organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyrimidinium picrate

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, cDepartment of Physics, Mangalore University, Mangalagangotri 574 199, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 21 November 2007; accepted 23 November 2007; online 6 December 2007)

The geometric parameters of the title compound, C4H6N3+·C6H2N3O7, are in the usual ranges. While two nitro groups are almost coplanar with the aromatic picrate ring [dihedral angles 3.0 (2) and 4.4 (3)°], the third is significantly twisted out of this plane [dihedral angle 46.47 (8)°]. Anions and cations are connected via N—H⋯O hydrogen bonds. The mol­ecules crystallize in planes parallel to (1[\overline{2}]1).

Related literature

For related literature, see: Barraclough & Smith (1995[Barraclough, P. & Smith, S. (1995). J. Chem. Res. pp. 56-59.]); Etter et al. (1990[Etter, M. C., Adsmond, D. A. & Britton, D. (1990). Acta Cryst. C46, 933-934.]); Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224-o1225.]); Goswami et al. (2000[Goswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 477-478.]); Gueiffier et al. (1996[Gueiffier, A., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Kerbal, A., Essassi, E. M., Debouzy, J.-C., Witvrouw, M., Blache, Y., De Balzarini, J., Clercq, E. & Chapat, J.-P. (1996). J. Med. Chem. 39, 2856-2859.]); Katritzky et al. (2003[Katritzky, A. R., Xu, Y.-J. & Tu, H. (2003). J. Org. Chem. 68, 4935-3937.]); Rival et al. (1991[Rival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13-18.]); Sanfilippo et al. (1988[Sanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221-2227.]); Scheinbeim & Schempp (1976[Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607-609.]); Schlueter et al. (2006[Schlueter, J. A., Funk, R. J. & Geiser, U. (2006). Acta Cryst. E62, o339-o341.]); Tully et al. (1991[Tully, W. R., Gardner, C. R., Gillespie, R. J. & Westwood, R. (1991). J. Med. Chem. 34, 2060-2067.]); Yathirajan, Bindya et al. (2007a[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007a). Acta Cryst. E63, o2566.],b[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o2718.]); Yathirajan, Mayekar et al. (2007[Yathirajan, H. S., Mayekar, A. N., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o1395-o1397.]); Yathirajan, Narayana et al. (2007[Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o923-o924.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3+·C6H2N3O7

  • Mr = 324.22

  • Triclinic, [P \overline 1]

  • a = 5.8803 (7) Å

  • b = 8.0025 (10) Å

  • c = 13.8108 (17) Å

  • α = 88.021 (10)°

  • β = 82.322 (9)°

  • γ = 88.739 (10)°

  • V = 643.59 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 173 (2) K

  • 0.26 × 0.22 × 0.09 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: none

  • 8757 measured reflections

  • 2402 independent reflections

  • 1927 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.01

  • 2402 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N6i 0.87 (2) 2.09 (2) 2.958 (2) 177.0 (18)
N1—H1B⋯O11 0.91 (2) 1.97 (2) 2.7577 (19) 143.7 (18)
N1—H1B⋯O17 0.91 (2) 2.50 (2) 3.2488 (18) 140.0 (17)
N2—H2⋯O11 0.90 (2) 1.84 (2) 2.6501 (16) 148.6 (19)
N2—H2⋯O12 0.90 (2) 2.31 (2) 2.9792 (18) 131.6 (17)
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrimidine is a heterocyclic aromatic organic compound similar to benzene and pyridine, containing two nitrogen atoms at positions 1 and 3 of the six-member ring. A pyrimidine has many properties in common with pyridine, as the number of nitrogen atoms in the ring increases the ring π-electrons become less energetic and electrophilic aromatic substitution gets more difficult while nucleophilic aromatic substitution gets easier. Pyrimidines are important compounds in pharmaceutical chemistry as antiviral agents (Gueiffier et al., 1996), inotropic and β-blocking agents (Barraclough & Smith, 1995), antifungal agents (Rival et al. 1991), benzodiazepine receptor agonists (Tully et al.1991), and calcium channel blockers (Sanfilippo et al., 1988). The synthesis of imidazo[1,2-a]pyrimidines has been widely investigated and one of the most common strategies uses 2-aminopyrimidine as the starting material (Katritzky et al., 2003). The crystal structures of the following compounds have been previously reported, viz; 2-aminopyrimidine (Scheinbeim & Schempp, 1976), 1:1 hetero-assembly of 2-aminopyrimidine and (+)-camphoric acid (Goswami, et al., 2000), 2-aminopyrimidine-succinic acid (1:1) cocrystal (Etter et al., 1990), 5-aminopyrimidine (Schlueter et al., 2006), 5-bromopyrimidin-2(1H)-one (Yathirajan, Narayana, Ashalatha et al., 2007), ethyl 7-methyl-2-[4-(methylsulfanyl)benzylidene]-5-[4-(methylsulfanyl)phenyl]-3-oxo-2, 3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (Fischer et al., 2007), 2-(4-methylbenzoyloxymethyl)-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1 -yl)tetrahydrofuran-3-yl 4-methylbenzoate (Yathirajan, Mayekar, Sarojini et al., 2007), methyl (4-oxo-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-5-yl)acetate (Yathirajan, Bindya, Sarojini et al., 2007a), ethyl (4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-yl)acetate (Yathirajan, Bindya, Sarojini et al., 2007b). In continuation to our work on picrates of biologically important molecules, we have prepared a new picrate of 2-aminopyrimidine, and its crystal structure is reported.

Geometric parameters of the title compound are in the usual ranges. Whereas two nitrogroups are almost coplanar with the aromatic picrate ring [dihedral angles 3.0 (2)° and 4.4 (3)°] the third one is significantly twisted [dihedral angle 46.47 (8)°] out of this plane Anions and cations are connected via N—H···O hydrogen bonds. The molecules crystallize in planes parallel to (1 - 2 1).

Related literature top

For related literature, see: Barraclough & Smith (1995); Etter et al. (1990); Fischer et al. (2007); Goswami et al. (2000); Gueiffier et al. (1996); Katritzky et al. (2003); Rival et al. (1991); Sanfilippo et al. (1988); Scheinbeim & Schempp (1976); Schlueter et al. (2006); Tully et al. (1991); Yathirajan, Bindya et al. (2007a,b); Yathirajan, Mayekar et al. (2007); Yathirajan, Narayana et al. (2007).

Experimental top

2-Aminopyrimidine (0.95 g, 0.01 mol) was dissolved in 20 ml of ethanol. Picric acid (2.29 g, 0.01 mol) was dissolved in 10 ml of water. Both the solutions were mixed and to this, 5 ml of 5 M HCl was added and stirred for few minutes. The formed complex was filtered, dried and recrystallized from ethanol (m.p.: 413–415 K). Composition: Found (calculated): C 37.01(37.05), H 2.46(2.49), N 25.87% (25.92%).

Refinement top

H atoms were found in a difference map, but those bonded to C were geometrically positioned and refined with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C)] using a riding model with C—H = 0.95 Å. The amino H atoms were freely refined.

Structure description top

Pyrimidine is a heterocyclic aromatic organic compound similar to benzene and pyridine, containing two nitrogen atoms at positions 1 and 3 of the six-member ring. A pyrimidine has many properties in common with pyridine, as the number of nitrogen atoms in the ring increases the ring π-electrons become less energetic and electrophilic aromatic substitution gets more difficult while nucleophilic aromatic substitution gets easier. Pyrimidines are important compounds in pharmaceutical chemistry as antiviral agents (Gueiffier et al., 1996), inotropic and β-blocking agents (Barraclough & Smith, 1995), antifungal agents (Rival et al. 1991), benzodiazepine receptor agonists (Tully et al.1991), and calcium channel blockers (Sanfilippo et al., 1988). The synthesis of imidazo[1,2-a]pyrimidines has been widely investigated and one of the most common strategies uses 2-aminopyrimidine as the starting material (Katritzky et al., 2003). The crystal structures of the following compounds have been previously reported, viz; 2-aminopyrimidine (Scheinbeim & Schempp, 1976), 1:1 hetero-assembly of 2-aminopyrimidine and (+)-camphoric acid (Goswami, et al., 2000), 2-aminopyrimidine-succinic acid (1:1) cocrystal (Etter et al., 1990), 5-aminopyrimidine (Schlueter et al., 2006), 5-bromopyrimidin-2(1H)-one (Yathirajan, Narayana, Ashalatha et al., 2007), ethyl 7-methyl-2-[4-(methylsulfanyl)benzylidene]-5-[4-(methylsulfanyl)phenyl]-3-oxo-2, 3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (Fischer et al., 2007), 2-(4-methylbenzoyloxymethyl)-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1 -yl)tetrahydrofuran-3-yl 4-methylbenzoate (Yathirajan, Mayekar, Sarojini et al., 2007), methyl (4-oxo-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-5-yl)acetate (Yathirajan, Bindya, Sarojini et al., 2007a), ethyl (4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-yl)acetate (Yathirajan, Bindya, Sarojini et al., 2007b). In continuation to our work on picrates of biologically important molecules, we have prepared a new picrate of 2-aminopyrimidine, and its crystal structure is reported.

Geometric parameters of the title compound are in the usual ranges. Whereas two nitrogroups are almost coplanar with the aromatic picrate ring [dihedral angles 3.0 (2)° and 4.4 (3)°] the third one is significantly twisted [dihedral angle 46.47 (8)°] out of this plane Anions and cations are connected via N—H···O hydrogen bonds. The molecules crystallize in planes parallel to (1 - 2 1).

For related literature, see: Barraclough & Smith (1995); Etter et al. (1990); Fischer et al. (2007); Goswami et al. (2000); Gueiffier et al. (1996); Katritzky et al. (2003); Rival et al. (1991); Sanfilippo et al. (1988); Scheinbeim & Schempp (1976); Schlueter et al. (2006); Tully et al. (1991); Yathirajan, Bindya et al. (2007a,b); Yathirajan, Mayekar et al. (2007); Yathirajan, Narayana et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. The hydrogen bonds are shown as dashed lines.
2-Aminopyrimidinium picrate top
Crystal data top
C4H6N3+·C6H2N3O7Z = 2
Mr = 324.22F(000) = 332
Triclinic, P1Dx = 1.673 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8803 (7) ÅCell parameters from 8213 reflections
b = 8.0025 (10) Åθ = 3.5–25.8°
c = 13.8108 (17) ŵ = 0.15 mm1
α = 88.021 (10)°T = 173 K
β = 82.322 (9)°Plate, yellow
γ = 88.739 (10)°0.26 × 0.22 × 0.09 mm
V = 643.59 (14) Å3
Data collection top
Stoe IPDSII two-circle
diffractometer
1927 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.6°, θmin = 3.5°
ω scansh = 77
8757 measured reflectionsk = 99
2402 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0661P)2]
where P = (Fo2 + 2Fc2)/3
2402 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C4H6N3+·C6H2N3O7γ = 88.739 (10)°
Mr = 324.22V = 643.59 (14) Å3
Triclinic, P1Z = 2
a = 5.8803 (7) ÅMo Kα radiation
b = 8.0025 (10) ŵ = 0.15 mm1
c = 13.8108 (17) ÅT = 173 K
α = 88.021 (10)°0.26 × 0.22 × 0.09 mm
β = 82.322 (9)°
Data collection top
Stoe IPDSII two-circle
diffractometer
1927 reflections with I > 2σ(I)
8757 measured reflectionsRint = 0.042
2402 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.20 e Å3
2402 reflectionsΔρmin = 0.27 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7277 (3)0.40774 (18)0.07873 (11)0.0279 (3)
H1A0.799 (3)0.422 (2)0.0195 (16)0.033 (5)*
H1B0.600 (4)0.346 (3)0.0984 (15)0.039 (5)*
C10.8282 (3)0.47463 (18)0.14768 (11)0.0199 (3)
N20.7333 (2)0.45943 (15)0.24319 (9)0.0206 (3)
H20.604 (4)0.400 (3)0.2556 (15)0.039 (5)*
C30.8321 (3)0.52828 (18)0.31540 (11)0.0229 (3)
H30.76180.51830.38140.027*
C41.0334 (3)0.61214 (19)0.29261 (11)0.0241 (3)
H41.10760.66090.34150.029*
C51.1247 (3)0.62249 (18)0.19338 (12)0.0229 (3)
H51.26540.67910.17620.027*
N61.0274 (2)0.55855 (15)0.12224 (9)0.0228 (3)
C110.2209 (2)0.17922 (17)0.24085 (11)0.0194 (3)
C120.0995 (2)0.17467 (18)0.33896 (11)0.0196 (3)
C130.1064 (2)0.09207 (18)0.36532 (11)0.0201 (3)
H130.18090.09310.43070.024*
C140.2010 (2)0.00844 (17)0.29461 (11)0.0197 (3)
C150.0957 (3)0.00409 (18)0.19783 (11)0.0209 (3)
H150.16120.05600.15060.025*
C160.1043 (2)0.08881 (18)0.17311 (11)0.0197 (3)
N110.1908 (2)0.26127 (16)0.41664 (10)0.0238 (3)
N120.4142 (2)0.08122 (16)0.32163 (10)0.0250 (3)
N130.2118 (2)0.08312 (16)0.07100 (9)0.0226 (3)
O110.41007 (18)0.24842 (14)0.21384 (8)0.0276 (3)
O120.3751 (2)0.33240 (17)0.39985 (9)0.0371 (3)
O130.0778 (2)0.2607 (2)0.49744 (9)0.0534 (4)
O140.5137 (2)0.07121 (17)0.40512 (9)0.0396 (3)
O150.4859 (2)0.16322 (15)0.25825 (10)0.0366 (3)
O160.2234 (2)0.05385 (14)0.03198 (9)0.0323 (3)
O170.2799 (2)0.21390 (15)0.02874 (9)0.0334 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0296 (8)0.0360 (8)0.0185 (7)0.0172 (6)0.0015 (6)0.0027 (6)
C10.0220 (7)0.0191 (7)0.0183 (7)0.0042 (5)0.0013 (6)0.0009 (6)
N20.0207 (6)0.0211 (6)0.0201 (7)0.0059 (5)0.0014 (5)0.0018 (5)
C30.0273 (8)0.0228 (7)0.0186 (8)0.0021 (6)0.0026 (6)0.0037 (6)
C40.0275 (8)0.0234 (7)0.0227 (8)0.0042 (6)0.0063 (6)0.0054 (6)
C50.0226 (7)0.0211 (7)0.0254 (8)0.0073 (6)0.0034 (6)0.0035 (6)
N60.0244 (7)0.0235 (6)0.0206 (7)0.0087 (5)0.0015 (5)0.0031 (5)
C110.0190 (7)0.0181 (7)0.0215 (8)0.0028 (5)0.0030 (6)0.0020 (6)
C120.0205 (7)0.0205 (7)0.0187 (8)0.0034 (6)0.0049 (6)0.0030 (6)
C130.0200 (7)0.0199 (7)0.0199 (8)0.0011 (5)0.0007 (6)0.0001 (6)
C140.0158 (7)0.0179 (7)0.0255 (8)0.0042 (5)0.0022 (6)0.0012 (6)
C150.0221 (7)0.0193 (7)0.0226 (8)0.0019 (5)0.0063 (6)0.0048 (6)
C160.0208 (7)0.0208 (7)0.0176 (8)0.0014 (6)0.0025 (6)0.0018 (6)
N110.0244 (7)0.0276 (7)0.0196 (7)0.0063 (5)0.0023 (5)0.0039 (5)
N120.0193 (6)0.0241 (6)0.0316 (8)0.0048 (5)0.0031 (5)0.0008 (6)
N130.0212 (6)0.0270 (7)0.0201 (7)0.0026 (5)0.0035 (5)0.0052 (5)
O110.0226 (6)0.0368 (6)0.0233 (6)0.0141 (5)0.0006 (4)0.0050 (5)
O120.0342 (7)0.0518 (8)0.0267 (6)0.0260 (6)0.0030 (5)0.0070 (5)
O130.0449 (8)0.0925 (12)0.0221 (7)0.0335 (7)0.0095 (6)0.0245 (7)
O140.0298 (7)0.0545 (8)0.0322 (7)0.0175 (6)0.0075 (5)0.0038 (6)
O150.0306 (6)0.0386 (7)0.0425 (8)0.0170 (5)0.0067 (5)0.0107 (6)
O160.0375 (7)0.0321 (6)0.0272 (6)0.0035 (5)0.0006 (5)0.0137 (5)
O170.0422 (7)0.0339 (6)0.0227 (6)0.0089 (5)0.0017 (5)0.0014 (5)
Geometric parameters (Å, º) top
N1—C11.320 (2)C12—C131.392 (2)
N1—H1A0.87 (2)C12—N111.4631 (19)
N1—H1B0.91 (2)C13—C141.385 (2)
C1—N61.3622 (19)C13—H130.9500
C1—N21.3643 (19)C14—C151.397 (2)
N2—C31.3572 (19)C14—N121.4568 (18)
N2—H20.90 (2)C15—C161.368 (2)
C3—C41.368 (2)C15—H150.9500
C3—H30.9500C16—N131.4682 (19)
C4—C51.404 (2)N11—O131.2202 (18)
C4—H40.9500N11—O121.2262 (17)
C5—N61.324 (2)N12—O141.2258 (18)
C5—H50.9500N12—O151.2349 (17)
C11—O111.2588 (18)N13—O171.2289 (17)
C11—C121.444 (2)N13—O161.2345 (17)
C11—C161.452 (2)
C1—N1—H1A115.1 (13)C13—C12—N11116.45 (13)
C1—N1—H1B117.1 (13)C11—C12—N11120.10 (12)
H1A—N1—H1B127.5 (19)C14—C13—C12118.89 (14)
N1—C1—N6119.19 (14)C14—C13—H13120.6
N1—C1—N2120.24 (13)C12—C13—H13120.6
N6—C1—N2120.57 (13)C13—C14—C15122.04 (13)
C3—N2—C1121.42 (13)C13—C14—N12119.44 (14)
C3—N2—H2122.1 (13)C15—C14—N12118.50 (13)
C1—N2—H2116.5 (13)C16—C15—C14118.09 (13)
N2—C3—C4119.58 (14)C16—C15—H15121.0
N2—C3—H3120.2C14—C15—H15121.0
C4—C3—H3120.2C15—C16—C11124.88 (14)
C3—C4—C5116.62 (14)C15—C16—N13117.24 (13)
C3—C4—H4121.7C11—C16—N13117.85 (12)
C5—C4—H4121.7O13—N11—O12121.68 (13)
N6—C5—C4124.25 (14)O13—N11—C12118.02 (12)
N6—C5—H5117.9O12—N11—C12120.30 (13)
C4—C5—H5117.9O14—N12—O15123.36 (13)
C5—N6—C1117.53 (13)O14—N12—C14118.93 (13)
O11—C11—C12125.89 (13)O15—N12—C14117.70 (13)
O11—C11—C16121.46 (13)O17—N13—O16123.85 (13)
C12—C11—C16112.63 (13)O17—N13—C16118.75 (12)
C13—C12—C11123.45 (13)O16—N13—C16117.38 (12)
N1—C1—N2—C3179.40 (14)C14—C15—C16—C112.1 (2)
N6—C1—N2—C30.7 (2)C14—C15—C16—N13179.82 (13)
C1—N2—C3—C41.3 (2)O11—C11—C16—C15176.85 (14)
N2—C3—C4—C50.6 (2)C12—C11—C16—C151.5 (2)
C3—C4—C5—N60.7 (2)O11—C11—C16—N131.2 (2)
C4—C5—N6—C11.3 (2)C12—C11—C16—N13179.53 (12)
N1—C1—N6—C5179.32 (15)C13—C12—N11—O132.7 (2)
N2—C1—N6—C50.6 (2)C11—C12—N11—O13176.73 (15)
O11—C11—C12—C13178.11 (14)C13—C12—N11—O12177.68 (14)
C16—C11—C12—C130.2 (2)C11—C12—N11—O122.9 (2)
O11—C11—C12—N112.5 (2)C13—C14—N12—O144.9 (2)
C16—C11—C12—N11179.19 (12)C15—C14—N12—O14176.38 (14)
C11—C12—C13—C140.4 (2)C13—C14—N12—O15175.46 (14)
N11—C12—C13—C14179.81 (13)C15—C14—N12—O153.2 (2)
C12—C13—C14—C150.2 (2)C15—C16—N13—O17133.79 (15)
C12—C13—C14—N12178.82 (13)C11—C16—N13—O1748.03 (19)
C13—C14—C15—C161.4 (2)C15—C16—N13—O1644.61 (19)
N12—C14—C15—C16179.93 (13)C11—C16—N13—O16133.57 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N6i0.87 (2)2.09 (2)2.958 (2)177.0 (18)
N1—H1B···O110.91 (2)1.97 (2)2.7577 (19)143.7 (18)
N1—H1B···O170.91 (2)2.50 (2)3.2488 (18)140.0 (17)
N2—H2···O110.90 (2)1.84 (2)2.6501 (16)148.6 (19)
N2—H2···O120.90 (2)2.31 (2)2.9792 (18)131.6 (17)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC4H6N3+·C6H2N3O7
Mr324.22
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.8803 (7), 8.0025 (10), 13.8108 (17)
α, β, γ (°)88.021 (10), 82.322 (9), 88.739 (10)
V3)643.59 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.26 × 0.22 × 0.09
Data collection
DiffractometerStoe IPDSII two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8757, 2402, 1927
Rint0.042
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.01
No. of reflections2402
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N6i0.87 (2)2.09 (2)2.958 (2)177.0 (18)
N1—H1B···O110.91 (2)1.97 (2)2.7577 (19)143.7 (18)
N1—H1B···O170.91 (2)2.50 (2)3.2488 (18)140.0 (17)
N2—H2···O110.90 (2)1.84 (2)2.6501 (16)148.6 (19)
N2—H2···O120.90 (2)2.31 (2)2.9792 (18)131.6 (17)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

BN thanks Mangalore University for the use of research facilities.

References

First citationBarraclough, P. & Smith, S. (1995). J. Chem. Res. pp. 56–59.  Google Scholar
First citationEtter, M. C., Adsmond, D. A. & Britton, D. (1990). Acta Cryst. C46, 933–934.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224–o1225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 477–478.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGueiffier, A., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Kerbal, A., Essassi, E. M., Debouzy, J.-C., Witvrouw, M., Blache, Y., De Balzarini, J., Clercq, E. & Chapat, J.-P. (1996). J. Med. Chem. 39, 2856–2859.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKatritzky, A. R., Xu, Y.-J. & Tu, H. (2003). J. Org. Chem. 68, 4935–3937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13–18.  CrossRef CAS Web of Science Google Scholar
First citationSanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchlueter, J. A., Funk, R. J. & Geiser, U. (2006). Acta Cryst. E62, o339–o341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTully, W. R., Gardner, C. R., Gillespie, R. J. & Westwood, R. (1991). J. Med. Chem. 34, 2060–2067.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007a). Acta Cryst. E63, o2566.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o2718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Mayekar, A. N., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o1395–o1397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o923–o924.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds