organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-1-(4-bromo­benzo­yl)ethyl 4-methyl­benzoate

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China
*Correspondence e-mail: qustchemistry@126.com

(Received 21 November 2007; accepted 23 November 2007; online 6 December 2007)

In the mol­ecule of the title compound, C23H18BrN3O3, the benzotriazole mean plane makes dihedral angles of 1.26 (1) and 87.39 (1)° with the tolyl and bromophenyl benzene rings, respectively, and the dihedral angle between the benzene rings is 87.27 (1)°. In the crystal structure, mol­ecules are linked into chains along the a axis by C—H⋯O inter­molecular hydrogen bonds. The structure is further stabilized by C—H⋯π and ππ inter­actions, with a distance of 3.700 (1) Å between the centroids of the bromophenyl and benzotriazole benzene rings related by symmetry code (x, −1 + y, z).

Related literature

For related literature, see: Wan et al. (2006[Wan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o634-o636.]). For reference structural data, see Allen et al., (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18BrN3O3

  • Mr = 464.30

  • Triclinic, [P \overline 1]

  • a = 6.995 (2) Å

  • b = 9.038 (2) Å

  • c = 16.909 (5) Å

  • α = 87.617 (5)°

  • β = 85.741 (5)°

  • γ = 74.688 (5)°

  • V = 1027.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 293 (2) K

  • 0.35 × 0.12 × 0.07 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.537, Tmax = 0.871

  • 5629 measured reflections

  • 3814 independent reflections

  • 2852 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.01

  • 3814 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1–N3/C17/C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACg1i 0.93 2.86 3.596 (1) 138
C2—H2A⋯O1ii 0.93 2.56 3.292 (4) 137
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Recently, we have reported the structure of 2-(1H-1,2,3-benzotriazol-1-ylmethyl)-1-benzoylethyl 4-chlorobenzoate (II) (Wan et al., 2006). As part of our ongoing studies on new benzotriazole derivatives with higher bioactivity, the title compound, (I), was synthesized and its structure is presented here.

In the molecule of (I), all bond lengths and angles are within normal ranges (Allen et al., 1987) and are comparable with those in the related compound, (II). The benzotriazole system is essentially planar with a dihedral angle of 1.14 (2)° between the N1–N3/C17/C18 triazole ring and C17–C22 benzene ring. The benzotriazole mean plane makes dihedral angles of 1.26 (1)° and 87.39 (1)°, respectively, with the two benzene rings C1–C6 and C11–C16. The dihedral angle between the benzene rings is 87.27 (1)°.

In the crystal structure (Fig. 2), intermolecular C1—H2A···O1 hydrogen bonds (Table 1) link the molecules into infinite chains along the a axis. The molecules are further stabilized by C—H···π interactions (Table 1). The distance of 3.700 (1) Å between the centroids of benzene rings C1–C6 and C17–C22 related by symmetry code (x, -1 + y, z) suggests a possible ππ interactions.

Related literature top

For related literature, see: Wan et al. (2006). For reference structural data, see Allen et al., (1987).

Experimental top

The title compound was prepared according to the literature method of Wan et al.(2006). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of a week.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C) H atoms.

Structure description top

Recently, we have reported the structure of 2-(1H-1,2,3-benzotriazol-1-ylmethyl)-1-benzoylethyl 4-chlorobenzoate (II) (Wan et al., 2006). As part of our ongoing studies on new benzotriazole derivatives with higher bioactivity, the title compound, (I), was synthesized and its structure is presented here.

In the molecule of (I), all bond lengths and angles are within normal ranges (Allen et al., 1987) and are comparable with those in the related compound, (II). The benzotriazole system is essentially planar with a dihedral angle of 1.14 (2)° between the N1–N3/C17/C18 triazole ring and C17–C22 benzene ring. The benzotriazole mean plane makes dihedral angles of 1.26 (1)° and 87.39 (1)°, respectively, with the two benzene rings C1–C6 and C11–C16. The dihedral angle between the benzene rings is 87.27 (1)°.

In the crystal structure (Fig. 2), intermolecular C1—H2A···O1 hydrogen bonds (Table 1) link the molecules into infinite chains along the a axis. The molecules are further stabilized by C—H···π interactions (Table 1). The distance of 3.700 (1) Å between the centroids of benzene rings C1–C6 and C17–C22 related by symmetry code (x, -1 + y, z) suggests a possible ππ interactions.

For related literature, see: Wan et al. (2006). For reference structural data, see Allen et al., (1987).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the b axis. Hydrogen bonds are indicated by dashed lines.
2-(1H-Benzotriazol-1-yl)-1-(4-bromobenzoyl)ethyl 4-methylbenzoate top
Crystal data top
C23H18BrN3O3Z = 2
Mr = 464.30F(000) = 472
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.995 (2) ÅCell parameters from 1830 reflections
b = 9.038 (2) Åθ = 2.4–22.9°
c = 16.909 (5) ŵ = 2.03 mm1
α = 87.617 (5)°T = 293 K
β = 85.741 (5)°Block, colourless
γ = 74.688 (5)°0.35 × 0.12 × 0.07 mm
V = 1027.8 (5) Å3
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3814 independent reflections
Radiation source: fine-focus sealed tube2852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.33 pixels mm-1θmax = 25.7°, θmin = 2.3°
ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.537, Tmax = 0.871l = 2016
5629 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.3285P]
where P = (Fo2 + 2Fc2)/3
3814 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H18BrN3O3γ = 74.688 (5)°
Mr = 464.30V = 1027.8 (5) Å3
Triclinic, P1Z = 2
a = 6.995 (2) ÅMo Kα radiation
b = 9.038 (2) ŵ = 2.03 mm1
c = 16.909 (5) ÅT = 293 K
α = 87.617 (5)°0.35 × 0.12 × 0.07 mm
β = 85.741 (5)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3814 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2852 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.871Rint = 0.016
5629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
3814 reflectionsΔρmin = 0.30 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.64770 (5)0.65794 (4)0.01583 (2)0.06665 (16)
O21.0846 (3)1.2940 (2)0.26852 (11)0.0472 (5)
N10.7376 (3)1.5016 (3)0.18983 (14)0.0455 (6)
O31.0928 (3)1.1006 (2)0.34871 (13)0.0603 (6)
O11.2452 (3)1.0717 (3)0.16910 (15)0.0699 (7)
C20.6600 (4)0.9193 (3)0.08211 (18)0.0488 (7)
H2A0.52250.93800.08020.059*
C30.7730 (4)0.7930 (3)0.04374 (17)0.0453 (7)
C71.0667 (4)1.0962 (3)0.16942 (17)0.0470 (7)
C60.9582 (4)0.9930 (3)0.12617 (16)0.0415 (7)
C170.7777 (4)1.6225 (3)0.23346 (17)0.0413 (7)
C101.1583 (4)1.2049 (3)0.33201 (17)0.0445 (7)
C40.9777 (4)0.7610 (3)0.04786 (17)0.0485 (7)
H4A1.05290.67270.02370.058*
N20.5383 (4)1.5173 (3)0.18266 (17)0.0586 (7)
N30.4501 (4)1.6420 (3)0.22037 (18)0.0634 (8)
C80.9513 (4)1.2398 (3)0.21355 (17)0.0448 (7)
H8A0.84381.21770.24100.054*
C10.7540 (4)1.0183 (3)0.12364 (18)0.0479 (7)
H1A0.67861.10340.15030.057*
C51.0687 (4)0.8622 (3)0.08842 (17)0.0482 (7)
H5A1.20640.84250.09050.058*
C111.3249 (4)1.2494 (3)0.37556 (16)0.0417 (7)
C180.5918 (4)1.7106 (3)0.25259 (18)0.0484 (7)
C141.6529 (5)1.3212 (4)0.45817 (19)0.0539 (8)
C90.8691 (4)1.3685 (3)0.15506 (17)0.0485 (7)
H9A0.79801.33050.11070.058*
H9B0.97901.39840.13460.058*
C220.9514 (4)1.6647 (3)0.25652 (19)0.0510 (8)
H22A1.07541.60520.24320.061*
C151.5886 (5)1.3755 (4)0.3833 (2)0.0581 (8)
H15A1.65541.43690.35990.070*
C210.9294 (6)1.7981 (4)0.2997 (2)0.0640 (9)
H21A1.04181.83090.31570.077*
C131.5503 (5)1.2311 (4)0.49113 (19)0.0620 (9)
H13A1.59031.19430.54190.074*
C161.4265 (5)1.3409 (4)0.34183 (19)0.0538 (8)
H16A1.38591.37910.29140.065*
C121.3898 (5)1.1939 (4)0.45095 (19)0.0556 (8)
H12A1.32471.13140.47440.067*
C190.5745 (6)1.8472 (4)0.2986 (2)0.0635 (9)
H19A0.45181.90700.31310.076*
C200.7445 (6)1.8872 (4)0.3207 (2)0.0700 (10)
H20A0.73761.97680.35070.084*
C231.8288 (5)1.3588 (4)0.5021 (2)0.0748 (11)
H23A1.85201.31100.55290.112*
H23B1.94381.32140.47210.112*
H23C1.80321.46800.50960.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0657 (3)0.0510 (2)0.0827 (3)0.01976 (17)0.00767 (18)0.01260 (17)
O20.0511 (12)0.0408 (10)0.0493 (12)0.0145 (9)0.0068 (10)0.0008 (9)
N10.0372 (14)0.0429 (13)0.0534 (15)0.0059 (11)0.0009 (11)0.0022 (11)
O30.0652 (15)0.0523 (13)0.0687 (15)0.0269 (12)0.0071 (12)0.0078 (11)
O10.0403 (14)0.0751 (16)0.0899 (18)0.0122 (11)0.0056 (12)0.0310 (13)
C20.0351 (16)0.0505 (17)0.0577 (19)0.0072 (14)0.0024 (14)0.0071 (15)
C30.0519 (19)0.0412 (16)0.0441 (17)0.0149 (14)0.0020 (14)0.0012 (13)
C70.0394 (18)0.0489 (17)0.0500 (18)0.0084 (14)0.0004 (14)0.0043 (14)
C60.0401 (17)0.0398 (15)0.0419 (16)0.0064 (13)0.0020 (13)0.0027 (13)
C170.0414 (17)0.0361 (14)0.0448 (17)0.0059 (13)0.0055 (13)0.0047 (12)
C100.0472 (18)0.0363 (15)0.0476 (17)0.0076 (14)0.0043 (14)0.0067 (13)
C40.0449 (18)0.0449 (17)0.0495 (18)0.0018 (14)0.0060 (14)0.0103 (14)
N20.0386 (15)0.0616 (17)0.0748 (19)0.0141 (13)0.0098 (13)0.0108 (15)
N30.0378 (15)0.0599 (18)0.088 (2)0.0039 (14)0.0047 (15)0.0086 (16)
C80.0415 (17)0.0447 (16)0.0475 (17)0.0123 (13)0.0012 (13)0.0077 (13)
C10.0406 (17)0.0445 (16)0.0519 (18)0.0009 (13)0.0042 (14)0.0089 (14)
C50.0363 (17)0.0526 (18)0.0518 (18)0.0051 (14)0.0052 (14)0.0059 (14)
C110.0437 (17)0.0367 (14)0.0414 (16)0.0061 (13)0.0005 (13)0.0037 (12)
C180.0424 (18)0.0449 (17)0.0557 (19)0.0047 (14)0.0084 (14)0.0105 (14)
C140.0472 (19)0.0560 (19)0.055 (2)0.0107 (15)0.0015 (15)0.0099 (16)
C90.0479 (18)0.0498 (17)0.0435 (17)0.0075 (14)0.0012 (14)0.0056 (14)
C220.0407 (18)0.0485 (17)0.064 (2)0.0119 (14)0.0001 (15)0.0044 (15)
C150.056 (2)0.060 (2)0.064 (2)0.0253 (17)0.0023 (17)0.0009 (17)
C210.068 (2)0.053 (2)0.074 (2)0.0241 (18)0.0064 (19)0.0016 (17)
C130.070 (2)0.070 (2)0.0427 (19)0.0167 (19)0.0139 (16)0.0045 (16)
C160.055 (2)0.0575 (19)0.0499 (19)0.0171 (16)0.0015 (15)0.0021 (15)
C120.066 (2)0.0507 (18)0.052 (2)0.0197 (16)0.0011 (16)0.0063 (15)
C190.070 (2)0.0463 (19)0.067 (2)0.0044 (17)0.0256 (19)0.0064 (16)
C200.098 (3)0.0427 (18)0.067 (2)0.013 (2)0.010 (2)0.0054 (17)
C230.055 (2)0.092 (3)0.074 (3)0.020 (2)0.0084 (19)0.022 (2)
Geometric parameters (Å, º) top
Br1—C31.898 (3)C5—H5A0.9300
O2—C101.355 (3)C11—C161.387 (4)
O2—C81.431 (3)C11—C121.389 (4)
N1—N21.360 (3)C18—C191.415 (5)
N1—C171.371 (3)C14—C131.377 (5)
N1—C91.441 (4)C14—C151.378 (4)
O3—C101.203 (3)C14—C231.498 (4)
O1—C71.209 (3)C9—H9A0.9700
C2—C31.374 (4)C9—H9B0.9700
C2—C11.385 (4)C22—C211.362 (4)
C2—H2A0.9300C22—H22A0.9300
C3—C41.381 (4)C15—C161.388 (4)
C7—C61.488 (4)C15—H15A0.9300
C7—C81.533 (4)C21—C201.393 (5)
C6—C11.383 (4)C21—H21A0.9300
C6—C51.390 (4)C13—C121.379 (4)
C17—C181.387 (4)C13—H13A0.9300
C17—C221.391 (4)C16—H16A0.9300
C10—C111.469 (4)C12—H12A0.9300
C4—C51.379 (4)C19—C201.353 (5)
C4—H4A0.9300C19—H19A0.9300
N2—N31.299 (4)C20—H20A0.9300
N3—C181.371 (4)C23—H23A0.9600
C8—C91.523 (4)C23—H23B0.9600
C8—H8A0.9800C23—H23C0.9600
C1—H1A0.9300
C10—O2—C8116.1 (2)N3—C18—C17109.1 (3)
N2—N1—C17110.0 (2)N3—C18—C19131.0 (3)
N2—N1—C9119.3 (2)C17—C18—C19119.9 (3)
C17—N1—C9130.7 (2)C13—C14—C15117.7 (3)
C3—C2—C1119.0 (3)C13—C14—C23121.2 (3)
C3—C2—H2A120.5C15—C14—C23121.1 (3)
C1—C2—H2A120.5N1—C9—C8113.1 (2)
C2—C3—C4121.3 (3)N1—C9—H9A109.0
C2—C3—Br1119.9 (2)C8—C9—H9A109.0
C4—C3—Br1118.8 (2)N1—C9—H9B109.0
O1—C7—C6121.5 (3)C8—C9—H9B109.0
O1—C7—C8118.6 (3)H9A—C9—H9B107.8
C6—C7—C8119.9 (2)C21—C22—C17116.2 (3)
C1—C6—C5118.5 (3)C21—C22—H22A121.9
C1—C6—C7123.4 (3)C17—C22—H22A121.9
C5—C6—C7118.1 (3)C14—C15—C16121.6 (3)
N1—C17—C18103.8 (2)C14—C15—H15A119.2
N1—C17—C22133.8 (3)C16—C15—H15A119.2
C18—C17—C22122.5 (3)C22—C21—C20122.4 (3)
O3—C10—O2122.3 (3)C22—C21—H21A118.8
O3—C10—C11125.2 (3)C20—C21—H21A118.8
O2—C10—C11112.5 (2)C14—C13—C12121.8 (3)
C5—C4—C3119.0 (3)C14—C13—H13A119.1
C5—C4—H4A120.5C12—C13—H13A119.1
C3—C4—H4A120.5C11—C16—C15120.1 (3)
N3—N2—N1108.7 (2)C11—C16—H16A119.9
N2—N3—C18108.5 (2)C15—C16—H16A119.9
O2—C8—C9105.7 (2)C13—C12—C11120.2 (3)
O2—C8—C7109.4 (2)C13—C12—H12A119.9
C9—C8—C7109.5 (2)C11—C12—H12A119.9
O2—C8—H8A110.7C20—C19—C18117.1 (3)
C9—C8—H8A110.7C20—C19—H19A121.4
C7—C8—H8A110.7C18—C19—H19A121.4
C6—C1—C2121.2 (3)C19—C20—C21122.0 (3)
C6—C1—H1A119.4C19—C20—H20A119.0
C2—C1—H1A119.4C21—C20—H20A119.0
C4—C5—C6121.1 (3)C14—C23—H23A109.5
C4—C5—H5A119.5C14—C23—H23B109.5
C6—C5—H5A119.5H23A—C23—H23B109.5
C16—C11—C12118.5 (3)C14—C23—H23C109.5
C16—C11—C10121.5 (3)H23A—C23—H23C109.5
C12—C11—C10119.9 (3)H23B—C23—H23C109.5
C1—C2—C3—C41.9 (5)O2—C10—C11—C1617.0 (4)
C1—C2—C3—Br1178.4 (2)O3—C10—C11—C1214.9 (5)
O1—C7—C6—C1178.7 (3)O2—C10—C11—C12166.0 (3)
C8—C7—C6—C10.5 (4)N2—N3—C18—C170.0 (4)
O1—C7—C6—C53.3 (5)N2—N3—C18—C19179.9 (3)
C8—C7—C6—C5178.6 (3)N1—C17—C18—N30.3 (3)
N2—N1—C17—C180.5 (3)C22—C17—C18—N3178.6 (3)
C9—N1—C17—C18177.8 (3)N1—C17—C18—C19179.7 (3)
N2—N1—C17—C22178.2 (3)C22—C17—C18—C191.4 (4)
C9—N1—C17—C223.5 (5)N2—N1—C9—C894.9 (3)
C8—O2—C10—O311.8 (4)C17—N1—C9—C883.2 (4)
C8—O2—C10—C11167.4 (2)O2—C8—C9—N169.6 (3)
C2—C3—C4—C53.0 (5)C7—C8—C9—N1172.6 (2)
Br1—C3—C4—C5177.4 (2)N1—C17—C22—C21178.8 (3)
C17—N1—N2—N30.6 (3)C18—C17—C22—C210.3 (4)
C9—N1—N2—N3178.0 (3)C13—C14—C15—C160.2 (5)
N1—N2—N3—C180.4 (3)C23—C14—C15—C16179.7 (3)
C10—O2—C8—C9172.5 (2)C17—C22—C21—C200.7 (5)
C10—O2—C8—C769.6 (3)C15—C14—C13—C120.8 (5)
O1—C7—C8—O218.9 (4)C23—C14—C13—C12179.1 (3)
C6—C7—C8—O2163.0 (2)C12—C11—C16—C150.2 (5)
O1—C7—C8—C996.6 (3)C10—C11—C16—C15177.3 (3)
C6—C7—C8—C981.6 (3)C14—C15—C16—C110.1 (5)
C5—C6—C1—C22.4 (5)C14—C13—C12—C111.1 (5)
C7—C6—C1—C2179.6 (3)C16—C11—C12—C130.7 (5)
C3—C2—C1—C60.8 (5)C10—C11—C12—C13177.9 (3)
C3—C4—C5—C61.3 (5)N3—C18—C19—C20178.6 (3)
C1—C6—C5—C41.3 (4)C17—C18—C19—C201.4 (5)
C7—C6—C5—C4179.4 (3)C18—C19—C20—C210.4 (5)
O3—C10—C11—C16162.2 (3)C22—C21—C20—C190.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.932.863.596 (1)138
C2—H2A···O1ii0.932.563.292 (4)137
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H18BrN3O3
Mr464.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.995 (2), 9.038 (2), 16.909 (5)
α, β, γ (°)87.617 (5), 85.741 (5), 74.688 (5)
V3)1027.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.35 × 0.12 × 0.07
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.537, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
5629, 3814, 2852
Rint0.016
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.01
No. of reflections3814
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.932.8553.596 (1)137.50
C2—H2A···O1ii0.932.5553.292 (4)136.45
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This project was supported by the Natural Science Foundation of Shandong Province (grant Nos. Z2006B01 and Y2006B07).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o634–o636.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds