organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Amino-5-thioxo-4,5-di­hydro-1H-1,2,4-triazol-3-yl)pyridinium chloride

aCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China, and bWeifang Medical University, Weifang 261042, People's Republic of China
*Correspondence e-mail: tangxx@ouc.edu.cn

(Received 22 November 2007; accepted 24 November 2007; online 6 December 2007)

In the title compound, C7H8N5S+·Cl, the dihedral angle formed by the pyridine ring with the triazole ring is 10.0 (1)°. There are weak inter­molecular hydrogen-bond inter­actions in the crystal structure, involving the NH and NH2 groups as donors, and the chloride anion, the S atom in the thio­ketone group and the unsubstituted ring N atom as acceptors.

Related literature

For related literature, see: Gilchrist (1998[Gilchrist, T. L. (1998). Heterocyclic Chemistry, 3rd ed. London: Addison-Wesley Longman Ltd.]); Jian et al. (2007[Jian, F.-F., Ren, X.-Y., Qin, Y.-Q. & Hu, L.-H. (2007). Acta Cryst. E63, o3056.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N5S+·Cl

  • Mr = 229.69

  • Monoclinic, P 21 /c

  • a = 7.2290 (14) Å

  • b = 12.922 (3) Å

  • c = 11.253 (4) Å

  • β = 114.90 (2)°

  • V = 953.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 6085 measured reflections

  • 2301 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.089

  • S = 0.87

  • 2301 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1 0.86 2.21 3.0715 (13) 175
N5—H5A⋯Cl1i 0.86 2.51 3.1740 (14) 135
N5—H5A⋯Cl1ii 0.86 2.55 3.1999 (15) 133
N1—H1A⋯S1iii 0.87 (2) 2.74 (2) 3.5381 (19) 153.4 (18)
N1—H1B⋯Cl1iv 0.88 (2) 2.51 (2) 3.300 (2) 149.5 (18)
N1—H1B⋯N4ii 0.88 (2) 2.69 (2) 3.1199 (19) 111.7 (16)
Symmetry codes: (i) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+1, -y-1, -z; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL/PC. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Five- and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist,1998). The title compound (I), is known to coordinate metal centres in a variety of coordination modes involving all combination of the S and N atoms. So it was synthesized and we report here its crystal structure.

In the crystal structure of (I) (Fig. 1), the dihedral angle formed by the pyridine ring (C1—C5/N5) and the plane of the (N2—N4/C6/C7) ring was 10.0 (1)°. The C? S bond length of 1.666 (3)Å is in agreement with that observed before (Jian et al., 2007). In the crystal structure, there are N—H···S and N—H···N and N—H···Cl hydrogen-bond interactions to stabilize the molecular packing (table 2).

Related literature top

For related literature, see: Gilchrist (1998); Jian et al. (2007).

Experimental top

A mixture of nicotinic acid hydrazide (0.02 mol), carbon disulfide (0.02 mol) and potassium hydroxide (0.02 mol) was stirred with ethanol (50 ml) at 293 K for 5 h, the yellow precipitate was formed, upon collection by filtration,the deposit was washed with ethanol and dried for one day in air.Then dissolved in water (100 ml), hydrazine hydrate was added at 353 K with stirring.then afford the title compound (2.4 g, yield 62%). Single crystals suitable for X-ray measurements were obtained by recrystallization from 10% HCl liquor at room temperature.

Refinement top

The H atoms of the amine group and H5B bonded to C5 were found from difference Fourier map and refined freely. The other H atoms were fixed geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93 Å, respectively, and with Uiso=1.2Ueq of the parent atoms.

Structure description top

Five- and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist,1998). The title compound (I), is known to coordinate metal centres in a variety of coordination modes involving all combination of the S and N atoms. So it was synthesized and we report here its crystal structure.

In the crystal structure of (I) (Fig. 1), the dihedral angle formed by the pyridine ring (C1—C5/N5) and the plane of the (N2—N4/C6/C7) ring was 10.0 (1)°. The C? S bond length of 1.666 (3)Å is in agreement with that observed before (Jian et al., 2007). In the crystal structure, there are N—H···S and N—H···N and N—H···Cl hydrogen-bond interactions to stabilize the molecular packing (table 2).

For related literature, see: Gilchrist (1998); Jian et al. (2007).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL/PC (Sheldrick, 1997b); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
3-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyridinium chloride top
Crystal data top
C7H8N5S+·ClF(000) = 472
Mr = 229.69Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2290 (14) ÅCell parameters from 25 reflections
b = 12.922 (3) Åθ = 4–14°
c = 11.253 (4) ŵ = 0.59 mm1
β = 114.90 (2)°T = 293 K
V = 953.5 (4) Å3Black, yellow
Z = 40.20 × 0.15 × 0.11 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 28.3°, θmin = 2.5°
Graphite monochromatorh = 69
ω scansk = 1716
6085 measured reflectionsl = 1414
2301 independent reflections3 standard reflections every 100 reflections
2071 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.3755P]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
2301 reflectionsΔρmax = 0.33 e Å3
140 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C7H8N5S+·ClV = 953.5 (4) Å3
Mr = 229.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2290 (14) ŵ = 0.59 mm1
b = 12.922 (3) ÅT = 293 K
c = 11.253 (4) Å0.20 × 0.15 × 0.11 mm
β = 114.90 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
6085 measured reflections3 standard reflections every 100 reflections
2301 independent reflections intensity decay: none
2071 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.33 e Å3
2301 reflectionsΔρmin = 0.25 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21801 (6)0.06699 (3)0.00811 (4)0.04580 (14)
S10.27272 (7)0.39138 (3)0.07565 (4)0.04812 (14)
N10.5768 (2)0.45060 (10)0.20638 (17)0.0452 (3)
N20.52602 (18)0.34784 (9)0.19273 (11)0.0338 (3)
N30.41277 (19)0.21399 (9)0.13746 (12)0.0389 (3)
H3A0.35070.17390.10510.047*
N40.5307 (2)0.17818 (9)0.19636 (12)0.0388 (3)
N50.9097 (2)0.33194 (10)0.40767 (12)0.0410 (3)
H5A0.93910.38630.44040.049*
C10.9917 (2)0.24258 (13)0.41851 (16)0.0437 (3)
H1C1.07850.23930.46030.052*
C20.9465 (3)0.15530 (13)0.36718 (18)0.0497 (4)
H2A1.00100.09180.37470.060*
C30.8196 (2)0.16212 (12)0.30438 (16)0.0431 (3)
H3B0.78960.10320.26850.052*
C40.7363 (2)0.25703 (10)0.29446 (13)0.0332 (3)
C50.7842 (2)0.34241 (11)0.34905 (14)0.0386 (3)
C60.5992 (2)0.26159 (10)0.22922 (13)0.0326 (3)
C70.4025 (2)0.31668 (11)0.13467 (13)0.0346 (3)
H5B0.738 (3)0.4045 (15)0.3468 (18)0.045 (5)*
H1A0.569 (3)0.4851 (18)0.142 (2)0.061 (6)*
H1B0.476 (3)0.4713 (16)0.279 (2)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0618 (3)0.0326 (2)0.0622 (3)0.00315 (15)0.0448 (2)0.00064 (14)
S10.0556 (3)0.0435 (2)0.0606 (3)0.00530 (16)0.0394 (2)0.00822 (16)
N10.0599 (8)0.0267 (6)0.0637 (9)0.0062 (6)0.0405 (8)0.0028 (6)
N20.0410 (6)0.0273 (5)0.0391 (6)0.0041 (4)0.0227 (5)0.0006 (4)
N30.0475 (7)0.0340 (6)0.0448 (6)0.0052 (5)0.0289 (6)0.0025 (5)
N40.0492 (7)0.0314 (6)0.0448 (7)0.0030 (5)0.0285 (6)0.0026 (5)
N50.0513 (7)0.0378 (6)0.0430 (7)0.0076 (5)0.0288 (6)0.0008 (5)
C10.0441 (8)0.0484 (8)0.0478 (8)0.0044 (6)0.0284 (7)0.0042 (6)
C20.0540 (9)0.0391 (8)0.0680 (10)0.0043 (7)0.0372 (8)0.0002 (7)
C30.0486 (8)0.0328 (7)0.0561 (9)0.0003 (6)0.0300 (7)0.0056 (6)
C40.0365 (6)0.0324 (6)0.0334 (6)0.0031 (5)0.0173 (5)0.0008 (5)
C50.0513 (8)0.0306 (7)0.0423 (7)0.0020 (6)0.0280 (6)0.0007 (5)
C60.0382 (7)0.0294 (6)0.0329 (6)0.0021 (5)0.0176 (5)0.0016 (5)
C70.0379 (7)0.0353 (7)0.0342 (6)0.0054 (5)0.0185 (5)0.0009 (5)
Geometric parameters (Å, º) top
S1—C71.6667 (15)N5—C51.3339 (19)
N1—N21.4032 (16)N5—H5A0.8600
N1—H1A0.87 (2)C1—C21.368 (2)
N1—H1B0.88 (2)C1—H1C0.9300
N2—C61.3686 (17)C2—C31.376 (2)
N2—C71.3703 (17)C2—H2A0.9300
N3—C71.3302 (19)C3—C41.391 (2)
N3—N41.3625 (17)C3—H3B0.9300
N3—H3A0.8600C4—C51.3762 (19)
N4—C61.3029 (17)C4—C61.4622 (19)
N5—C11.327 (2)C5—H5B0.874 (19)
N2—N1—H1A106.4 (15)C1—C2—H2A120.2
N2—N1—H1B103.6 (14)C3—C2—H2A120.2
H1A—N1—H1B107 (2)C2—C3—C4120.16 (14)
C6—N2—C7108.38 (11)C2—C3—H3B119.9
C6—N2—N1125.86 (12)C4—C3—H3B119.9
C7—N2—N1125.69 (12)C5—C4—C3118.15 (13)
C7—N3—N4113.76 (11)C5—C4—C6122.90 (13)
C7—N3—H3A123.1C3—C4—C6118.94 (12)
N4—N3—H3A123.1N5—C5—C4119.39 (14)
C6—N4—N3104.32 (12)N5—C5—H5B117.2 (13)
C1—N5—C5123.85 (13)C4—C5—H5B123.4 (13)
C1—N5—H5A118.1N4—C6—N2110.35 (12)
C5—N5—H5A118.1N4—C6—C4121.86 (12)
N5—C1—C2118.87 (14)N2—C6—C4127.79 (12)
N5—C1—H1C120.6N3—C7—N2103.17 (12)
C2—C1—H1C120.6N3—C7—S1129.32 (11)
C1—C2—C3119.57 (15)N2—C7—S1127.51 (11)
C7—N3—N4—C61.15 (17)C7—N2—C6—C4180.00 (13)
C5—N5—C1—C20.1 (2)N1—N2—C6—C42.9 (2)
N5—C1—C2—C30.8 (3)C5—C4—C6—N4169.13 (14)
C1—C2—C3—C40.7 (3)C3—C4—C6—N49.6 (2)
C2—C3—C4—C50.1 (2)C5—C4—C6—N211.6 (2)
C2—C3—C4—C6178.92 (15)C3—C4—C6—N2169.64 (14)
C1—N5—C5—C40.8 (2)N4—N3—C7—N21.52 (16)
C3—C4—C5—N50.8 (2)N4—N3—C7—S1178.52 (11)
C6—C4—C5—N5179.58 (13)C6—N2—C7—N31.28 (15)
N3—N4—C6—N20.25 (15)N1—N2—C7—N3175.79 (14)
N3—N4—C6—C4179.13 (12)C6—N2—C7—S1178.76 (11)
C7—N2—C6—N40.67 (16)N1—N2—C7—S14.2 (2)
N1—N2—C6—N4176.40 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.862.213.0715 (13)175
N5—H5A···Cl1i0.862.513.1740 (14)135
N5—H5A···Cl1ii0.862.553.1999 (15)133
N1—H1A···S1iii0.87 (2)2.74 (2)3.5381 (19)153.4 (18)
N1—H1B···Cl1iv0.88 (2)2.51 (2)3.300 (2)149.5 (18)
N1—H1B···N4ii0.88 (2)2.69 (2)3.1199 (19)111.7 (16)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y1/2, z1/2; (iii) x+1, y1, z; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H8N5S+·Cl
Mr229.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2290 (14), 12.922 (3), 11.253 (4)
β (°) 114.90 (2)
V3)953.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6085, 2301, 2071
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.089, 0.87
No. of reflections2301
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL/PC (Sheldrick, 1997b), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.862.213.0715 (13)174.9
N5—H5A···Cl1i0.862.513.1740 (14)134.5
N5—H5A···Cl1ii0.862.553.1999 (15)132.6
N1—H1A···S1iii0.87 (2)2.74 (2)3.5381 (19)153.4 (18)
N1—H1B···Cl1iv0.88 (2)2.51 (2)3.300 (2)149.5 (18)
N1—H1B···N4ii0.88 (2)2.69 (2)3.1199 (19)111.7 (16)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y1/2, z1/2; (iii) x+1, y1, z; (iv) x, y1/2, z1/2.
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilchrist, T. L. (1998). Heterocyclic Chemistry, 3rd ed. London: Addison-Wesley Longman Ltd.  Google Scholar
First citationJian, F.-F., Ren, X.-Y., Qin, Y.-Q. & Hu, L.-H. (2007). Acta Cryst. E63, o3056.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL/PC. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds