organic compounds
10,11-Dihydrocarbamazepine formic acid solvate
aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk
In the title compound [systematic name: 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide methanoic acid solvate], C15H14N2O·CH2O2, the dihydrocarbamazepine and formic acid molecules are hydrogen bonded to form an R22(8) motif, which is further connected into a centrosymmetric double motif arrangement.
Comment
10,11-Dihydrocarbamazepine (DHC) is a recognized impurity in carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). DHC is known to crystallize in three polymorphic forms: monoclinic form I (Bandoli et al., 1992), orthorhombic form II (Harrison et al., 2006) and triclinic form III (Leech et al., 2007a). The title compound, (I), was produced during an automated parallel crystallization search (Florence, Johnston, Fernandes et al., 2006) on DHC as part of a wider study into the predicted and experimental structures of CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2006) and related molecules (Leech et al., 2007b). The sample was identified as a new form using multi-sample foil transmission X-ray powder (Florence et al., 2003). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 298 K yielded samples of (I) suitable for single-crystal diffraction (Fig. 1).
The molecules in (I) adopt a hydrogen-bonded arrangement similar to that observed in the CBZ formic acid (1/1) solvate (Fleischman et al., 2003). Specifically, the DHC and formic acid molecules are connected via O2—H2⋯O1 and N2—H2A⋯O3 hydrogen bonds to form an R22(8) (Etter, 1990) dimer motif (Table 1). A third hydrogen bond, N2—H2B⋯O3i [symmetry code: (i) −x + 1, −y + 1, −z] joins adjacent dimers to form a centrosymmetric double motif arrangement (Fig. 2).
Experimental
DHC was used as received from Sigma–Aldrich and a single-crystal sample of the title compound was obtained by slow evaporation of a saturated formic acid solution at 298 K.
Crystal data
|
Data collection
|
Refinement
|
The three H-atoms attached to N2 and O2 were located in a difference map and refined isotropically [N—H = 0.88 (3) and 0.89 (3) Å; O—H = 1.04 (4) Å]. All other H atoms were constrained to idealized geometries and included in the Uiso(H) = 1.2Ueq(C) and C—H = 0.95 or 0.99 Å.
using the riding-model approximation:Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807008124/ya2039sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807008124/ya2039Isup2.hkl
Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell
DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.C15H14N2O·CH2O2 | Z = 2 |
Mr = 284.31 | F(000) = 300 |
Triclinic, P1 | Dx = 1.337 Mg m−3 |
a = 5.2298 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.3849 (12) Å | Cell parameters from 1893 reflections |
c = 14.4858 (18) Å | θ = 2.9–23.0° |
α = 83.853 (5)° | µ = 0.09 mm−1 |
β = 88.230 (7)° | T = 123 K |
γ = 88.221 (7)° | Cut needle, colourless |
V = 706.28 (14) Å3 | 0.40 × 0.10 × 0.04 mm |
Nonius KappaCCD diffractometer | 1260 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.075 |
Graphite monochromator | θmax = 23.0°, θmin = 3.4° |
φ and ω scans | h = −5→5 |
9817 measured reflections | k = −10→10 |
1956 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0384P)2 + 0.1228P] where P = (Fo2 + 2Fc2)/3 |
1956 reflections | (Δ/σ)max < 0.001 |
202 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Experimental. Sample crystals twinned. "Single" small piece cut out from a larger, twinned sample. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8138 (3) | 0.2089 (2) | 0.16182 (13) | 0.0296 (5) | |
O2 | 0.4587 (4) | 0.0846 (2) | 0.08699 (14) | 0.0334 (6) | |
O3 | 0.3740 (4) | 0.2814 (2) | −0.01018 (15) | 0.0396 (6) | |
N1 | 0.9571 (4) | 0.4012 (2) | 0.22662 (16) | 0.0210 (6) | |
N2 | 0.7533 (5) | 0.4307 (3) | 0.08607 (19) | 0.0303 (7) | |
C1 | 0.8391 (5) | 0.3413 (3) | 0.1576 (2) | 0.0240 (7) | |
C2 | 1.0350 (5) | 0.3108 (3) | 0.3085 (2) | 0.0228 (7) | |
C3 | 1.2318 (5) | 0.2098 (3) | 0.2976 (2) | 0.0287 (8) | |
H3 | 1.3057 | 0.2014 | 0.2376 | 0.034* | |
C4 | 1.3197 (5) | 0.1222 (3) | 0.3728 (2) | 0.0346 (8) | |
H4 | 1.4536 | 0.0535 | 0.3649 | 0.042* | |
C5 | 1.2126 (6) | 0.1347 (3) | 0.4601 (2) | 0.0375 (8) | |
H5 | 1.2707 | 0.0737 | 0.5123 | 0.045* | |
C6 | 1.0202 (5) | 0.2364 (3) | 0.4710 (2) | 0.0316 (8) | |
H6 | 0.9502 | 0.2454 | 0.5314 | 0.038* | |
C7 | 0.9255 (5) | 0.3262 (3) | 0.3960 (2) | 0.0251 (7) | |
C8 | 0.7116 (5) | 0.4311 (3) | 0.4178 (2) | 0.0316 (8) | |
H8A | 0.7784 | 0.4946 | 0.4612 | 0.038* | |
H8B | 0.5737 | 0.3753 | 0.4516 | 0.038* | |
C9 | 0.5902 (5) | 0.5259 (3) | 0.3387 (2) | 0.0302 (8) | |
H9A | 0.5071 | 0.4645 | 0.2976 | 0.036* | |
H9B | 0.4552 | 0.5877 | 0.3646 | 0.036* | |
C10 | 0.7779 (5) | 0.6198 (3) | 0.2814 (2) | 0.0260 (7) | |
C11 | 0.9627 (5) | 0.5542 (3) | 0.22754 (19) | 0.0222 (7) | |
C12 | 1.1457 (5) | 0.6342 (3) | 0.1759 (2) | 0.0292 (8) | |
H12 | 1.2713 | 0.5880 | 0.1398 | 0.035* | |
C13 | 1.1451 (5) | 0.7815 (3) | 0.1770 (2) | 0.0351 (8) | |
H13 | 1.2703 | 0.8366 | 0.1416 | 0.042* | |
C14 | 0.9616 (6) | 0.8484 (3) | 0.2297 (2) | 0.0379 (9) | |
H14 | 0.9604 | 0.9495 | 0.2305 | 0.046* | |
C15 | 0.7796 (6) | 0.7672 (3) | 0.2813 (2) | 0.0330 (8) | |
H15 | 0.6540 | 0.8136 | 0.3173 | 0.040* | |
C16 | 0.3294 (5) | 0.1610 (4) | 0.0221 (2) | 0.0313 (8) | |
H16 | 0.1873 | 0.1172 | −0.0015 | 0.038* | |
H2 | 0.603 (7) | 0.143 (4) | 0.112 (3) | 0.095 (13)* | |
H2A | 0.661 (6) | 0.390 (3) | 0.047 (2) | 0.051 (11)* | |
H2B | 0.772 (5) | 0.525 (3) | 0.0820 (19) | 0.030 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0344 (11) | 0.0196 (13) | 0.0353 (14) | 0.0023 (9) | −0.0079 (9) | −0.0045 (10) |
O2 | 0.0402 (13) | 0.0269 (13) | 0.0332 (14) | −0.0025 (10) | −0.0093 (10) | −0.0005 (11) |
O3 | 0.0433 (13) | 0.0257 (14) | 0.0488 (15) | −0.0036 (10) | −0.0159 (11) | 0.0054 (12) |
N1 | 0.0267 (12) | 0.0143 (14) | 0.0217 (15) | 0.0005 (10) | −0.0032 (11) | 0.0006 (12) |
N2 | 0.0413 (17) | 0.0199 (18) | 0.0294 (18) | −0.0020 (13) | −0.0108 (13) | 0.0013 (15) |
C1 | 0.0231 (16) | 0.024 (2) | 0.025 (2) | 0.0050 (13) | 0.0009 (14) | −0.0047 (17) |
C2 | 0.0234 (15) | 0.0192 (17) | 0.026 (2) | −0.0019 (13) | −0.0043 (13) | −0.0014 (15) |
C3 | 0.0330 (17) | 0.0253 (18) | 0.028 (2) | 0.0018 (14) | −0.0029 (14) | −0.0052 (16) |
C4 | 0.0389 (18) | 0.0260 (19) | 0.038 (2) | 0.0112 (15) | −0.0112 (17) | −0.0015 (17) |
C5 | 0.0461 (19) | 0.031 (2) | 0.034 (2) | 0.0018 (16) | −0.0160 (16) | 0.0034 (17) |
C6 | 0.0371 (18) | 0.0312 (19) | 0.026 (2) | −0.0037 (15) | −0.0027 (14) | 0.0011 (16) |
C7 | 0.0271 (16) | 0.0203 (17) | 0.028 (2) | −0.0037 (13) | −0.0025 (14) | −0.0009 (15) |
C8 | 0.0298 (17) | 0.0327 (19) | 0.031 (2) | −0.0003 (14) | 0.0045 (14) | −0.0014 (16) |
C9 | 0.0268 (16) | 0.0319 (19) | 0.032 (2) | 0.0054 (14) | −0.0015 (14) | −0.0052 (16) |
C10 | 0.0243 (16) | 0.0237 (19) | 0.030 (2) | 0.0013 (14) | −0.0091 (14) | −0.0003 (16) |
C11 | 0.0244 (16) | 0.0190 (18) | 0.0226 (18) | 0.0025 (13) | −0.0055 (13) | 0.0009 (14) |
C12 | 0.0249 (17) | 0.031 (2) | 0.031 (2) | −0.0007 (14) | −0.0043 (14) | 0.0036 (16) |
C13 | 0.0354 (19) | 0.028 (2) | 0.039 (2) | −0.0085 (15) | −0.0083 (15) | 0.0097 (17) |
C14 | 0.050 (2) | 0.0170 (18) | 0.047 (2) | −0.0040 (17) | −0.0233 (18) | 0.0026 (18) |
C15 | 0.0417 (19) | 0.021 (2) | 0.037 (2) | 0.0062 (15) | −0.0113 (16) | −0.0072 (16) |
C16 | 0.0299 (17) | 0.034 (2) | 0.031 (2) | 0.0000 (16) | −0.0053 (15) | −0.0073 (18) |
O1—C1 | 1.249 (3) | C6—H6 | 0.9500 |
O2—C16 | 1.311 (3) | C7—C8 | 1.515 (4) |
O2—H2 | 1.04 (4) | C8—C9 | 1.517 (4) |
O3—C16 | 1.203 (3) | C8—H8A | 0.9900 |
N1—C1 | 1.370 (3) | C8—H8B | 0.9900 |
N1—C11 | 1.439 (3) | C9—C10 | 1.509 (4) |
N1—C2 | 1.444 (3) | C9—H9A | 0.9900 |
N2—C1 | 1.341 (4) | C9—H9B | 0.9900 |
N2—H2A | 0.88 (3) | C10—C15 | 1.384 (4) |
N2—H2B | 0.89 (3) | C10—C11 | 1.393 (4) |
C2—C7 | 1.393 (4) | C11—C12 | 1.385 (4) |
C2—C3 | 1.394 (4) | C12—C13 | 1.384 (4) |
C3—C4 | 1.375 (4) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | C13—C14 | 1.385 (4) |
C4—C5 | 1.382 (4) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—C15 | 1.387 (4) |
C5—C6 | 1.383 (4) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | C15—H15 | 0.9500 |
C6—C7 | 1.396 (4) | C16—H16 | 0.9500 |
C16—O2—H2 | 112 (2) | C7—C8—H8B | 107.6 |
C1—N1—C11 | 121.2 (2) | C9—C8—H8B | 107.6 |
C1—N1—C2 | 119.3 (2) | H8A—C8—H8B | 107.0 |
C11—N1—C2 | 118.4 (2) | C10—C9—C8 | 113.6 (2) |
C1—N2—H2A | 114 (2) | C10—C9—H9A | 108.8 |
C1—N2—H2B | 122.6 (18) | C8—C9—H9A | 108.8 |
H2A—N2—H2B | 123 (3) | C10—C9—H9B | 108.8 |
O1—C1—N2 | 121.9 (3) | C8—C9—H9B | 108.8 |
O1—C1—N1 | 120.8 (3) | H9A—C9—H9B | 107.7 |
N2—C1—N1 | 117.2 (3) | C15—C10—C11 | 118.4 (3) |
C7—C2—C3 | 120.7 (3) | C15—C10—C9 | 123.3 (3) |
C7—C2—N1 | 121.9 (2) | C11—C10—C9 | 118.2 (2) |
C3—C2—N1 | 117.4 (3) | C12—C11—C10 | 120.9 (3) |
C4—C3—C2 | 120.6 (3) | C12—C11—N1 | 121.0 (2) |
C4—C3—H3 | 119.7 | C10—C11—N1 | 118.1 (2) |
C2—C3—H3 | 119.7 | C13—C12—C11 | 119.9 (3) |
C3—C4—C5 | 119.7 (3) | C13—C12—H12 | 120.1 |
C3—C4—H4 | 120.1 | C11—C12—H12 | 120.1 |
C5—C4—H4 | 120.1 | C12—C13—C14 | 119.9 (3) |
C4—C5—C6 | 119.6 (3) | C12—C13—H13 | 120.1 |
C4—C5—H5 | 120.2 | C14—C13—H13 | 120.1 |
C6—C5—H5 | 120.2 | C13—C14—C15 | 119.8 (3) |
C5—C6—C7 | 122.1 (3) | C13—C14—H14 | 120.1 |
C5—C6—H6 | 118.9 | C15—C14—H14 | 120.1 |
C7—C6—H6 | 118.9 | C10—C15—C14 | 121.1 (3) |
C2—C7—C6 | 117.2 (3) | C10—C15—H15 | 119.4 |
C2—C7—C8 | 126.3 (3) | C14—C15—H15 | 119.4 |
C6—C7—C8 | 116.5 (3) | O3—C16—O2 | 126.0 (3) |
C7—C8—C9 | 119.1 (3) | O3—C16—H16 | 117.0 |
C7—C8—H8A | 107.6 | O2—C16—H16 | 117.0 |
C9—C8—H8A | 107.6 | ||
C11—N1—C1—O1 | −173.2 (2) | C6—C7—C8—C9 | −176.6 (2) |
C2—N1—C1—O1 | −4.9 (4) | C7—C8—C9—C10 | −58.4 (3) |
C11—N1—C1—N2 | 6.9 (4) | C8—C9—C10—C15 | −110.7 (3) |
C2—N1—C1—N2 | 175.2 (2) | C8—C9—C10—C11 | 67.7 (3) |
C1—N1—C2—C7 | −114.7 (3) | C15—C10—C11—C12 | 0.6 (4) |
C11—N1—C2—C7 | 53.9 (3) | C9—C10—C11—C12 | −177.8 (2) |
C1—N1—C2—C3 | 67.4 (3) | C15—C10—C11—N1 | −178.9 (2) |
C11—N1—C2—C3 | −124.0 (3) | C9—C10—C11—N1 | 2.6 (4) |
C7—C2—C3—C4 | 0.7 (4) | C1—N1—C11—C12 | −83.4 (3) |
N1—C2—C3—C4 | 178.6 (2) | C2—N1—C11—C12 | 108.2 (3) |
C2—C3—C4—C5 | −0.1 (4) | C1—N1—C11—C10 | 96.2 (3) |
C3—C4—C5—C6 | −0.8 (4) | C2—N1—C11—C10 | −72.2 (3) |
C4—C5—C6—C7 | 1.3 (4) | C10—C11—C12—C13 | −0.4 (4) |
C3—C2—C7—C6 | −0.3 (4) | N1—C11—C12—C13 | 179.2 (2) |
N1—C2—C7—C6 | −178.1 (2) | C11—C12—C13—C14 | 0.0 (4) |
C3—C2—C7—C8 | 180.0 (2) | C12—C13—C14—C15 | 0.1 (4) |
N1—C2—C7—C8 | 2.2 (4) | C11—C10—C15—C14 | −0.5 (4) |
C5—C6—C7—C2 | −0.7 (4) | C9—C10—C15—C14 | 177.9 (3) |
C5—C6—C7—C8 | 179.0 (3) | C13—C14—C15—C10 | 0.1 (4) |
C2—C7—C8—C9 | 3.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 1.04 (4) | 1.52 (4) | 2.552 (3) | 170 (4) |
N2—H2A···O3 | 0.88 (3) | 2.08 (3) | 2.933 (4) | 163 (3) |
N2—H2B···O3i | 0.89 (3) | 2.13 (3) | 2.873 (4) | 141 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (https://www.cposs.org.uk).
References
Bandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183. CAS Google Scholar
Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840. CAS PubMed Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919. Web of Science CSD CrossRef CAS Google Scholar
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS Google Scholar
Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924. Web of Science CrossRef CAS IUCr Journals Google Scholar
Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Shankland, N. & Kennedy, A. R. (2006). J. Pharm. Sci. 95, 1918–1930. Web of Science CrossRef PubMed CAS Google Scholar
Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747. Web of Science CSD CrossRef CAS Google Scholar
Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007a). Acta Cryst. E63, o675–o677. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007b). Acta Cryst. E63, o205–o206. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.