organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetyl­pyrazine 4-methyl­thio­semi­carbazone

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475001, People's Republic of China
*Correspondence e-mail: limingxue@henu.edu.cn

(Received 22 November 2007; accepted 24 November 2007; online 6 December 2007)

The title compound, C8H11N5S, has been prepared by the reaction of 2-acetyl­pyrazine with 4-methyl-3-thio­semi­carbazide. It exists in the thione form and adopts the E configuration. The mol­ecules are connected by the inter­molecular N—H⋯N and N—H⋯S inter­actions.

Related literature

For related literature, see: Hong et al. (2004[Hong, W. S., Wu, C. Y., Lee, C. S., Hwang, W. S. & Chiang, M. Y. (2004). J. Organomet. Chem. 689, 277-285.]); Latheef et al. (2006[Latheef, L., Manoj, E. & Prathapachandra Kurup, M. R. (2006). Acta Cryst. C62, o16-o18.]); Liberta & West (1992[Liberta, A. E. & West, D. X. (1992). Biometals, 5, 121-126.]); Mendes et al. (2001[Mendes, I. C., Teixeira, L. R., Lima, R., Beraldo, H., Speziali, N. L. & West, D. X. (2001). J. Mol. Struct. 559, 355-360.]); Padhye & Kauffman (1985[Padhye, S. B. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N5S

  • Mr = 209.28

  • Monoclinic, P 21 /c

  • a = 9.870 (8) Å

  • b = 5.976 (5) Å

  • c = 17.517 (14) Å

  • β = 91.251 (9)°

  • V = 1032.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 9944 measured reflections

  • 1919 independent reflections

  • 1595 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.05

  • 1919 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯N4i 0.86 2.42 3.137 (3) 141
N2—H2A⋯S1ii 0.86 2.77 3.588 (3) 161
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazone and its derivatives have attracted interest in recent years due to their beneficial biological applications (Padhye & Kauffman, 1985). The presence of alkyl groups at the terminal N(4) position can increase the biological activity (Liberta & West, 1992). So we report here the crystal structure of N(4)-methyl thiosemicarbazones derived from 2-acetylpyrazine.

The geometry of the title compound (I) is well planar (Fig. 1). The molecular exists in the E conformation about the C3—N3 bond as confirmed by the C5—C3—N3—N2 torsion angle of 179.6 °. The C—S bond distance of 1.679 (2) Å, which is much short than C—S single bond (Latheef et al., 2006), shows that the title compound adopts the thione form. The bond length of C3—N3 is 1.283 (2) Å, which is within the range of typical bond length of C?N double bond. The bond length of N2—N3 is 1.368 (2) Å, accepted as typical for a single N—N bond, and in accordance with those of other thiosemicarbazone (Mendes et al., 2001; Hong et al., 2004).

In the crystal packing, the molecules are connected through an extended network of intermolecular hydrogen bonds involving the nitrogen atoms N1, N2, N4 and sulfur atom S1.

Related literature top

For related literature, see: Hong et al. (2004); Latheef et al. (2006); Liberta & West (1992); Mendes et al. (2001); Padhye & Kauffman (1985).

Experimental top

All reagents were commercially available and of analytical grade. 2-Acetylpyrazine (0.24 g, 2 mmol) and 4-methyl-3-thiosemicarbazide (0.21 g, 2 mmol) were mixed in ethanol (30 ml). Eight drops of acetic acid were added and the solution was refluxed for 4 h. Crystals of (I) suitable for X-ray diffraction analysis were obtained from the filtrate by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl groups.

Structure description top

Thiosemicarbazone and its derivatives have attracted interest in recent years due to their beneficial biological applications (Padhye & Kauffman, 1985). The presence of alkyl groups at the terminal N(4) position can increase the biological activity (Liberta & West, 1992). So we report here the crystal structure of N(4)-methyl thiosemicarbazones derived from 2-acetylpyrazine.

The geometry of the title compound (I) is well planar (Fig. 1). The molecular exists in the E conformation about the C3—N3 bond as confirmed by the C5—C3—N3—N2 torsion angle of 179.6 °. The C—S bond distance of 1.679 (2) Å, which is much short than C—S single bond (Latheef et al., 2006), shows that the title compound adopts the thione form. The bond length of C3—N3 is 1.283 (2) Å, which is within the range of typical bond length of C?N double bond. The bond length of N2—N3 is 1.368 (2) Å, accepted as typical for a single N—N bond, and in accordance with those of other thiosemicarbazone (Mendes et al., 2001; Hong et al., 2004).

In the crystal packing, the molecules are connected through an extended network of intermolecular hydrogen bonds involving the nitrogen atoms N1, N2, N4 and sulfur atom S1.

For related literature, see: Hong et al. (2004); Latheef et al. (2006); Liberta & West (1992); Mendes et al. (2001); Padhye & Kauffman (1985).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing atom displacement ellipsoids drawn at the 50% probability level.
2-Acetylpyrazine 4-methylthiosemicarbazone top
Crystal data top
C8H11N5SF(000) = 440
Mr = 209.28Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3140 reflections
a = 9.870 (8) Åθ = 2.3–26.0°
b = 5.976 (5) ŵ = 0.28 mm1
c = 17.517 (14) ÅT = 296 K
β = 91.251 (9)°Block, colourless
V = 1032.8 (14) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1595 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
0.3° wide ω scansh = 1111
9944 measured reflectionsk = 77
1919 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.2669P]
where P = (Fo2 + 2Fc2)/3
1919 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H11N5SV = 1032.8 (14) Å3
Mr = 209.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.870 (8) ŵ = 0.28 mm1
b = 5.976 (5) ÅT = 296 K
c = 17.517 (14) Å0.20 × 0.18 × 0.16 mm
β = 91.251 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1595 reflections with I > 2σ(I)
9944 measured reflectionsRint = 0.028
1919 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
1919 reflectionsΔρmin = 0.19 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53153 (5)0.14546 (9)0.39197 (3)0.0578 (2)
C10.3602 (2)0.1901 (4)0.24436 (12)0.0638 (6)
H1A0.29450.18580.20310.096*
H1B0.44830.15670.22520.096*
H1C0.36100.33650.26690.096*
C20.39403 (17)0.0043 (3)0.36625 (9)0.0403 (4)
C30.20657 (16)0.4638 (3)0.43186 (9)0.0381 (4)
C40.27288 (19)0.5396 (3)0.50496 (10)0.0517 (5)
H4A0.36900.51660.50260.078*
H4B0.25470.69580.51250.078*
H4C0.23760.45520.54670.078*
C50.08835 (16)0.5912 (3)0.40117 (9)0.0373 (4)
C60.01556 (17)0.5220 (3)0.33622 (9)0.0457 (4)
H6A0.04010.38870.31290.055*
C70.1190 (2)0.8254 (3)0.34285 (11)0.0549 (5)
H7A0.19010.91290.32400.066*
C80.0499 (2)0.8930 (4)0.40744 (12)0.0626 (6)
H8A0.07641.02440.43130.075*
N10.32507 (15)0.0258 (3)0.30149 (8)0.0480 (4)
H1D0.25520.05700.29280.058*
N20.35053 (14)0.1701 (2)0.41299 (8)0.0453 (4)
H2A0.39070.19410.45630.054*
N30.24209 (14)0.2982 (2)0.39019 (8)0.0416 (4)
N40.08728 (15)0.6382 (3)0.30628 (9)0.0517 (4)
N50.05389 (16)0.7775 (3)0.43754 (9)0.0536 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0550 (3)0.0710 (4)0.0472 (3)0.0316 (3)0.0039 (2)0.0010 (2)
C10.0728 (14)0.0604 (13)0.0579 (12)0.0125 (11)0.0085 (10)0.0176 (10)
C20.0397 (9)0.0426 (10)0.0385 (9)0.0058 (7)0.0000 (7)0.0041 (7)
C30.0383 (9)0.0405 (9)0.0352 (8)0.0057 (7)0.0026 (7)0.0030 (7)
C40.0545 (11)0.0562 (12)0.0439 (10)0.0144 (9)0.0136 (8)0.0051 (9)
C50.0384 (9)0.0394 (9)0.0339 (8)0.0053 (7)0.0001 (7)0.0016 (7)
C60.0470 (10)0.0499 (11)0.0397 (9)0.0115 (8)0.0073 (8)0.0044 (8)
C70.0489 (11)0.0626 (13)0.0532 (11)0.0211 (9)0.0035 (9)0.0084 (10)
C80.0685 (14)0.0562 (13)0.0627 (13)0.0295 (11)0.0104 (10)0.0107 (10)
N10.0479 (9)0.0490 (9)0.0466 (9)0.0134 (7)0.0081 (7)0.0070 (7)
N20.0457 (8)0.0504 (9)0.0393 (8)0.0180 (7)0.0099 (6)0.0051 (7)
N30.0392 (8)0.0452 (8)0.0402 (8)0.0113 (6)0.0050 (6)0.0007 (6)
N40.0468 (9)0.0641 (11)0.0435 (8)0.0125 (8)0.0099 (7)0.0018 (8)
N50.0572 (10)0.0522 (9)0.0509 (9)0.0197 (8)0.0109 (7)0.0117 (8)
Geometric parameters (Å, º) top
S1—C21.6789 (19)C5—N51.331 (2)
C1—N11.449 (2)C5—C61.395 (2)
C1—H1A0.9600C6—N41.328 (2)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—N41.330 (3)
C2—N11.322 (2)C7—C81.369 (3)
C2—N21.361 (2)C7—H7A0.9300
C3—N31.283 (2)C8—N51.334 (2)
C3—C51.484 (2)C8—H8A0.9300
C3—C41.496 (2)N1—H1D0.8600
C4—H4A0.9600N2—N31.368 (2)
C4—H4B0.9600N2—H2A0.8600
C4—H4C0.9600
N1—C1—H1A109.5C6—C5—C3122.00 (15)
N1—C1—H1B109.5N4—C6—C5122.84 (17)
H1A—C1—H1B109.5N4—C6—H6A118.6
N1—C1—H1C109.5C5—C6—H6A118.6
H1A—C1—H1C109.5N4—C7—C8121.85 (17)
H1B—C1—H1C109.5N4—C7—H7A119.1
N1—C2—N2116.88 (15)C8—C7—H7A119.1
N1—C2—S1123.73 (14)N5—C8—C7122.59 (18)
N2—C2—S1119.38 (13)N5—C8—H8A118.7
N3—C3—C5114.34 (14)C7—C8—H8A118.7
N3—C3—C4126.94 (15)C2—N1—C1123.93 (16)
C5—C3—C4118.71 (15)C2—N1—H1D118.0
C3—C4—H4A109.5C1—N1—H1D118.0
C3—C4—H4B109.5C2—N2—N3119.13 (14)
H4A—C4—H4B109.5C2—N2—H2A120.4
C3—C4—H4C109.5N3—N2—H2A120.4
H4A—C4—H4C109.5C3—N3—N2119.15 (14)
H4B—C4—H4C109.5C6—N4—C7115.83 (16)
N5—C5—C6120.41 (15)C5—N5—C8116.45 (16)
N5—C5—C3117.58 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···N4i0.862.423.137 (3)141
N2—H2A···S1ii0.862.773.588 (3)161
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H11N5S
Mr209.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.870 (8), 5.976 (5), 17.517 (14)
β (°) 91.251 (9)
V3)1032.8 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9944, 1919, 1595
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.05
No. of reflections1919
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···N4i0.862.423.137 (3)140.9
N2—H2A···S1ii0.862.773.588 (3)160.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This work was financially supported by the Foundation of the Education Department of Henan Province (No. 2007150012)

References

First citationBruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHong, W. S., Wu, C. Y., Lee, C. S., Hwang, W. S. & Chiang, M. Y. (2004). J. Organomet. Chem. 689, 277–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationLatheef, L., Manoj, E. & Prathapachandra Kurup, M. R. (2006). Acta Cryst. C62, o16–o18.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiberta, A. E. & West, D. X. (1992). Biometals, 5, 121–126.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMendes, I. C., Teixeira, L. R., Lima, R., Beraldo, H., Speziali, N. L. & West, D. X. (2001). J. Mol. Struct. 559, 355–360.  Web of Science CSD CrossRef CAS Google Scholar
First citationPadhye, S. B. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds