 2.9–27.5°
c = 15.8710 (4) ŵ = 0.10 mm1
β = 112.2400 (13)°T = 120 K
V = 2535.76 (15) Å3Block, colourless
Z = 80.48 × 0.42 × 0.24 mm
Data collection top
Nonius KappaCCD
diffractometer
2909 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3030
Tmin = 0.956, Tmax = 0.978k = 98
25327 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.9651P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2909 reflectionsΔρmax = 0.22 e Å3
166 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (10)
Special details top

Experimental. νmax(KBr)/cm-1 2971 (Ar), 2893 [C=O (aldehyde)], 1704 [C=O (ester)], 1646 [C=O (aldehyde)].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22000 (5)0.97136 (16)0.10660 (7)0.0291 (3)
H1A0.20450.95730.17290.044*
H1B0.19341.05450.09000.044*
H1C0.22100.85100.07830.044*
C20.28295 (5)1.04987 (14)0.07388 (7)0.0256 (3)
C30.31980 (5)1.07664 (14)0.02575 (7)0.0237 (2)
C40.37937 (5)1.13971 (16)0.04821 (8)0.0301 (3)
H40.39391.15950.00080.036*
C50.41776 (6)1.17410 (18)0.13700 (8)0.0343 (3)
H50.45781.21860.15030.041*
C60.39703 (5)1.14285 (16)0.20640 (8)0.0305 (3)
H60.42321.16560.26770.037*
C70.33858 (5)1.07876 (15)0.18729 (7)0.0255 (2)
H70.32501.05690.23550.031*
C80.29952 (5)1.04603 (14)0.09738 (7)0.0219 (2)
C90.22103 (5)0.95766 (16)0.14867 (7)0.0261 (3)
H9A0.22311.07530.18110.031*
H9B0.24810.86820.19240.031*
C100.15761 (5)0.88752 (15)0.11317 (7)0.0271 (3)
H100.14120.85640.15740.033*
C110.12123 (5)0.86334 (15)0.02712 (7)0.0275 (3)
H110.13560.88770.02010.033*
C120.05817 (5)0.79840 (15)0.00437 (8)0.0285 (3)
C130.03758 (5)0.75614 (18)0.11551 (9)0.0345 (3)
H13A0.05620.81640.07650.041*
H13B0.04200.62130.11170.041*
C140.06821 (6)0.8193 (2)0.21187 (9)0.0422 (3)
H14A0.11180.79260.23320.063*
H14B0.05070.75460.25040.063*
H14C0.06220.95210.21520.063*
O10.30498 (4)1.09337 (13)0.12924 (5)0.0368 (2)
O20.24104 (3)0.98547 (10)0.07529 (5)0.0247 (2)
O30.02650 (4)0.80537 (11)0.08531 (5)0.0317 (2)
O40.03676 (4)0.74967 (14)0.05879 (6)0.0431 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (7)0.0312 (6)0.0162 (5)0.0016 (5)0.0107 (5)0.0001 (4)
C20.0370 (6)0.0242 (5)0.0189 (5)0.0078 (4)0.0143 (5)0.0023 (4)
C30.0312 (6)0.0232 (5)0.0195 (5)0.0051 (4)0.0127 (4)0.0025 (4)
C40.0342 (6)0.0352 (6)0.0262 (6)0.0024 (5)0.0173 (5)0.0030 (5)
C50.0281 (6)0.0435 (7)0.0318 (6)0.0007 (5)0.0119 (5)0.0015 (5)
C60.0306 (6)0.0360 (6)0.0217 (5)0.0014 (5)0.0062 (5)0.0006 (5)
C70.0319 (6)0.0282 (6)0.0175 (5)0.0035 (4)0.0107 (4)0.0024 (4)
C80.0266 (5)0.0207 (5)0.0193 (5)0.0038 (4)0.0097 (4)0.0017 (4)
C90.0342 (6)0.0303 (6)0.0175 (5)0.0006 (4)0.0138 (4)0.0016 (4)
C100.0343 (6)0.0279 (5)0.0247 (5)0.0000 (5)0.0174 (5)0.0019 (4)
C110.0324 (6)0.0292 (6)0.0253 (5)0.0000 (5)0.0158 (5)0.0012 (4)
C120.0353 (6)0.0274 (6)0.0256 (6)0.0019 (5)0.0147 (5)0.0006 (4)
C130.0293 (6)0.0383 (6)0.0376 (7)0.0067 (5)0.0146 (5)0.0022 (5)
C140.0332 (7)0.0477 (8)0.0414 (7)0.0044 (6)0.0093 (6)0.0013 (6)
O10.0454 (5)0.0494 (5)0.0221 (4)0.0018 (4)0.0201 (4)0.0029 (4)
O20.0285 (4)0.0325 (4)0.0153 (4)0.0011 (3)0.0108 (3)0.0006 (3)
O30.0297 (4)0.0412 (5)0.0260 (4)0.0049 (3)0.0126 (3)0.0004 (3)
O40.0452 (5)0.0591 (6)0.0309 (5)0.0168 (5)0.0212 (4)0.0005 (4)
Geometric parameters (Å, º) top
C1—C21.4974 (16)C9—O21.4289 (12)
C1—H1A0.9800C9—C101.4844 (16)
C1—H1B0.9800C9—H9A0.9900
C1—H1C0.9800C9—H9B0.9900
C2—O11.2222 (13)C10—C111.3225 (16)
C2—C31.5021 (14)C10—H100.9500
C3—C41.3990 (16)C11—C121.4787 (16)
C3—C81.4099 (14)C11—H110.9500
C4—C51.3810 (17)C12—O41.2093 (14)
C4—H40.9500C12—O31.3355 (14)
C5—C61.3848 (16)C13—O31.4564 (14)
C5—H50.9500C13—C141.4956 (18)
C6—C71.3845 (16)C13—H13A0.9900
C6—H60.9500C13—H13B0.9900
C7—C81.3969 (14)C14—H14A0.9800
C7—H70.9500C14—H14B0.9800
C8—O21.3701 (13)C14—H14C0.9800
C2—C1—H1A109.5O2—C9—H9A109.7
C2—C1—H1B109.5C10—C9—H9A109.7
H1A—C1—H1B109.5O2—C9—H9B109.7
C2—C1—H1C109.5C10—C9—H9B109.7
H1A—C1—H1C109.5H9A—C9—H9B108.2
H1B—C1—H1C109.5C11—C10—C9127.59 (10)
O1—C2—C1119.47 (10)C11—C10—H10116.2
O1—C2—C3119.08 (10)C9—C10—H10116.2
C1—C2—C3121.45 (9)C10—C11—C12120.00 (10)
C4—C3—C8117.86 (9)C10—C11—H11120.0
C4—C3—C2116.14 (9)C12—C11—H11120.0
C8—C3—C2125.99 (10)O4—C12—O3123.56 (11)
C5—C4—C3122.18 (10)O4—C12—C11125.43 (10)
C5—C4—H4118.9O3—C12—C11110.98 (9)
C3—C4—H4118.9O3—C13—C14107.72 (10)
C4—C5—C6119.07 (11)O3—C13—H13A110.2
C4—C5—H5120.5C14—C13—H13A110.2
C6—C5—H5120.5O3—C13—H13B110.2
C7—C6—C5120.64 (10)C14—C13—H13B110.2
C7—C6—H6119.7H13A—C13—H13B108.5
C5—C6—H6119.7C13—C14—H14A109.5
C6—C7—C8120.28 (10)C13—C14—H14B109.5
C6—C7—H7119.9H14A—C14—H14B109.5
C8—C7—H7119.9C13—C14—H14C109.5
O2—C8—C7122.21 (9)H14A—C14—H14C109.5
O2—C8—C3117.82 (9)H14B—C14—H14C109.5
C7—C8—C3119.96 (10)C8—O2—C9117.03 (8)
O2—C9—C10109.98 (8)C12—O3—C13116.00 (9)
O1—C2—C3—C44.09 (15)C4—C3—C8—C70.02 (15)
C1—C2—C3—C4175.94 (10)C2—C3—C8—C7179.23 (10)
O1—C2—C3—C8175.16 (10)O2—C9—C10—C114.35 (16)
C1—C2—C3—C84.80 (16)C9—C10—C11—C12177.61 (10)
C8—C3—C4—C50.79 (17)C10—C11—C12—O46.17 (18)
C2—C3—C4—C5178.53 (10)C10—C11—C12—O3171.96 (10)
C3—C4—C5—C60.92 (18)C7—C8—O2—C90.38 (14)
C4—C5—C6—C70.27 (18)C3—C8—O2—C9179.16 (9)
C5—C6—C7—C80.48 (17)C10—C9—O2—C8178.45 (8)
C6—C7—C8—O2178.93 (10)O4—C12—O3—C132.08 (17)
C6—C7—C8—C30.60 (16)C11—C12—O3—C13176.09 (9)
C4—C3—C8—O2179.57 (9)C14—C13—O3—C12165.19 (10)
C2—C3—C8—O20.32 (15)
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilliamson, C., Storey, J. M. D. & Harrison, W. T. A. (2005). Acta Cryst. E61, o1566–o1568.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilliamson, C., Storey, J. M. D. & Harrison, W. T. A. (2007). Acta Cryst. E63, o1426–o1427.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds