organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10,11-Di­hydro­carbamazepine formic acid solvate

CROSSMARK_Color_square_no_text.svg

aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 5 January 2007; accepted 18 February 2007; online 28 February 2007)

In the title compound [systematic name: 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide methanoic acid solvate], C15H14N2O·CH2O2, the dihydro­carbamazepine and formic acid mol­ecules are hydrogen bonded to form an R22(8) motif, which is further connected into a centrosymmetric double motif arrangement.

Comment

10,11-Dihydro­carbamazepine (DHC) is a recognized impurity in carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987[Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836-840.]). DHC is known to crystallize in three polymorphic forms: monoclinic form I (Bandoli et al., 1992[Bandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.]), ortho­rhom­bic form II (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.]) and triclinic form III (Leech et al., 2007a[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007a). Acta Cryst. E63, o675-o677.]). The title compound, (I)[link], was produced during an automated parallel crystallization search (Florence, Johnston, Fernandes et al., 2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]) on DHC as part of a wider study into the predicted and experimental structures of CBZ (Florence, Johnston, Price et al., 2006[Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Shankland, N. & Kennedy, A. R. (2006). J. Pharm. Sci. 95, 1918-1930.]; Florence, Leech et al., 2006[Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746-747.]) and related mol­ecules (Leech et al., 2007b[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007b). Acta Cryst. E63, o205-o206.]). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 298 K yielded samples of (I)[link] suitable for single-crystal diffraction (Fig. 1[link]).

[Scheme 1]

The mol­ecules in (I)[link] adopt a hydrogen-bonded arrangement similar to that observed in the CBZ formic acid (1/1) solvate (Fleischman et al., 2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]). Specifically, the DHC and formic acid mol­ecules are connected via O2—H2⋯O1 and N2—H2A⋯O3 hydrogen bonds to form an R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) dimer motif (Table 1[link]). A third hydrogen bond, N2—H2B⋯O3i [symmetry code: (i) −x + 1, −y + 1, −z] joins adjacent dimers to form a centrosymmetric double motif arrangement (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atomic numbering used. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as circles of arbitrary radius and hydrogen bonds as dashed lines.
[Figure 2]
Figure 2
Plot showing the hydrogen-bonded dimer arrangement in (I)[link] with two R22(8) dimers joined in a centrosymmetric arrangement via an R42(8) motif.

Experimental

DHC was used as received from Sigma–Aldrich and a single-crystal sample of the title compound was obtained by slow evaporation of a saturated formic acid solution at 298 K.

Crystal data
  • C15H14N2O·CH2O2

  • Mr = 284.31

  • Triclinic, [P \overline 1]

  • a = 5.2298 (4) Å

  • b = 9.3849 (12) Å

  • c = 14.4858 (18) Å

  • α = 83.853 (5)°

  • β = 88.230 (7)°

  • γ = 88.221 (7)°

  • V = 706.28 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 (2) K

  • 0.40 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 9817 measured reflections

  • 1956 independent reflections

  • 1260 reflections with I > 2σ(I)

  • Rint = 0.075

  • θmax = 23.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.105

  • S = 1.10

  • 1956 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 1.04 (4) 1.52 (4) 2.552 (3) 170 (4)
N2—H2A⋯O3 0.88 (3) 2.08 (3) 2.933 (4) 163 (3)
N2—H2B⋯O3i 0.89 (3) 2.13 (3) 2.873 (4) 141 (2)
Symmetry code: (i) -x+1, -y+1, -z.

The three H-atoms attached to N2 and O2 were located in a difference map and refined isotropically [N—H = 0.88 (3) and 0.89 (3) Å; O—H = 1.04 (4) Å]. All other H atoms were constrained to idealized geometries and included in the refinement using the riding-model approximation: Uiso(H) = 1.2Ueq(C) and C—H = 0.95 or 0.99 Å.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide–methanoic acid (1/1) top
Crystal data top
C15H14N2O·CH2O2Z = 2
Mr = 284.31F(000) = 300
Triclinic, P1Dx = 1.337 Mg m3
a = 5.2298 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3849 (12) ÅCell parameters from 1893 reflections
c = 14.4858 (18) Åθ = 2.9–23.0°
α = 83.853 (5)°µ = 0.09 mm1
β = 88.230 (7)°T = 123 K
γ = 88.221 (7)°Cut needle, colourless
V = 706.28 (14) Å30.40 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
1260 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 23.0°, θmin = 3.4°
φ and ω scansh = 55
9817 measured reflectionsk = 1010
1956 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.1228P]
where P = (Fo2 + 2Fc2)/3
1956 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. Sample crystals twinned. "Single" small piece cut out from a larger, twinned sample.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8138 (3)0.2089 (2)0.16182 (13)0.0296 (5)
O20.4587 (4)0.0846 (2)0.08699 (14)0.0334 (6)
O30.3740 (4)0.2814 (2)0.01018 (15)0.0396 (6)
N10.9571 (4)0.4012 (2)0.22662 (16)0.0210 (6)
N20.7533 (5)0.4307 (3)0.08607 (19)0.0303 (7)
C10.8391 (5)0.3413 (3)0.1576 (2)0.0240 (7)
C21.0350 (5)0.3108 (3)0.3085 (2)0.0228 (7)
C31.2318 (5)0.2098 (3)0.2976 (2)0.0287 (8)
H31.30570.20140.23760.034*
C41.3197 (5)0.1222 (3)0.3728 (2)0.0346 (8)
H41.45360.05350.36490.042*
C51.2126 (6)0.1347 (3)0.4601 (2)0.0375 (8)
H51.27070.07370.51230.045*
C61.0202 (5)0.2364 (3)0.4710 (2)0.0316 (8)
H60.95020.24540.53140.038*
C70.9255 (5)0.3262 (3)0.3960 (2)0.0251 (7)
C80.7116 (5)0.4311 (3)0.4178 (2)0.0316 (8)
H8A0.77840.49460.46120.038*
H8B0.57370.37530.45160.038*
C90.5902 (5)0.5259 (3)0.3387 (2)0.0302 (8)
H9A0.50710.46450.29760.036*
H9B0.45520.58770.36460.036*
C100.7779 (5)0.6198 (3)0.2814 (2)0.0260 (7)
C110.9627 (5)0.5542 (3)0.22754 (19)0.0222 (7)
C121.1457 (5)0.6342 (3)0.1759 (2)0.0292 (8)
H121.27130.58800.13980.035*
C131.1451 (5)0.7815 (3)0.1770 (2)0.0351 (8)
H131.27030.83660.14160.042*
C140.9616 (6)0.8484 (3)0.2297 (2)0.0379 (9)
H140.96040.94950.23050.046*
C150.7796 (6)0.7672 (3)0.2813 (2)0.0330 (8)
H150.65400.81360.31730.040*
C160.3294 (5)0.1610 (4)0.0221 (2)0.0313 (8)
H160.18730.11720.00150.038*
H20.603 (7)0.143 (4)0.112 (3)0.095 (13)*
H2A0.661 (6)0.390 (3)0.047 (2)0.051 (11)*
H2B0.772 (5)0.525 (3)0.0820 (19)0.030 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (11)0.0196 (13)0.0353 (14)0.0023 (9)0.0079 (9)0.0045 (10)
O20.0402 (13)0.0269 (13)0.0332 (14)0.0025 (10)0.0093 (10)0.0005 (11)
O30.0433 (13)0.0257 (14)0.0488 (15)0.0036 (10)0.0159 (11)0.0054 (12)
N10.0267 (12)0.0143 (14)0.0217 (15)0.0005 (10)0.0032 (11)0.0006 (12)
N20.0413 (17)0.0199 (18)0.0294 (18)0.0020 (13)0.0108 (13)0.0013 (15)
C10.0231 (16)0.024 (2)0.025 (2)0.0050 (13)0.0009 (14)0.0047 (17)
C20.0234 (15)0.0192 (17)0.026 (2)0.0019 (13)0.0043 (13)0.0014 (15)
C30.0330 (17)0.0253 (18)0.028 (2)0.0018 (14)0.0029 (14)0.0052 (16)
C40.0389 (18)0.0260 (19)0.038 (2)0.0112 (15)0.0112 (17)0.0015 (17)
C50.0461 (19)0.031 (2)0.034 (2)0.0018 (16)0.0160 (16)0.0034 (17)
C60.0371 (18)0.0312 (19)0.026 (2)0.0037 (15)0.0027 (14)0.0011 (16)
C70.0271 (16)0.0203 (17)0.028 (2)0.0037 (13)0.0025 (14)0.0009 (15)
C80.0298 (17)0.0327 (19)0.031 (2)0.0003 (14)0.0045 (14)0.0014 (16)
C90.0268 (16)0.0319 (19)0.032 (2)0.0054 (14)0.0015 (14)0.0052 (16)
C100.0243 (16)0.0237 (19)0.030 (2)0.0013 (14)0.0091 (14)0.0003 (16)
C110.0244 (16)0.0190 (18)0.0226 (18)0.0025 (13)0.0055 (13)0.0009 (14)
C120.0249 (17)0.031 (2)0.031 (2)0.0007 (14)0.0043 (14)0.0036 (16)
C130.0354 (19)0.028 (2)0.039 (2)0.0085 (15)0.0083 (15)0.0097 (17)
C140.050 (2)0.0170 (18)0.047 (2)0.0040 (17)0.0233 (18)0.0026 (18)
C150.0417 (19)0.021 (2)0.037 (2)0.0062 (15)0.0113 (16)0.0072 (16)
C160.0299 (17)0.034 (2)0.031 (2)0.0000 (16)0.0053 (15)0.0073 (18)
Geometric parameters (Å, º) top
O1—C11.249 (3)C6—H60.9500
O2—C161.311 (3)C7—C81.515 (4)
O2—H21.04 (4)C8—C91.517 (4)
O3—C161.203 (3)C8—H8A0.9900
N1—C11.370 (3)C8—H8B0.9900
N1—C111.439 (3)C9—C101.509 (4)
N1—C21.444 (3)C9—H9A0.9900
N2—C11.341 (4)C9—H9B0.9900
N2—H2A0.88 (3)C10—C151.384 (4)
N2—H2B0.89 (3)C10—C111.393 (4)
C2—C71.393 (4)C11—C121.385 (4)
C2—C31.394 (4)C12—C131.384 (4)
C3—C41.375 (4)C12—H120.9500
C3—H30.9500C13—C141.385 (4)
C4—C51.382 (4)C13—H130.9500
C4—H40.9500C14—C151.387 (4)
C5—C61.383 (4)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.396 (4)C16—H160.9500
C16—O2—H2112 (2)C7—C8—H8B107.6
C1—N1—C11121.2 (2)C9—C8—H8B107.6
C1—N1—C2119.3 (2)H8A—C8—H8B107.0
C11—N1—C2118.4 (2)C10—C9—C8113.6 (2)
C1—N2—H2A114 (2)C10—C9—H9A108.8
C1—N2—H2B122.6 (18)C8—C9—H9A108.8
H2A—N2—H2B123 (3)C10—C9—H9B108.8
O1—C1—N2121.9 (3)C8—C9—H9B108.8
O1—C1—N1120.8 (3)H9A—C9—H9B107.7
N2—C1—N1117.2 (3)C15—C10—C11118.4 (3)
C7—C2—C3120.7 (3)C15—C10—C9123.3 (3)
C7—C2—N1121.9 (2)C11—C10—C9118.2 (2)
C3—C2—N1117.4 (3)C12—C11—C10120.9 (3)
C4—C3—C2120.6 (3)C12—C11—N1121.0 (2)
C4—C3—H3119.7C10—C11—N1118.1 (2)
C2—C3—H3119.7C13—C12—C11119.9 (3)
C3—C4—C5119.7 (3)C13—C12—H12120.1
C3—C4—H4120.1C11—C12—H12120.1
C5—C4—H4120.1C12—C13—C14119.9 (3)
C4—C5—C6119.6 (3)C12—C13—H13120.1
C4—C5—H5120.2C14—C13—H13120.1
C6—C5—H5120.2C13—C14—C15119.8 (3)
C5—C6—C7122.1 (3)C13—C14—H14120.1
C5—C6—H6118.9C15—C14—H14120.1
C7—C6—H6118.9C10—C15—C14121.1 (3)
C2—C7—C6117.2 (3)C10—C15—H15119.4
C2—C7—C8126.3 (3)C14—C15—H15119.4
C6—C7—C8116.5 (3)O3—C16—O2126.0 (3)
C7—C8—C9119.1 (3)O3—C16—H16117.0
C7—C8—H8A107.6O2—C16—H16117.0
C9—C8—H8A107.6
C11—N1—C1—O1173.2 (2)C6—C7—C8—C9176.6 (2)
C2—N1—C1—O14.9 (4)C7—C8—C9—C1058.4 (3)
C11—N1—C1—N26.9 (4)C8—C9—C10—C15110.7 (3)
C2—N1—C1—N2175.2 (2)C8—C9—C10—C1167.7 (3)
C1—N1—C2—C7114.7 (3)C15—C10—C11—C120.6 (4)
C11—N1—C2—C753.9 (3)C9—C10—C11—C12177.8 (2)
C1—N1—C2—C367.4 (3)C15—C10—C11—N1178.9 (2)
C11—N1—C2—C3124.0 (3)C9—C10—C11—N12.6 (4)
C7—C2—C3—C40.7 (4)C1—N1—C11—C1283.4 (3)
N1—C2—C3—C4178.6 (2)C2—N1—C11—C12108.2 (3)
C2—C3—C4—C50.1 (4)C1—N1—C11—C1096.2 (3)
C3—C4—C5—C60.8 (4)C2—N1—C11—C1072.2 (3)
C4—C5—C6—C71.3 (4)C10—C11—C12—C130.4 (4)
C3—C2—C7—C60.3 (4)N1—C11—C12—C13179.2 (2)
N1—C2—C7—C6178.1 (2)C11—C12—C13—C140.0 (4)
C3—C2—C7—C8180.0 (2)C12—C13—C14—C150.1 (4)
N1—C2—C7—C82.2 (4)C11—C10—C15—C140.5 (4)
C5—C6—C7—C20.7 (4)C9—C10—C15—C14177.9 (3)
C5—C6—C7—C8179.0 (3)C13—C14—C15—C100.1 (4)
C2—C7—C8—C93.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O11.04 (4)1.52 (4)2.552 (3)170 (4)
N2—H2A···O30.88 (3)2.08 (3)2.933 (4)163 (3)
N2—H2B···O3i0.89 (3)2.13 (3)2.873 (4)141 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (https://www.cposs.org.uk).

References

First citationBandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.  CAS Google Scholar
First citationCyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840.  CAS PubMed Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Johnston, A., Price, S. L., Nowell, H., Shankland, N. & Kennedy, A. R. (2006). J. Pharm. Sci. 95, 1918–1930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007a). Acta Cryst. E63, o675–o677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007b). Acta Cryst. E63, o205–o206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds