metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: {μ-6,6′-Dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}-μ-nitrato-dinitratoeuropium(III)zinc(II)

aJiangXi Province Key Laboratory of Coordination Chemistry, College of Chemistry & Chemical Engineering, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China, and bCollege of Education, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China
*Correspondence e-mail: ysui@163.com

(Received 19 November 2007; accepted 21 November 2007; online 6 December 2007)

In the title heteronuclear ZnII–EuIII complex [systematic name: {6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}-μ-nitrato-1:2κ2O:O′-dini­trato-1κ4O,O′-europium(III)zinc(II)], [EuZn(C18H18N2O4)(NO3)3], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-methoxy­salicyl­idene)ethyl­enediamine (H2L), the Eu and Zn atoms are triply bridged by two phenolate O atoms of the Schiff base ligand and one nitrate ion. The five-coordinate Zn atom is in a square-pyramidal geometry with the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The EuIII center has a ninefold coordination environment of O atoms, involving the phenol­ate O atoms, two meth­oxy O atoms, two O atoms from two nitrate ions and one from the bridging nitrate ion. Weak inter­molecular C—H⋯O inter­actions generate a two-dimensional double-layer structure.

Related literature

For related literature, see: Baggio et al. (2000[Baggio, R., Garland, M. T., Moreno, Y., Pena, O., Perec, M. & Spodine, E. (2000). J. Chem. Soc. Dalton Trans. pp. 2061-2066.]); Caravan et al. (1999[Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. (1999). Chem. Rev. 99, 2293-2352.]); Edder et al. (2000[Edder, C., Piguet, C., Bernardinelli, G., Mareda, J., Bochet, C. G., Bunzli, J.-C. G. & Hopfgartner, G. (2000). Inorg. Chem. 39, 5059-5073.]); Knoer et al. (2005[Knoer, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524-3536.]); Sui et al. (2006[Sui, Y., Fang, X.-N., Xiao, Y.-A., Luo, Q.-Y. & Li, M.-H. (2006). Acta Cryst. E62, m2230-m2232.], 2007[Sui, Y., He, D.-Y., Fang, X.-N., Chen, L. & Peng, J.-L. (2007). Acta Cryst. E63, m2013-m2014.]).

[Scheme 1]

Experimental

Crystal data
  • [EuZn(C18H18N2O4)(NO3)3]

  • Mr = 729.70

  • Monoclinic, P 21 /n

  • a = 10.6576 (13) Å

  • b = 16.460 (2) Å

  • c = 14.8760 (18) Å

  • β = 99.253 (2)°

  • V = 2575.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.42 mm−1

  • T = 293 (2) K

  • 0.22 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.520, Tmax = 0.665

  • 19080 measured reflections

  • 6166 independent reflections

  • 4469 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.137

  • S = 1.00

  • 6166 reflections

  • 346 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O1 2.234 (4)
Eu1—O2 2.239 (4)
Eu1—O3 2.584 (4)
Eu1—O4 2.587 (4)
Eu1—O5 2.252 (5)
Eu1—O8 2.432 (4)
Eu1—O9 2.405 (4)
Eu1—O11 2.368 (4)
Eu1—O12 2.400 (5)
Zn1—O1 2.027 (4)
Zn1—O2 2.005 (4)
Zn1—O6 1.971 (4)
Zn1—N1 2.032 (5)
Zn1—N2 2.048 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O11i 0.93 2.49 3.406 (8) 169
C8—H8A⋯O13ii 0.97 2.50 3.442 (9) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes(Sui et al. 2006; Sui et al. 2007), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new ZnII—EuIII complex with salen-type Schiff base N,N'-bis(3-methoxysalicylidene) ethylenediamine(H2L).

Complex (I) crystallizes in the space group P21/n, with zinc and europium triply bridged by two phenolate O atoms provided by the Schiff base ligand and one nitrate ion. The inner salen-type cavity is occupied by zinc(II), while europium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand.

The EuIII center has a nonacoordination environment of O atoms, involving the phenolate O atoms, two methoxy O atoms, two O atoms from two nitrate ions and one from the bridging nitrate ion. The four kinds of Eu—O bond distances are significantly different, the longest being the Eu—O(methoxy) separations and the shortest being the Eu—O(phenolate) and Eu—O5(bridging nitrate).

The ZnII is in a square-pyramidal geometry and is five-coordinated by two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The Zn atom is 0.6073 (3)Å above the mean N2O2 plane with an average deviation from the plane of 0.0353 (4) Å, which construct the bottom of square-pyramid. The Zn—O6 (bridging nitrate) separation is 1.971 (4)Å and the angles of this Zn—O vector with the Zn—N or Zn—O bonds lie between 101.7 (5)° and 112.7 (6)°, which suggesting that the ZnII is in a slightly distorted square-pyramidal conformation.

Adjacent molecules are held together by weak interactions (C8—H8A···O13i = 3.442 (9) and C12—H12···O11ii = 3.406 (8); symmetry codes: (i) 1 - x, -y, -z; (ii) 1/2 + x, 1/2 - y, -1/2 + z). These link the molecules into a two-dimensional double-layer structure (Fig 2).

Related literature top

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006, 2007).

Experimental top

H2L was prepared by the 2:1 condensation of 3-methoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of zinc(II) acetate dihydrate (0.188 g, 1 mmol) with H2L(0.328 g, 1 mmol) in methanol solution (80 ml) under reflux for 3 h and then for another 3 h after the addition of europium(III) nitrate hexahydrate (0.446 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C18H18EuN5O13Zn: C 29.63, H 2.49, Eu 20.82, N 9.60,Zn 8.96%; found: C 29.58, H 2.44, Eu 21.00, N 9.73, Zn 8.86%. IR(KBr, cm-1): 1640 (C=N), 1386,1490 (nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.97 (methylene), 0.96 Å (methyl) and 0.93 Å (aromaticmethyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes(Sui et al. 2006; Sui et al. 2007), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new ZnII—EuIII complex with salen-type Schiff base N,N'-bis(3-methoxysalicylidene) ethylenediamine(H2L).

Complex (I) crystallizes in the space group P21/n, with zinc and europium triply bridged by two phenolate O atoms provided by the Schiff base ligand and one nitrate ion. The inner salen-type cavity is occupied by zinc(II), while europium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand.

The EuIII center has a nonacoordination environment of O atoms, involving the phenolate O atoms, two methoxy O atoms, two O atoms from two nitrate ions and one from the bridging nitrate ion. The four kinds of Eu—O bond distances are significantly different, the longest being the Eu—O(methoxy) separations and the shortest being the Eu—O(phenolate) and Eu—O5(bridging nitrate).

The ZnII is in a square-pyramidal geometry and is five-coordinated by two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The Zn atom is 0.6073 (3)Å above the mean N2O2 plane with an average deviation from the plane of 0.0353 (4) Å, which construct the bottom of square-pyramid. The Zn—O6 (bridging nitrate) separation is 1.971 (4)Å and the angles of this Zn—O vector with the Zn—N or Zn—O bonds lie between 101.7 (5)° and 112.7 (6)°, which suggesting that the ZnII is in a slightly distorted square-pyramidal conformation.

Adjacent molecules are held together by weak interactions (C8—H8A···O13i = 3.442 (9) and C12—H12···O11ii = 3.406 (8); symmetry codes: (i) 1 - x, -y, -z; (ii) 1/2 + x, 1/2 - y, -1/2 + z). These link the molecules into a two-dimensional double-layer structure (Fig 2).

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006, 2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.
{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1k4O1,O1',O6,O6':2k4O1,N,N',O1'}-µ-nitrato-1:2k2O:O'- dinitrato-1k4O,O'-europium(III)zinc(II) top
Crystal data top
[EuZn(C18H18N2O4)(NO3)3]F(000) = 1432
Mr = 729.70Dx = 1.882 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7701 reflections
a = 10.6576 (13) Åθ = 1.9–28.2°
b = 16.460 (2) ŵ = 3.42 mm1
c = 14.8760 (18) ÅT = 293 K
β = 99.253 (2)°Block, yellow
V = 2575.7 (5) Å30.22 × 0.21 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
6166 independent reflections
Radiation source: fine-focus sealed tube4469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scanθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1413
Tmin = 0.520, Tmax = 0.665k = 2121
19080 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6166 reflectionsΔρmax = 1.01 e Å3
346 parametersΔρmin = 1.34 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (3)
Crystal data top
[EuZn(C18H18N2O4)(NO3)3]V = 2575.7 (5) Å3
Mr = 729.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6576 (13) ŵ = 3.42 mm1
b = 16.460 (2) ÅT = 293 K
c = 14.8760 (18) Å0.22 × 0.21 × 0.13 mm
β = 99.253 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
6166 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4469 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.665Rint = 0.029
19080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.137H-atom parameters constrained
S = 1.00Δρmax = 1.01 e Å3
6166 reflectionsΔρmin = 1.34 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.63900 (2)0.108878 (15)0.274156 (15)0.04120 (12)
Zn10.78031 (6)0.03491 (4)0.11111 (4)0.05380 (19)
N10.7500 (5)0.0694 (3)0.0378 (3)0.0606 (12)
O120.4368 (5)0.1271 (3)0.1789 (3)0.0741 (13)
O10.6479 (4)0.0006 (2)0.1867 (3)0.0622 (10)
O30.5081 (4)0.0172 (3)0.3054 (3)0.0632 (11)
O90.7155 (4)0.1980 (3)0.3991 (3)0.0705 (12)
O80.6712 (5)0.0748 (3)0.4353 (3)0.0741 (13)
N40.7205 (6)0.1408 (4)0.4622 (4)0.0751 (16)
C10.5860 (5)0.0710 (3)0.1821 (4)0.0532 (13)
C40.4554 (7)0.2156 (5)0.1893 (6)0.088 (2)
H40.41320.26470.19270.105*
C20.5091 (6)0.0829 (4)0.2476 (4)0.0569 (13)
N30.3827 (5)0.1566 (4)0.2423 (4)0.0778 (17)
C60.5955 (6)0.1324 (4)0.1176 (5)0.0616 (15)
C180.4310 (7)0.0261 (5)0.3785 (4)0.079 (2)
H18A0.34620.04200.35270.118*
H18B0.42840.02480.40970.118*
H18C0.46810.06680.42080.118*
O100.7682 (7)0.1548 (4)0.5388 (3)0.128 (3)
C30.4432 (6)0.1548 (4)0.2542 (5)0.0734 (18)
H30.39320.16260.29930.088*
C70.6722 (6)0.1262 (4)0.0438 (4)0.0611 (15)
H70.66270.16630.00080.073*
O110.4523 (4)0.1616 (3)0.3198 (3)0.0737 (13)
C50.5259 (7)0.2051 (4)0.1224 (5)0.0748 (18)
H50.52890.24590.07950.090*
O60.9413 (4)0.0296 (3)0.1972 (3)0.0668 (11)
O40.6363 (4)0.2606 (3)0.2286 (3)0.0646 (11)
O20.7090 (4)0.1414 (2)0.1447 (3)0.0608 (10)
O50.8463 (4)0.0763 (4)0.3096 (3)0.0778 (13)
N20.8025 (5)0.0827 (4)0.0125 (3)0.0618 (12)
N50.9391 (6)0.0506 (4)0.2778 (4)0.0844 (17)
C80.8228 (6)0.0642 (5)0.0385 (4)0.0700 (17)
H8A0.79420.10600.08310.084*
H8B0.91240.07280.01630.084*
C150.6903 (6)0.2813 (4)0.1541 (4)0.0577 (14)
C160.7293 (5)0.2124 (4)0.1086 (4)0.0535 (13)
C100.8045 (6)0.1575 (4)0.0319 (4)0.0660 (16)
H100.82430.17100.08870.079*
O130.2748 (6)0.1790 (6)0.2304 (5)0.141 (3)
C110.7783 (6)0.2248 (4)0.0271 (4)0.0625 (15)
C90.8027 (7)0.0198 (5)0.0826 (4)0.0754 (19)
H9A0.87000.03080.11770.090*
H9B0.72230.02080.12390.090*
C170.5747 (8)0.3264 (4)0.2710 (5)0.083 (2)
H17A0.63290.37100.28410.125*
H17B0.54990.30730.32650.125*
H17C0.50070.34430.23010.125*
C140.7069 (7)0.3593 (4)0.1239 (4)0.0667 (16)
H140.68400.40430.15550.080*
C120.7926 (7)0.3043 (4)0.0030 (4)0.0739 (19)
H120.82540.31280.05650.089*
C130.7599 (8)0.3683 (5)0.0435 (5)0.079 (2)
H130.77240.42030.02210.095*
O71.0692 (8)0.0412 (5)0.3486 (5)0.156 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.04652 (18)0.04350 (18)0.03697 (16)0.00126 (10)0.01698 (11)0.00322 (9)
Zn10.0580 (4)0.0561 (4)0.0510 (4)0.0004 (3)0.0200 (3)0.0042 (3)
N10.061 (3)0.067 (3)0.057 (3)0.003 (3)0.018 (2)0.017 (2)
O120.065 (3)0.099 (4)0.061 (3)0.004 (2)0.017 (2)0.013 (2)
O10.073 (3)0.055 (2)0.066 (2)0.014 (2)0.033 (2)0.0140 (19)
O30.071 (3)0.066 (3)0.059 (2)0.010 (2)0.029 (2)0.001 (2)
O90.088 (3)0.063 (3)0.062 (3)0.012 (2)0.018 (2)0.002 (2)
O80.100 (4)0.070 (3)0.055 (2)0.023 (3)0.021 (2)0.002 (2)
N40.098 (4)0.083 (4)0.048 (3)0.029 (4)0.026 (3)0.009 (3)
C10.052 (3)0.046 (3)0.063 (3)0.000 (2)0.013 (3)0.000 (3)
C40.076 (5)0.068 (5)0.125 (7)0.027 (4)0.034 (5)0.017 (4)
C20.055 (3)0.055 (3)0.061 (3)0.001 (3)0.009 (3)0.001 (3)
N30.058 (3)0.104 (5)0.075 (4)0.007 (3)0.022 (3)0.022 (3)
C60.061 (4)0.053 (3)0.072 (4)0.005 (3)0.013 (3)0.005 (3)
C180.088 (5)0.092 (5)0.067 (4)0.013 (4)0.043 (4)0.004 (3)
O100.178 (7)0.145 (6)0.054 (3)0.071 (5)0.007 (4)0.002 (3)
C30.062 (4)0.072 (5)0.090 (5)0.010 (3)0.024 (4)0.008 (4)
C70.061 (4)0.062 (4)0.060 (4)0.004 (3)0.010 (3)0.015 (3)
O110.073 (3)0.097 (4)0.055 (2)0.000 (2)0.022 (2)0.020 (2)
C50.075 (4)0.054 (4)0.098 (5)0.009 (3)0.019 (4)0.018 (3)
O60.060 (2)0.074 (3)0.067 (2)0.002 (2)0.010 (2)0.005 (2)
O40.088 (3)0.054 (2)0.058 (2)0.008 (2)0.029 (2)0.0014 (18)
O20.079 (3)0.050 (2)0.060 (2)0.008 (2)0.034 (2)0.0059 (18)
O50.058 (3)0.116 (4)0.061 (3)0.007 (3)0.012 (2)0.015 (3)
N20.061 (3)0.076 (4)0.053 (3)0.002 (3)0.019 (2)0.003 (2)
N50.082 (4)0.091 (5)0.081 (3)0.001 (3)0.014 (3)0.018 (3)
C80.065 (4)0.087 (5)0.064 (4)0.002 (3)0.028 (3)0.017 (3)
C150.064 (3)0.050 (3)0.060 (3)0.003 (3)0.012 (3)0.003 (3)
C160.057 (3)0.053 (3)0.053 (3)0.003 (3)0.013 (2)0.006 (2)
C100.067 (4)0.077 (5)0.059 (3)0.002 (3)0.027 (3)0.011 (3)
O130.070 (4)0.221 (9)0.131 (5)0.045 (4)0.010 (4)0.060 (5)
C110.062 (4)0.064 (4)0.065 (4)0.007 (3)0.019 (3)0.001 (3)
C90.076 (4)0.100 (5)0.053 (3)0.013 (4)0.018 (3)0.009 (3)
C170.108 (6)0.059 (4)0.088 (5)0.013 (4)0.030 (4)0.009 (3)
C140.080 (4)0.047 (3)0.072 (4)0.001 (3)0.008 (3)0.008 (3)
C120.089 (5)0.075 (5)0.061 (4)0.012 (4)0.022 (3)0.019 (3)
C130.102 (6)0.067 (4)0.065 (4)0.007 (4)0.006 (4)0.019 (3)
O70.124 (6)0.179 (9)0.149 (6)0.008 (5)0.029 (5)0.024 (5)
Geometric parameters (Å, º) top
Eu1—O12.234 (4)C18—H18A0.9600
Eu1—O22.239 (4)C18—H18B0.9600
Eu1—O32.584 (4)C18—H18C0.9600
Eu1—O42.587 (4)C3—H30.9300
Eu1—O52.252 (5)C7—H70.9300
Eu1—O82.432 (4)C5—H50.9300
Eu1—O92.405 (4)O6—N51.251 (7)
Eu1—O112.368 (4)O4—C151.371 (7)
Eu1—O122.400 (5)O4—C171.462 (7)
Zn1—O12.027 (4)O2—C161.319 (7)
Zn1—O22.005 (4)O5—N51.238 (7)
Zn1—O61.971 (4)N2—C101.265 (9)
Zn1—N12.032 (5)N2—C91.471 (8)
Zn1—N22.048 (5)N5—O71.607 (9)
N1—C71.262 (8)C8—C91.531 (10)
N1—C81.477 (7)C8—H8A0.9700
O12—N31.278 (6)C8—H8B0.9700
O1—C11.329 (7)C15—C141.381 (8)
O3—C21.383 (7)C15—C161.417 (8)
O3—C181.472 (6)C16—C111.409 (8)
O9—N41.324 (7)C10—C111.468 (9)
O8—N41.245 (7)C10—H100.9300
N4—O101.194 (7)C11—C121.399 (9)
C1—C21.385 (8)C9—H9A0.9700
C1—C61.408 (8)C9—H9B0.9700
C4—C51.351 (10)C17—H17A0.9600
C4—C31.410 (10)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C2—C31.388 (9)C14—C131.411 (10)
N3—O131.194 (7)C14—H140.9300
N3—O111.269 (7)C12—C131.336 (10)
C6—C51.416 (9)C12—H120.9300
C6—C71.475 (9)C13—H130.9300
O1—Eu1—O268.93 (14)C1—C6—C5118.5 (6)
O1—Eu1—O579.18 (17)C1—C6—C7124.5 (6)
O2—Eu1—O578.96 (16)C5—C6—C7117.0 (6)
O1—Eu1—O11125.39 (15)O3—C18—H18A109.5
O2—Eu1—O11124.77 (16)O3—C18—H18B109.5
O5—Eu1—O11149.10 (15)H18A—C18—H18B109.5
O1—Eu1—O1282.82 (16)O3—C18—H18C109.5
O2—Eu1—O1281.57 (16)H18A—C18—H18C109.5
O5—Eu1—O12157.19 (16)H18B—C18—H18C109.5
O11—Eu1—O1253.67 (15)C2—C3—C4117.0 (6)
O1—Eu1—O9154.35 (16)C2—C3—H3121.5
O2—Eu1—O9113.64 (16)C4—C3—H3121.5
O5—Eu1—O976.50 (17)N1—C7—C6123.6 (5)
O11—Eu1—O975.57 (15)N1—C7—H7118.2
O12—Eu1—O9122.73 (16)C6—C7—H7118.2
O1—Eu1—O8112.04 (16)N3—O11—Eu196.3 (3)
O2—Eu1—O8152.78 (17)C4—C5—C6120.2 (6)
O5—Eu1—O874.72 (17)C4—C5—H5119.9
O11—Eu1—O878.12 (17)C6—C5—H5119.9
O12—Eu1—O8125.60 (17)N5—O6—Zn1117.6 (4)
O9—Eu1—O853.30 (15)C15—O4—C17116.1 (5)
O1—Eu1—O362.07 (13)C15—O4—Eu1117.6 (3)
O2—Eu1—O3127.64 (14)C17—O4—Eu1126.1 (4)
O5—Eu1—O3107.70 (18)C16—O2—Zn1125.4 (3)
O11—Eu1—O374.94 (15)C16—O2—Eu1131.4 (4)
O12—Eu1—O375.38 (16)Zn1—O2—Eu1101.39 (17)
O9—Eu1—O3118.44 (13)N5—O5—Eu1143.8 (4)
O8—Eu1—O368.39 (14)C10—N2—C9121.4 (5)
O1—Eu1—O4128.75 (13)C10—N2—Zn1126.0 (4)
O2—Eu1—O462.29 (14)C9—N2—Zn1112.3 (4)
O5—Eu1—O4105.10 (18)O5—N5—O6126.8 (6)
O11—Eu1—O475.33 (16)O5—N5—O7116.2 (6)
O12—Eu1—O475.71 (16)O6—N5—O7117.0 (6)
O9—Eu1—O466.55 (14)N1—C8—C9109.1 (5)
O8—Eu1—O4118.38 (15)N1—C8—H8A109.9
O3—Eu1—O4147.03 (14)C9—C8—H8A109.9
O6—Zn1—O2101.66 (18)N1—C8—H8B109.9
O6—Zn1—O1103.73 (18)C9—C8—H8B109.9
O2—Zn1—O177.77 (16)H8A—C8—H8B108.3
O6—Zn1—N1111.0 (2)O4—C15—C14125.9 (6)
O2—Zn1—N1147.0 (2)O4—C15—C16112.4 (5)
O1—Zn1—N189.38 (18)C14—C15—C16121.7 (6)
O6—Zn1—N2112.73 (19)O2—C16—C11125.9 (5)
O2—Zn1—N289.48 (19)O2—C16—C15115.8 (5)
O1—Zn1—N2143.1 (2)C11—C16—C15118.2 (5)
N1—Zn1—N282.8 (2)N2—C10—C11125.9 (5)
C7—N1—C8121.9 (5)N2—C10—H10117.1
C7—N1—Zn1129.6 (4)C11—C10—H10117.1
C8—N1—Zn1107.8 (4)C12—C11—C16119.1 (6)
N3—O12—Eu194.6 (4)C12—C11—C10118.2 (6)
C1—O1—Zn1127.4 (3)C16—C11—C10122.5 (6)
C1—O1—Eu1131.8 (3)N2—C9—C8110.4 (5)
Zn1—O1—Eu1100.89 (16)N2—C9—H9A109.6
C2—O3—C18116.3 (5)C8—C9—H9A109.6
C2—O3—Eu1117.2 (3)N2—C9—H9B109.6
C18—O3—Eu1126.5 (4)C8—C9—H9B109.6
N4—O9—Eu194.8 (3)H9A—C9—H9B108.1
N4—O8—Eu195.7 (4)O4—C17—H17A109.5
O10—N4—O8124.6 (6)O4—C17—H17B109.5
O10—N4—O9120.1 (6)H17A—C17—H17B109.5
O8—N4—O9115.3 (5)O4—C17—H17C109.5
O1—C1—C2115.6 (5)H17A—C17—H17C109.5
O1—C1—C6124.8 (5)H17B—C17—H17C109.5
C2—C1—C6119.5 (6)C15—C14—C13117.6 (6)
C5—C4—C3122.5 (7)C15—C14—H14121.2
C5—C4—H4118.8C13—C14—H14121.2
C3—C4—H4118.8C13—C12—C11121.3 (6)
O3—C2—C1113.1 (5)C13—C12—H12119.3
O3—C2—C3124.6 (6)C11—C12—H12119.3
C1—C2—C3122.3 (6)C12—C13—C14122.0 (7)
O13—N3—O11121.4 (6)C12—C13—H13119.0
O13—N3—O12123.2 (7)C14—C13—H13119.0
O11—N3—O12115.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O11i0.932.493.406 (8)169
C8—H8A···O13ii0.972.503.442 (9)163
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[EuZn(C18H18N2O4)(NO3)3]
Mr729.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.6576 (13), 16.460 (2), 14.8760 (18)
β (°) 99.253 (2)
V3)2575.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.42
Crystal size (mm)0.22 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.520, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
19080, 6166, 4469
Rint0.029
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.137, 1.00
No. of reflections6166
No. of parameters346
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.34

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), APEX2 and publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Eu1—O12.234 (4)Eu1—O112.368 (4)
Eu1—O22.239 (4)Eu1—O122.400 (5)
Eu1—O32.584 (4)Zn1—O12.027 (4)
Eu1—O42.587 (4)Zn1—O22.005 (4)
Eu1—O52.252 (5)Zn1—O61.971 (4)
Eu1—O82.432 (4)Zn1—N12.032 (5)
Eu1—O92.405 (4)Zn1—N22.048 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O11i0.932.493.406 (8)169.2
C8—H8A···O13ii0.972.503.442 (9)162.7
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the Department of Education, JiangXi Province (No. 2007317) and the Natural Science Foundation of JiangXi Province (No. 0620029).

References

First citationBaggio, R., Garland, M. T., Moreno, Y., Pena, O., Perec, M. & Spodine, E. (2000). J. Chem. Soc. Dalton Trans. pp. 2061–2066.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. (1999). Chem. Rev. 99, 2293–2352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdder, C., Piguet, C., Bernardinelli, G., Mareda, J., Bochet, C. G., Bunzli, J.-C. G. & Hopfgartner, G. (2000). Inorg. Chem. 39, 5059–5073.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKnoer, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524–3536.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSui, Y., Fang, X.-N., Xiao, Y.-A., Luo, Q.-Y. & Li, M.-H. (2006). Acta Cryst. E62, m2230–m2232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSui, Y., He, D.-Y., Fang, X.-N., Chen, L. & Peng, J.-L. (2007). Acta Cryst. E63, m2013–m2014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds