organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 5,5′-thio­bis­[2-amino-4-(4-fluoro­phen­yl)-1-phenyl-1H-pyrrole-3-carboxyl­ate]

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: liming928@qust.edu.cn

(Received 20 November 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, C38H32F2N4O4S, the ethyl chain of the ethoxy­carbonyl group displays rotational disorder with site occupancy factors ca 0.6 and 0.4. The S atom lies on a twofold rotation axis. There are both inter- and intra­molecular hydrogen bonds in the crystal structure. An intra­molecular N—H⋯O hydrogen bond forms a six-membered ring, while an inter­molecular N—H⋯F hydrogen bond results in a chain.

Related literature

For related literature, see: Yin & Pidgeon (1997[Yin, J. & Pidgeon, C. (1997). Tetrahedron Lett. 38, 5953-5954.]); Herradura et al. (2000[Herradura, P. S., Pendola, K. A. & Guy, R. K. (2000). Org. Lett. 2, 2019-2022.]); Baumgarten & Tyutyulkov (1998[Baumgarten, M. & Tyutyulkov, N. (1998). Chem. Eur. J. 4, 987-989.]); Barton & Ollis (1979[Barton, D. H. R. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 3, p. 33. Oxford: Pergamon Press.]).

[Scheme 1]

Experimental

Crystal data
  • C38H32F2N4O4S

  • Mr = 678.74

  • Monoclinic, C 2/c

  • a = 12.158 (3) Å

  • b = 19.160 (4) Å

  • c = 14.958 (3) Å

  • β = 106.944 (4)°

  • V = 3333.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.973

  • 8487 measured reflections

  • 2942 independent reflections

  • 1645 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.08

  • 2942 reflections

  • 241 parameters

  • 31 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯F1ii 0.90 2.49 3.181 (3) 134
N2—H2B⋯O1 0.90 2.23 2.825 (3) 124
Symmetry code: (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic sulfides represent important building blocks in organic and medicinal chemistry (Barton et al., 1979) due to their diverse biological and pharmacological properties (Herradura et al., 2000). Because of their synthetic and biological potential, considerable interest has been focused on the synthesis of organic sulfides (Yin et al., 1997). In addition, polysubstituted pyrroles are molecular frameworks having immense importance in material science (Baumgarten et al., 1998). In order to develop new biological activities, we synthesized the title compound, (I) (Fig.1), the structure of which is reported here.

The title compound adopts a V conformation, which contains two parts which are same to each other, and each part comprises three rings, two phenyl rings and one pyrrole ring. In each part, the two phenyl rings are not conjugated with the pyrrole ring, with the dihedral angle of 49.07° and 73.04°, respectively.

All the bond lengths and angles (Table 1) in the title compound are within the normal range. The bond lengths of C7—C8 (1.356 Å) and C9—C10 (1.380 Å) in the pyrrole ring is obviously shorter than C—C (1.52 Å) but are close to normal C?C (1.32 Å), it is indicated that they are both C?C. The bond length of C7—C10 (1.454 Å) is between C—C and C?C.

X-ray analysis reveals that there exists both intermolecular hydrogen and intromolecular hydrogen bonds in the crystal structure (Fig. 2). The intromolecular N2—H2B···O1 hydrogen bond forms a six-membered ring, while the intermolecular N2—H2A···F1 hydrogen bond makes the molecule extended in line.

Related literature top

For related literature, see: Yin & Pidgeon (1997); Herradura et al. (2000); Baumgarten & Tyutyulkov (1998); Barton & Ollis (1979).

Experimental top

A mixture of 2-(4-fluorophenyl)-2-oxo-N-phenylethanethioamide (3 mmol, 0.819 g), ethyl 2-cyanoacetate (3 mmol, 0.339 g), 10% NaOH solution (0.5 ml), and 15 ml e thanol in a 25 ml flask was stirred for 3 h at room temperature (monitored by TLC). The yellow solid was got by filtering. And then the solid was added to a stirred solution of acetic acid (1 ml) in ethanol (15 ml) at 313 K under MW for 30 min. After cooling to room temperature, the solid product was then got by filtering. The pure product was purified by recrystallization from ethanol (m.p. 498 K).

Refinement top

All H atoms were placed in calculated positions, with C—H distances in the range 0.93 - 0.97 Å, and N—H = 0.90 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C,N). The ethyl chain of the ethoxycarbonyl group displays rotational disorder. The site-occupation factors of the disordered atoms C12, C13 and C12', C13' refined to 0.588 (14) and 0.412 (146), respectively.

Structure description top

Organic sulfides represent important building blocks in organic and medicinal chemistry (Barton et al., 1979) due to their diverse biological and pharmacological properties (Herradura et al., 2000). Because of their synthetic and biological potential, considerable interest has been focused on the synthesis of organic sulfides (Yin et al., 1997). In addition, polysubstituted pyrroles are molecular frameworks having immense importance in material science (Baumgarten et al., 1998). In order to develop new biological activities, we synthesized the title compound, (I) (Fig.1), the structure of which is reported here.

The title compound adopts a V conformation, which contains two parts which are same to each other, and each part comprises three rings, two phenyl rings and one pyrrole ring. In each part, the two phenyl rings are not conjugated with the pyrrole ring, with the dihedral angle of 49.07° and 73.04°, respectively.

All the bond lengths and angles (Table 1) in the title compound are within the normal range. The bond lengths of C7—C8 (1.356 Å) and C9—C10 (1.380 Å) in the pyrrole ring is obviously shorter than C—C (1.52 Å) but are close to normal C?C (1.32 Å), it is indicated that they are both C?C. The bond length of C7—C10 (1.454 Å) is between C—C and C?C.

X-ray analysis reveals that there exists both intermolecular hydrogen and intromolecular hydrogen bonds in the crystal structure (Fig. 2). The intromolecular N2—H2B···O1 hydrogen bond forms a six-membered ring, while the intermolecular N2—H2A···F1 hydrogen bond makes the molecule extended in line.

For related literature, see: Yin & Pidgeon (1997); Herradura et al. (2000); Baumgarten & Tyutyulkov (1998); Barton & Ollis (1979).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with 35% probability ellipsoid. Both disordered components are shown.
[Figure 2] Fig. 2. The packing of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Diethyl 5,5'-thiobis[2-amino-4-(4-fluorophenyl)-1-phenyl-1H-pyrrole-3- carboxylate] top
Crystal data top
C38H32F2N4O4SF(000) = 1416
Mr = 678.74Dx = 1.353 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1735 reflections
a = 12.158 (3) Åθ = 2.6–21.3°
b = 19.160 (4) ŵ = 0.16 mm1
c = 14.958 (3) ÅT = 294 K
β = 106.944 (4)°Prism, yellow
V = 3333.0 (13) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2942 independent reflections
Radiation source: fine-focus sealed tube1645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 148
Tmin = 0.970, Tmax = 0.973k = 2221
8487 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.23 e Å3
31 restraintsΔρmin = 0.16 e Å3
Crystal data top
C38H32F2N4O4SV = 3333.0 (13) Å3
Mr = 678.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.158 (3) ŵ = 0.16 mm1
b = 19.160 (4) ÅT = 294 K
c = 14.958 (3) Å0.20 × 0.18 × 0.18 mm
β = 106.944 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2942 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1645 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.973Rint = 0.045
8487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04731 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
2942 reflectionsΔρmin = 0.16 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.00000.02157 (5)0.25000.0518 (3)
F10.41195 (19)0.13211 (10)0.15342 (15)0.1094 (7)
O10.0803 (2)0.21900 (12)0.06429 (16)0.0943 (8)
O20.1802 (2)0.11943 (13)0.04003 (15)0.0918 (8)
N10.0635 (2)0.13810 (11)0.13685 (14)0.0495 (6)
N20.0895 (2)0.23284 (12)0.02943 (17)0.0715 (8)
H2A0.12840.25750.06140.086*
H2B0.05210.25950.00140.086*
C10.2891 (3)0.04044 (15)0.13523 (18)0.0581 (8)
H10.31280.08670.13780.070*
C20.3696 (3)0.01205 (18)0.14655 (19)0.0669 (9)
H20.44700.00170.15660.080*
C30.3327 (3)0.08003 (18)0.1426 (2)0.0680 (9)
C40.2211 (3)0.09736 (16)0.1275 (2)0.0687 (9)
H40.19860.14390.12490.082*
C50.1410 (3)0.04417 (14)0.11607 (17)0.0555 (8)
H50.06380.05540.10550.067*
C60.1734 (2)0.02548 (14)0.12005 (16)0.0458 (7)
C70.0855 (2)0.07966 (13)0.11175 (17)0.0460 (7)
C80.0077 (2)0.07882 (13)0.16089 (17)0.0455 (7)
C90.0292 (3)0.17553 (14)0.07162 (18)0.0532 (8)
C100.0626 (3)0.14193 (14)0.05373 (18)0.0518 (7)
C110.1072 (3)0.16536 (19)0.0206 (2)0.0672 (9)
C120.2371 (9)0.1505 (5)0.1060 (7)0.079 (3)0.588 (14)
H12A0.27210.19500.08320.094*0.588 (14)
H12B0.18290.15700.16740.094*0.588 (14)
C130.3270 (9)0.0970 (6)0.1087 (6)0.095 (3)0.588 (14)
H13A0.36980.11290.14960.142*0.588 (14)
H13B0.29030.05350.13120.142*0.588 (14)
H13C0.37830.09070.04690.142*0.588 (14)
C12'0.2111 (9)0.1190 (9)0.1291 (6)0.080 (4)0.412 (14)
H12C0.16420.15130.17430.095*0.412 (14)
H12D0.20470.07270.15630.095*0.412 (14)
C13'0.3355 (12)0.1429 (10)0.0939 (9)0.113 (5)0.412 (14)
H13D0.36710.14620.14560.170*0.412 (14)
H13E0.37910.10990.04930.170*0.412 (14)
H13F0.33880.18780.06480.170*0.412 (14)
C140.1757 (3)0.14464 (15)0.14982 (18)0.0524 (7)
C150.2597 (3)0.09787 (17)0.1047 (2)0.0688 (9)
H150.24250.06210.06900.083*
C160.3690 (3)0.1044 (2)0.1128 (2)0.0853 (11)
H160.42560.07260.08270.102*
C170.3948 (4)0.1564 (3)0.1640 (3)0.0874 (12)
H170.46940.16050.16820.105*
C180.3129 (4)0.2029 (2)0.2097 (3)0.0886 (12)
H180.33160.23840.24520.106*
C190.2004 (3)0.19735 (16)0.2033 (2)0.0741 (10)
H190.14380.22870.23450.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0657 (8)0.0467 (6)0.0470 (6)0.0000.0226 (5)0.000
F10.1062 (17)0.0986 (14)0.1301 (17)0.0439 (14)0.0450 (15)0.0001 (13)
O10.110 (2)0.0893 (16)0.0968 (17)0.0169 (15)0.0499 (16)0.0455 (14)
O20.0972 (19)0.1199 (19)0.0773 (15)0.0303 (16)0.0551 (15)0.0414 (14)
N10.0517 (15)0.0512 (13)0.0475 (13)0.0019 (12)0.0175 (12)0.0028 (11)
N20.091 (2)0.0552 (15)0.0735 (16)0.0113 (15)0.0327 (16)0.0166 (13)
C10.059 (2)0.0615 (18)0.0543 (18)0.0052 (18)0.0178 (16)0.0033 (14)
C20.052 (2)0.089 (2)0.061 (2)0.005 (2)0.0178 (17)0.0000 (18)
C30.076 (3)0.070 (2)0.061 (2)0.026 (2)0.0260 (19)0.0023 (17)
C40.085 (3)0.0581 (19)0.068 (2)0.000 (2)0.031 (2)0.0103 (16)
C50.059 (2)0.0592 (19)0.0512 (17)0.0006 (17)0.0206 (15)0.0082 (14)
C60.0503 (18)0.0531 (17)0.0353 (14)0.0031 (15)0.0147 (13)0.0013 (12)
C70.0507 (18)0.0471 (16)0.0380 (14)0.0035 (14)0.0094 (13)0.0042 (12)
C80.0503 (18)0.0468 (15)0.0399 (15)0.0003 (14)0.0139 (14)0.0007 (12)
C90.066 (2)0.0473 (16)0.0453 (16)0.0019 (16)0.0141 (16)0.0030 (13)
C100.061 (2)0.0505 (16)0.0451 (16)0.0028 (15)0.0181 (15)0.0061 (13)
C110.063 (2)0.078 (2)0.062 (2)0.0014 (19)0.0203 (18)0.0137 (18)
C120.086 (6)0.093 (6)0.068 (5)0.005 (5)0.039 (4)0.013 (4)
C130.098 (6)0.118 (6)0.089 (5)0.016 (5)0.059 (4)0.013 (4)
C12'0.097 (7)0.081 (7)0.073 (6)0.022 (6)0.044 (5)0.008 (5)
C13'0.101 (8)0.126 (9)0.121 (8)0.026 (7)0.046 (6)0.009 (7)
C140.063 (2)0.0549 (17)0.0414 (15)0.0123 (16)0.0187 (15)0.0105 (14)
C150.070 (2)0.078 (2)0.062 (2)0.007 (2)0.0243 (19)0.0014 (17)
C160.068 (3)0.110 (3)0.079 (3)0.006 (2)0.025 (2)0.015 (2)
C170.072 (3)0.114 (3)0.083 (3)0.023 (3)0.032 (2)0.036 (2)
C180.105 (3)0.091 (3)0.080 (3)0.050 (3)0.043 (3)0.019 (2)
C190.084 (3)0.072 (2)0.065 (2)0.022 (2)0.020 (2)0.0003 (17)
Geometric parameters (Å, º) top
S1—C81.750 (2)C9—C101.380 (4)
S1—C8i1.750 (2)C10—C111.443 (4)
F1—C31.363 (3)C12—C131.507 (8)
O1—C111.211 (3)C12—H12A0.9700
O2—C111.341 (4)C12—H12B0.9700
O2—C121.484 (6)C13—H13A0.9600
O2—C12'1.485 (8)C13—H13B0.9600
N1—C91.370 (3)C13—H13C0.9600
N1—C81.409 (3)C12'—C13'1.520 (9)
N1—C141.438 (3)C12'—H12C0.9700
N2—C91.368 (3)C12'—H12D0.9700
N2—H2A0.8989C13'—H13D0.9600
N2—H2B0.8954C13'—H13E0.9600
C1—C21.379 (4)C13'—H13F0.9600
C1—C61.388 (4)C14—C191.375 (4)
C1—H10.9300C14—C151.378 (4)
C2—C31.373 (4)C15—C161.375 (4)
C2—H20.9300C15—H150.9300
C3—C41.350 (4)C16—C171.349 (5)
C4—C51.385 (4)C16—H160.9300
C4—H40.9300C17—C181.363 (5)
C5—C61.388 (4)C17—H170.9300
C5—H50.9300C18—C191.403 (5)
C6—C71.469 (4)C18—H180.9300
C7—C81.356 (3)C19—H190.9300
C7—C101.454 (3)
C8—S1—C8i102.35 (16)O2—C12—C13103.1 (6)
C11—O2—C12110.3 (4)O2—C12—H12A111.1
C11—O2—C12'123.7 (6)C13—C12—H12A111.1
C12—O2—C12'28.1 (4)O2—C12—H12B111.1
C9—N1—C8108.2 (2)C13—C12—H12B111.1
C9—N1—C14123.2 (2)H12A—C12—H12B109.1
C8—N1—C14124.8 (2)C12—C13—H13A109.5
C9—N2—H2A118.1C12—C13—H13B109.5
C9—N2—H2B114.3H13A—C13—H13B109.5
H2A—N2—H2B113.4C12—C13—H13C109.5
C2—C1—C6121.2 (3)H13A—C13—H13C109.5
C2—C1—H1119.4H13B—C13—H13C109.5
C6—C1—H1119.4O2—C12'—C13'100.0 (9)
C3—C2—C1118.4 (3)O2—C12'—H12C111.8
C3—C2—H2120.8C13'—C12'—H12C111.8
C1—C2—H2120.8O2—C12'—H12D111.8
C4—C3—F1118.7 (3)C13'—C12'—H12D111.8
C4—C3—C2122.7 (3)H12C—C12'—H12D109.5
F1—C3—C2118.6 (3)C12'—C13'—H13D109.5
C3—C4—C5118.4 (3)C12'—C13'—H13E109.5
C3—C4—H4120.8H13D—C13'—H13E109.5
C5—C4—H4120.8C12'—C13'—H13F109.5
C4—C5—C6121.4 (3)H13D—C13'—H13F109.5
C4—C5—H5119.3H13E—C13'—H13F109.5
C6—C5—H5119.3C19—C14—C15120.4 (3)
C1—C6—C5117.9 (3)C19—C14—N1121.3 (3)
C1—C6—C7123.1 (2)C15—C14—N1118.3 (3)
C5—C6—C7119.0 (3)C16—C15—C14119.7 (3)
C8—C7—C10106.9 (2)C16—C15—H15120.1
C8—C7—C6123.4 (2)C14—C15—H15120.1
C10—C7—C6129.6 (2)C17—C16—C15120.5 (4)
C7—C8—N1109.0 (2)C17—C16—H16119.7
C7—C8—S1128.4 (2)C15—C16—H16119.7
N1—C8—S1122.32 (19)C16—C17—C18120.7 (4)
N2—C9—N1121.0 (3)C16—C17—H17119.6
N2—C9—C10129.8 (3)C18—C17—H17119.6
N1—C9—C10109.0 (2)C17—C18—C19120.0 (3)
C9—C10—C11120.7 (3)C17—C18—H18120.0
C9—C10—C7107.0 (2)C19—C18—H18120.0
C11—C10—C7131.7 (3)C14—C19—C18118.6 (3)
O1—C11—O2122.2 (3)C14—C19—H19120.7
O1—C11—C10125.2 (3)C18—C19—H19120.7
O2—C11—C10112.6 (3)
C6—C1—C2—C30.1 (4)N2—C9—C10—C7173.8 (3)
C1—C2—C3—C40.4 (5)N1—C9—C10—C70.2 (3)
C1—C2—C3—F1179.8 (3)C8—C7—C10—C90.0 (3)
F1—C3—C4—C5179.6 (2)C6—C7—C10—C9180.0 (3)
C2—C3—C4—C50.3 (5)C8—C7—C10—C11171.0 (3)
C3—C4—C5—C60.2 (4)C6—C7—C10—C119.0 (5)
C2—C1—C6—C50.4 (4)C12—O2—C11—O111.3 (7)
C2—C1—C6—C7177.2 (2)C12'—O2—C11—O116.7 (7)
C4—C5—C6—C10.5 (4)C12—O2—C11—C10171.2 (6)
C4—C5—C6—C7177.2 (2)C12'—O2—C11—C10160.8 (6)
C1—C6—C7—C8129.7 (3)C9—C10—C11—O19.6 (5)
C5—C6—C7—C847.9 (3)C7—C10—C11—O1179.6 (3)
C1—C6—C7—C1050.3 (4)C9—C10—C11—O2167.8 (3)
C5—C6—C7—C10132.1 (3)C7—C10—C11—O22.2 (5)
C10—C7—C8—N10.2 (3)C11—O2—C12—C13171.9 (9)
C6—C7—C8—N1179.8 (2)C12'—O2—C12—C1363.9 (13)
C10—C7—C8—S1173.5 (2)C11—O2—C12'—C13'110.4 (13)
C6—C7—C8—S16.5 (4)C12—O2—C12'—C13'41.5 (12)
C9—N1—C8—C70.4 (3)C9—N1—C14—C1982.7 (3)
C14—N1—C8—C7159.1 (2)C8—N1—C14—C19121.7 (3)
C9—N1—C8—S1174.16 (19)C9—N1—C14—C1595.3 (3)
C14—N1—C8—S127.2 (3)C8—N1—C14—C1560.3 (3)
C8i—S1—C8—C7128.1 (3)C19—C14—C15—C160.5 (4)
C8i—S1—C8—N144.36 (16)N1—C14—C15—C16177.5 (3)
C8—N1—C9—N2174.3 (2)C14—C15—C16—C170.4 (5)
C14—N1—C9—N215.2 (4)C15—C16—C17—C180.8 (5)
C8—N1—C9—C100.4 (3)C16—C17—C18—C190.4 (5)
C14—N1—C9—C10159.5 (2)C15—C14—C19—C180.9 (4)
N2—C9—C10—C111.6 (5)N1—C14—C19—C18177.0 (3)
N1—C9—C10—C11172.5 (2)C17—C18—C19—C140.4 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F1ii0.902.493.181 (3)134
N2—H2B···O10.902.232.825 (3)124
Symmetry code: (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC38H32F2N4O4S
Mr678.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)12.158 (3), 19.160 (4), 14.958 (3)
β (°) 106.944 (4)
V3)3333.0 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8487, 2942, 1645
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.08
No. of reflections2942
No. of parameters241
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL (Bruker, 1999).

Selected geometric parameters (Å, º) top
S1—C81.750 (2)N1—C81.409 (3)
F1—C31.363 (3)N1—C141.438 (3)
N1—C91.370 (3)N2—C91.368 (3)
C8—S1—C8i102.35 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F1ii0.902.493.181 (3)133.7
N2—H2B···O10.902.232.825 (3)123.8
Symmetry code: (ii) x1/2, y+1/2, z.
 

Acknowledgements

This project was supported by the National Science Found­ation of China (No. 20572057), the Natural Science Foundation of Shandong Province (Y2006B11) and the Doctoral Foundation of Qingdao University of Science and Technology.

References

First citationBarton, D. H. R. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 3, p. 33. Oxford: Pergamon Press.  Google Scholar
First citationBaumgarten, M. & Tyutyulkov, N. (1998). Chem. Eur. J. 4, 987–989.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerradura, P. S., Pendola, K. A. & Guy, R. K. (2000). Org. Lett. 2, 2019–2022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYin, J. & Pidgeon, C. (1997). Tetrahedron Lett. 38, 5953–5954.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds