organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-1-butyl­imidazo[1,2-a]benzo­thieno[3,2-d]pyrimidine-2,5(1H,3H)-dione

aCollege of Science, HuaZhong Agricultural University, Wuhan 430070, People's Republic of China, bDepartment of Biochemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and cCollege of Horticulture and Forestry Science, HuaZhong Agricultural University, Wuhan 430070, People's Republic of China
*Correspondence e-mail: nidejiang1021@yahoo.com.cn

(Received 19 November 2007; accepted 21 November 2007; online 6 December 2007)

In the crystal structure of the title compound, C23H21N3O2S, all ring atoms of the imidazo[1,2-a]benzothieno[3,2-d]pyrimidine system are essentially coplanar and the phenyl ring is twisted with respect to it [dihedral angle = 72.60 (9)°]. The crystal packing is mainly governed by C—H⋯π hydrogen bonds and inter­molecular ππ inter­actions, with inter­planar distances of 3.54 (1) and 3.56 (1) Å, and with distances between adjacent ring centroids of 3.72 (1) and 3.80 (1) Å. The three terminal C atoms of the butyl group are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

Related preparation and biological activity is described by Walter (1999a[Walter, H. (1999a). Chem. Abstr. 130, 237580e.],b[Walter, H. (1999b). WO Patent No. 9 911 631.]). For related literature, see: Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For the crystal structures of other fused pyrimidinone derivatives, see: Cao et al. (2006[Cao, M.-H., Xu, S.-Z. & Hu, Y.-G. (2006). Acta Cryst. E62, o1319-o1320.]); Xu et al. (2005[Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789-o2790.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21N3O2S

  • Mr = 403.49

  • Monoclinic, P 21 /n

  • a = 13.1732 (16) Å

  • b = 8.4957 (11) Å

  • c = 18.584 (2) Å

  • β = 103.345 (2)°

  • V = 2023.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 298 (2) K

  • 0.26 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.982

  • 15534 measured reflections

  • 3958 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.129

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.170

  • S = 1.00

  • 3958 reflections

  • 292 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg5i 0.96 2.81 3.682 (3) 156
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

In the field of bioactive molecules, thienopyrimidine have received a great deal of attention (Walter, 1999a,b). Recently, There have being focused on the synthesis of the fused heterocycle systems containing thienopyrimidine via aza-Wittig reaction at room temperature(Ding et al., 2004). Herein, we present X-ray crystallographic analysis of the compound (I) in this paper, (Fig. 1), which may be used as a new precursor for obtaining bioactive molecules.

In the molecule, the bond lengths and angles are unexceptional (Cao et al., 2006; Xu et al., 2005). The four fused rings are close to coplanarity, with maximum deviations 0.060 (2)Å and -0.033 (3)Å for O3 and C11, respectively, which forms a dihedral angle of 72.60 (9)° with the adjacent C18—C23 phenyl ring.

Intermolecular C—H···π hydrogen bonds (Table 2) seem to be effective in stabilizing the crystal structure. Further stability the crystal structure is provided by offset π-π stacking interactions (Janiak, 2000) involving the thiophene (A), the imidazoe (B) and the C1—C6 benzene (C) rings. The A:C interplanar distance is 3.54 (1) Å with distances between adjacent ring centroids of 3.72 (1)Å (symmetry code relating the adjacent rings: 1 - x, 2 - y, -z). A further interaction occurs between B adjacent C rings (symmetry code: 1 - x, 1 - y, -z), with an interplanar distance of 3.56 (1)Å and a centroid-to-centroid distance of 3.80 (1)Å (Fig. 2).

Related literature top

Related preparation and biological activity is described by Walter (1999a,b). For related literature, see: Ding et al. (2004); Janiak (2000). For the crystal structures of other fused pyrimidinone derivatives, see: Cao et al. (2006); Xu et al. (2005).

Experimental top

To a solution of the ethyl 3-((butylimino)methyleneamino)benzothiophene-2-carboxylate (3 mmol) in dichloromethane (5 ml) was added ethyl 2-amino-3-phenylpropanoate (3 mmol). After stirring the reaction mixture for 2 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 5 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 86%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:3 v/v) at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3. C14, C15, C16 and attached hydrogen atoms are disordered over two sites, with refined occupancies of 0.387 (9) and 0.613 (9).

Structure description top

In the field of bioactive molecules, thienopyrimidine have received a great deal of attention (Walter, 1999a,b). Recently, There have being focused on the synthesis of the fused heterocycle systems containing thienopyrimidine via aza-Wittig reaction at room temperature(Ding et al., 2004). Herein, we present X-ray crystallographic analysis of the compound (I) in this paper, (Fig. 1), which may be used as a new precursor for obtaining bioactive molecules.

In the molecule, the bond lengths and angles are unexceptional (Cao et al., 2006; Xu et al., 2005). The four fused rings are close to coplanarity, with maximum deviations 0.060 (2)Å and -0.033 (3)Å for O3 and C11, respectively, which forms a dihedral angle of 72.60 (9)° with the adjacent C18—C23 phenyl ring.

Intermolecular C—H···π hydrogen bonds (Table 2) seem to be effective in stabilizing the crystal structure. Further stability the crystal structure is provided by offset π-π stacking interactions (Janiak, 2000) involving the thiophene (A), the imidazoe (B) and the C1—C6 benzene (C) rings. The A:C interplanar distance is 3.54 (1) Å with distances between adjacent ring centroids of 3.72 (1)Å (symmetry code relating the adjacent rings: 1 - x, 2 - y, -z). A further interaction occurs between B adjacent C rings (symmetry code: 1 - x, 1 - y, -z), with an interplanar distance of 3.56 (1)Å and a centroid-to-centroid distance of 3.80 (1)Å (Fig. 2).

Related preparation and biological activity is described by Walter (1999a,b). For related literature, see: Ding et al. (2004); Janiak (2000). For the crystal structures of other fused pyrimidinone derivatives, see: Cao et al. (2006); Xu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. The packing of the title compound.
3-Benzyl-1-butylimidazo[1,2-a]benzothieno[3,2-d]pyrimidine- 2,5(1H,3H)-dione top
Crystal data top
C23H21N3O2SF(000) = 848
Mr = 403.49Dx = 1.324 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3589 reflections
a = 13.1732 (16) Åθ = 2.3–23.5°
b = 8.4957 (11) ŵ = 0.18 mm1
c = 18.584 (2) ÅT = 298 K
β = 103.345 (2)°Prism, colourless
V = 2023.7 (4) Å30.26 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area0detector
diffractometer
3958 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
φ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.954, Tmax = 0.982k = 1010
15534 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0962P)2]
where P = (Fo2 + 2Fc2)/3
3958 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.26 e Å3
22 restraintsΔρmin = 0.32 e Å3
Crystal data top
C23H21N3O2SV = 2023.7 (4) Å3
Mr = 403.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1732 (16) ŵ = 0.18 mm1
b = 8.4957 (11) ÅT = 298 K
c = 18.584 (2) Å0.26 × 0.16 × 0.10 mm
β = 103.345 (2)°
Data collection top
Bruker SMART 4K CCD area0detector
diffractometer
3958 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2896 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.982Rint = 0.129
15534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05922 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
3958 reflectionsΔρmin = 0.32 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.45304 (17)0.7981 (3)0.00701 (13)0.0455 (6)
C20.40479 (19)0.8227 (3)0.06750 (13)0.0541 (6)
H20.43300.77980.10460.065*
C30.31509 (19)0.9112 (3)0.08510 (14)0.0613 (7)
H30.28280.92870.13450.074*
C40.27219 (19)0.9745 (3)0.03029 (15)0.0658 (8)
H40.21111.03320.04350.079*
C50.31784 (19)0.9528 (3)0.04333 (15)0.0605 (7)
H50.28830.99560.07980.073*
C60.40899 (17)0.8655 (3)0.06174 (13)0.0500 (6)
C70.54724 (16)0.7149 (3)0.03847 (12)0.0441 (5)
C80.57103 (17)0.7199 (3)0.11501 (12)0.0465 (6)
C90.66293 (18)0.6487 (3)0.15852 (12)0.0497 (6)
C100.68847 (18)0.5729 (3)0.03767 (12)0.0454 (5)
C110.8372 (2)0.4266 (3)0.06606 (15)0.0563 (6)
C120.81459 (18)0.4798 (3)0.13877 (14)0.0544 (6)
H120.79700.38700.16480.065*
C130.7543 (2)0.4725 (3)0.06900 (13)0.0638 (7)
H13A0.68490.43590.09280.077*0.613 (9)
H13B0.80290.39080.07540.077*0.613 (9)
H13C0.68380.44150.09320.077*0.387 (9)
H13D0.80020.38720.07560.077*0.387 (9)
C140.8106 (7)0.6116 (9)0.0933 (4)0.062 (2)0.613 (9)
H14A0.88320.60840.06680.074*0.613 (9)
H14B0.78070.70790.07930.074*0.613 (9)
C150.8060 (5)0.6175 (9)0.1761 (3)0.087 (2)0.613 (9)
H15A0.85600.69450.18520.105*0.613 (9)
H15B0.82600.51560.19200.105*0.613 (9)
C160.7009 (7)0.6589 (14)0.2207 (5)0.154 (4)0.613 (9)
H16A0.65200.57880.21500.230*0.613 (9)
H16B0.70310.66670.27190.230*0.613 (9)
H16C0.67970.75800.20420.230*0.613 (9)
C14'0.7768 (13)0.6158 (15)0.1097 (5)0.076 (4)0.387 (9)
H14C0.84960.64570.09400.091*0.387 (9)
H14D0.73370.70370.10180.091*0.387 (9)
C15'0.7494 (10)0.5634 (13)0.1926 (4)0.101 (4)0.387 (9)
H15C0.79200.47460.20020.121*0.387 (9)
H15D0.67650.53430.20830.121*0.387 (9)
C16'0.7727 (11)0.7057 (14)0.2344 (5)0.117 (4)0.387 (9)
H16D0.73400.79430.22300.175*0.387 (9)
H16E0.75280.68490.28660.175*0.387 (9)
H16F0.84600.72850.22040.175*0.387 (9)
C170.90741 (18)0.5630 (3)0.18900 (13)0.0555 (7)
H17A0.89060.58180.23640.067*
H17B0.96670.49200.19750.067*
C180.93996 (16)0.7166 (3)0.16112 (12)0.0475 (6)
C190.99200 (17)0.7229 (3)0.10411 (13)0.0509 (6)
H191.00400.63010.08080.061*
C201.02611 (18)0.8632 (3)0.08140 (14)0.0543 (6)
H201.06040.86440.04290.065*
C211.00975 (19)1.0019 (3)0.11538 (14)0.0593 (7)
H211.03361.09660.10040.071*
C220.9581 (2)0.9992 (3)0.17149 (15)0.0643 (7)
H220.94651.09250.19450.077*
C230.92311 (19)0.8578 (3)0.19387 (13)0.0575 (7)
H230.88760.85750.23170.069*
N10.60676 (14)0.6380 (2)0.00223 (10)0.0468 (5)
N20.75950 (15)0.4872 (2)0.01036 (11)0.0521 (5)
N30.72009 (13)0.5741 (2)0.11365 (9)0.0476 (5)
O10.69271 (13)0.6488 (2)0.22618 (9)0.0653 (5)
O20.91073 (15)0.3495 (2)0.05804 (11)0.0710 (6)
S10.48079 (5)0.82378 (9)0.15079 (3)0.0585 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0434 (12)0.0490 (14)0.0430 (12)0.0121 (10)0.0076 (10)0.0026 (10)
C20.0530 (14)0.0616 (16)0.0450 (13)0.0097 (12)0.0054 (11)0.0037 (11)
C30.0555 (15)0.0682 (18)0.0539 (14)0.0071 (13)0.0001 (12)0.0033 (13)
C40.0513 (15)0.0627 (18)0.0779 (19)0.0005 (13)0.0037 (14)0.0013 (15)
C50.0517 (14)0.0638 (17)0.0666 (16)0.0008 (12)0.0149 (12)0.0094 (13)
C60.0454 (13)0.0577 (15)0.0463 (13)0.0114 (11)0.0093 (11)0.0051 (11)
C70.0422 (12)0.0504 (14)0.0396 (11)0.0098 (10)0.0092 (10)0.0035 (10)
C80.0448 (12)0.0572 (15)0.0391 (12)0.0085 (11)0.0132 (10)0.0015 (10)
C90.0477 (13)0.0636 (16)0.0390 (12)0.0122 (11)0.0124 (10)0.0058 (11)
C100.0520 (13)0.0441 (13)0.0422 (12)0.0078 (11)0.0150 (11)0.0013 (10)
C110.0602 (15)0.0419 (14)0.0678 (16)0.0027 (12)0.0170 (13)0.0062 (12)
C120.0559 (14)0.0524 (15)0.0562 (14)0.0005 (11)0.0154 (12)0.0185 (12)
C130.0673 (16)0.0719 (19)0.0535 (15)0.0011 (14)0.0163 (13)0.0162 (14)
C140.079 (5)0.065 (4)0.041 (3)0.019 (3)0.013 (3)0.008 (3)
C150.101 (5)0.110 (5)0.047 (3)0.012 (4)0.010 (3)0.005 (3)
C160.141 (7)0.175 (8)0.118 (6)0.013 (6)0.023 (5)0.032 (5)
C14'0.096 (11)0.095 (8)0.037 (5)0.030 (6)0.014 (6)0.017 (5)
C15'0.074 (8)0.147 (12)0.077 (7)0.010 (7)0.005 (6)0.006 (7)
C16'0.137 (8)0.130 (8)0.089 (6)0.019 (6)0.037 (6)0.030 (6)
C170.0504 (13)0.0694 (18)0.0454 (13)0.0088 (12)0.0080 (11)0.0162 (12)
C180.0373 (11)0.0619 (16)0.0397 (12)0.0052 (11)0.0017 (10)0.0068 (11)
C190.0527 (13)0.0534 (15)0.0484 (13)0.0044 (11)0.0151 (11)0.0039 (11)
C200.0549 (14)0.0576 (17)0.0543 (14)0.0015 (12)0.0208 (12)0.0027 (12)
C210.0570 (14)0.0509 (15)0.0690 (17)0.0023 (12)0.0125 (13)0.0031 (13)
C220.0655 (16)0.0589 (18)0.0679 (17)0.0055 (14)0.0138 (14)0.0143 (14)
C230.0510 (14)0.077 (2)0.0451 (13)0.0078 (13)0.0125 (11)0.0049 (13)
N10.0472 (11)0.0540 (12)0.0394 (10)0.0041 (9)0.0104 (9)0.0025 (9)
N20.0554 (11)0.0516 (12)0.0513 (11)0.0024 (9)0.0163 (10)0.0016 (9)
N30.0447 (10)0.0579 (13)0.0406 (10)0.0026 (9)0.0106 (9)0.0074 (9)
O10.0580 (10)0.1020 (15)0.0363 (9)0.0023 (10)0.0116 (8)0.0123 (9)
O20.0705 (12)0.0522 (11)0.0911 (14)0.0144 (9)0.0202 (11)0.0008 (10)
S10.0510 (4)0.0854 (6)0.0405 (4)0.0052 (3)0.0131 (3)0.0096 (3)
Geometric parameters (Å, º) top
C1—C21.400 (3)C13—H13D0.9700
C1—C61.404 (3)C14—C151.527 (7)
C1—C71.431 (3)C14—H14A0.9700
C2—C31.375 (4)C14—H14B0.9700
C2—H20.9300C15—C161.482 (8)
C3—C41.383 (4)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.374 (3)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.385 (3)C16—H16C0.9600
C5—H50.9300C14'—C15'1.564 (9)
C6—S11.743 (2)C14'—H14C0.9700
C7—N11.373 (3)C14'—H14D0.9700
C7—C81.385 (3)C15'—C16'1.506 (9)
C8—C91.426 (3)C15'—H15C0.9700
C8—S11.732 (2)C15'—H15D0.9700
C9—O11.228 (3)C16'—H16D0.9600
C9—N31.398 (3)C16'—H16E0.9600
C10—N11.283 (3)C16'—H16F0.9600
C10—N21.372 (3)C17—C181.503 (3)
C10—N31.377 (3)C17—H17A0.9700
C11—O21.207 (3)C17—H17B0.9700
C11—N21.377 (3)C18—C231.386 (3)
C11—C121.518 (4)C18—C191.389 (3)
C12—N31.463 (3)C19—C201.374 (3)
C12—C171.529 (3)C19—H190.9300
C12—H120.9800C20—C211.377 (3)
C13—N21.466 (3)C20—H200.9300
C13—C14'1.498 (9)C21—C221.371 (4)
C13—C141.519 (7)C21—H210.9300
C13—H13A0.9700C22—C231.385 (4)
C13—H13B0.9700C22—H220.9300
C13—H13C0.9700C23—H230.9300
C2—C1—C6119.1 (2)C13—C14—H14A108.6
C2—C1—C7129.1 (2)C15—C14—H14A108.6
C6—C1—C7111.7 (2)C13—C14—H14B108.6
C3—C2—C1119.1 (2)C15—C14—H14B108.6
C3—C2—H2120.5H14A—C14—H14B107.6
C1—C2—H2120.5C16—C15—C14112.8 (6)
C2—C3—C4120.8 (2)C16—C15—H15A109.0
C2—C3—H3119.6C14—C15—H15A109.0
C4—C3—H3119.6C16—C15—H15B109.0
C5—C4—C3121.5 (2)C14—C15—H15B109.0
C5—C4—H4119.3H15A—C15—H15B107.8
C3—C4—H4119.3C15—C16—H16A109.5
C4—C5—C6118.2 (2)C15—C16—H16B109.5
C4—C5—H5120.9H16A—C16—H16B109.5
C6—C5—H5120.9C15—C16—H16C109.5
C5—C6—C1121.3 (2)H16A—C16—H16C109.5
C5—C6—S1126.4 (2)H16B—C16—H16C109.5
C1—C6—S1112.37 (18)C13—C14'—C15'103.8 (7)
N1—C7—C8123.9 (2)C13—C14'—H14C111.0
N1—C7—C1124.2 (2)C15'—C14'—H14C111.0
C8—C7—C1111.9 (2)C13—C14'—H14D111.0
C7—C8—C9122.0 (2)C15'—C14'—H14D111.0
C7—C8—S1113.44 (18)H14C—C14'—H14D109.0
C9—C8—S1124.51 (17)C16'—C15'—C14'104.6 (7)
O1—C9—N3121.5 (2)C16'—C15'—H15C110.8
O1—C9—C8127.5 (2)C14'—C15'—H15C110.8
N3—C9—C8110.96 (19)C16'—C15'—H15D110.8
N1—C10—N2124.6 (2)C14'—C15'—H15D110.8
N1—C10—N3127.2 (2)H15C—C15'—H15D108.9
N2—C10—N3108.2 (2)C18—C17—C12116.25 (18)
O2—C11—N2126.1 (3)C18—C17—H17A108.2
O2—C11—C12126.8 (2)C12—C17—H17A108.2
N2—C11—C12107.1 (2)C18—C17—H17B108.2
N3—C12—C11101.91 (19)C12—C17—H17B108.2
N3—C12—C17116.3 (2)H17A—C17—H17B107.4
C11—C12—C17112.8 (2)C23—C18—C19117.3 (2)
N3—C12—H12108.5C23—C18—C17120.9 (2)
C11—C12—H12108.5C19—C18—C17121.8 (2)
C17—C12—H12108.5C20—C19—C18121.4 (2)
N2—C13—C14'118.0 (5)C20—C19—H19119.3
N2—C13—C14108.7 (3)C18—C19—H19119.3
C14'—C13—C1418.3 (7)C19—C20—C21120.3 (2)
N2—C13—H13A107.8C19—C20—H20119.9
C14'—C13—H13A107.8C21—C20—H20119.9
C14—C13—H13A126.0C22—C21—C20119.5 (3)
N2—C13—H13B107.8C22—C21—H21120.2
C14'—C13—H13B107.8C20—C21—H21120.2
C14—C13—H13B97.9C21—C22—C23120.0 (2)
H13A—C13—H13B107.1C21—C22—H22120.0
N2—C13—H13C107.9C23—C22—H22120.0
C14'—C13—H13C105.5C18—C23—C22121.4 (2)
C14—C13—H13C123.7C18—C23—H23119.3
H13A—C13—H13C2.9C22—C23—H23119.3
H13B—C13—H13C109.7C10—N1—C7113.33 (18)
N2—C13—H13D107.8C10—N2—C11111.9 (2)
C14'—C13—H13D109.9C10—N2—C13122.7 (2)
C14—C13—H13D100.5C11—N2—C13125.4 (2)
H13A—C13—H13D104.6C10—N3—C9122.56 (19)
H13B—C13—H13D2.8C10—N3—C12110.89 (19)
H13C—C13—H13D107.2C9—N3—C12126.42 (18)
C13—C14—C15114.6 (6)C8—S1—C690.52 (11)
C6—C1—C2—C30.5 (3)C18—C19—C20—C210.4 (4)
C7—C1—C2—C3178.2 (2)C19—C20—C21—C220.8 (4)
C1—C2—C3—C40.4 (4)C20—C21—C22—C230.3 (4)
C2—C3—C4—C50.6 (4)C19—C18—C23—C221.0 (3)
C3—C4—C5—C60.2 (4)C17—C18—C23—C22176.2 (2)
C4—C5—C6—C11.2 (4)C21—C22—C23—C180.6 (4)
C4—C5—C6—S1179.5 (2)N2—C10—N1—C7178.9 (2)
C2—C1—C6—C51.3 (3)N3—C10—N1—C70.4 (3)
C7—C1—C6—C5179.4 (2)C8—C7—N1—C101.2 (3)
C2—C1—C6—S1179.29 (18)C1—C7—N1—C10179.3 (2)
C7—C1—C6—S11.2 (2)N1—C10—N2—C11177.8 (2)
C2—C1—C7—N12.0 (4)N3—C10—N2—C111.6 (3)
C6—C1—C7—N1179.8 (2)N1—C10—N2—C135.6 (4)
C2—C1—C7—C8178.4 (2)N3—C10—N2—C13174.9 (2)
C6—C1—C7—C80.6 (3)O2—C11—N2—C10178.5 (2)
N1—C7—C8—C92.1 (4)C12—C11—N2—C100.3 (3)
C1—C7—C8—C9178.3 (2)O2—C11—N2—C132.0 (4)
N1—C7—C8—S1179.33 (17)C12—C11—N2—C13176.1 (2)
C1—C7—C8—S10.3 (3)C14'—C13—N2—C1069.0 (8)
C7—C8—C9—O1178.4 (2)C14—C13—N2—C1086.1 (5)
S1—C8—C9—O10.0 (4)C14'—C13—N2—C11107.1 (8)
C7—C8—C9—N31.4 (3)C14—C13—N2—C1190.0 (5)
S1—C8—C9—N3179.76 (16)N1—C10—N3—C91.0 (4)
O2—C11—C12—N3177.1 (2)N2—C10—N3—C9178.42 (19)
N2—C11—C12—N31.0 (2)N1—C10—N3—C12177.1 (2)
O2—C11—C12—C1751.7 (3)N2—C10—N3—C122.3 (2)
N2—C11—C12—C17126.5 (2)O1—C9—N3—C10179.8 (2)
N2—C13—C14—C15176.5 (5)C8—C9—N3—C100.0 (3)
C14'—C13—C14—C1553 (2)O1—C9—N3—C124.7 (4)
C13—C14—C15—C1671.4 (10)C8—C9—N3—C12175.5 (2)
N2—C13—C14'—C15'172.5 (7)C11—C12—N3—C102.0 (2)
C14—C13—C14'—C15'124 (3)C17—C12—N3—C10125.1 (2)
C13—C14'—C15'—C16'179.4 (12)C11—C12—N3—C9177.9 (2)
N3—C12—C17—C1852.3 (3)C17—C12—N3—C959.0 (3)
C11—C12—C17—C1865.0 (3)C7—C8—S1—C60.82 (19)
C12—C17—C18—C23109.3 (3)C9—C8—S1—C6177.7 (2)
C12—C17—C18—C1973.6 (3)C5—C6—S1—C8179.5 (2)
C23—C18—C19—C200.5 (3)C1—C6—S1—C81.17 (18)
C17—C18—C19—C20176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg5i0.962.813.682 (3)156
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC23H21N3O2S
Mr403.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.1732 (16), 8.4957 (11), 18.584 (2)
β (°) 103.345 (2)
V3)2023.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.26 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area0detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.954, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15534, 3958, 2896
Rint0.129
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.170, 1.00
No. of reflections3958
No. of parameters292
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg5i0.962.813.682 (3)156
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

References

First citationBruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, M.-H., Xu, S.-Z. & Hu, Y.-G. (2006). Acta Cryst. E62, o1319–o1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalter, H. (1999a). Chem. Abstr. 130, 237580e.  Google Scholar
First citationWalter, H. (1999b). WO Patent No. 9 911 631.  Google Scholar
First citationXu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds