organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1S,3S)-3-Acetyl-2,2-di­methyl­cyclo­butyl]-N-(m-tol­yl)acetamide

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China, and bCollege of Forestry, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
*Correspondence e-mail: zqsong@public1.ptt.js.cn

(Received 4 December 2007; accepted 11 December 2007; online 18 December 2007)

The title compound, C17H23NO2, contains two chiral centres and was synthesized from 2-(3-acetyl-2,2-dimethyl­cyclo­butyl)acetic acid and m-toluidine. The cyclobutane ring is not flat but flexed as though folded from the dimethyl-substituted C atom to the unsubstituted C atom, with a dihedral angle of 25.9°. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Mitra & Khanra (1977[Mitra, R. B. & Khanra, A. S. (1977). Synth. Commun. 7, 245-250.]); Yin et al. (2007[Yin, Y., Han, C., Song, Z. & Wang, Z. (2007). Acta Cryst. E63, o4048.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23NO2

  • Mr = 273.36

  • Orthorhombic, P b c a

  • a = 12.513 (3) Å

  • b = 9.5190 (19) Å

  • c = 26.844 (5) Å

  • V = 3197.4 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.951, Tmax = 0.975

  • 3150 measured reflections

  • 3120 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.170

  • S = 1.04

  • 3120 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.04 2.892 (4) 169
C12—H12A⋯O2 0.93 2.49 2.931 (5) 109
C13—H13A⋯O1ii 0.93 2.55 3.440 (5) 161
Symmetry codes: (i) [x+1, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Terpenes are convenient chiral precursors due to their availability and low cost, and among them, a-pinene (both enantiomers) and verbenone are prominent. For instance, pinene has been used as starting material for the production of some compounds of industrial interest (Mitra & Khanra, 1977). Chiral cyclobutane compound, pinonic acid, can be synthesized from a-pinene. Many derivatives of pinonic acid have interesting biological properties. So we synthesized several derivatives of pinonic acid. In our previous paper we have reported the crystal structure of 2-[(1S,3S)-3-acetyl-2,2-dimethylcyclobutyl]-N-(2,6-difluorophenyl) acetamide (Yin et al., 2007). Now we synthesized the title compound (I) and report here its crystal structure.

The molecular structure of (I) is shown in Fig. 1. A l l bond lengths and angles are normal. The crystal structure is stabilized by N—H···O and C—H···O hydrogen bonding interactions (Table 1).

Related literature top

For related literature, see: Mitra & Khanra (1977); Yin et al. (2007).

Experimental top

The title compound was synthesized from m-toluidine and 2-(3-acetyl-2,2-dimethylcyclobutyl) acetyl chloride at room temperature. The acetyl chloride was obtained using 2-(3-acetyl-2,2-dimethylcyclobutyl)acetic acid (pinonic acid), thionyl chloride as raw materials and dichloromethane as solvent. Pinonic acid (27 mmol) and thionyl chloride (32 mmol) were dissolved in dichloromethane (50 ml). The resulting mixture was refluxed for 8 h. After refluxing the solvent was distilled away under vacuum and the remainder was 2-(3-acetyl-2,2-dimethylcyclobutyl)acetyl chloride. The acetyl chloride reacted with m-toluidine (27 mmol) for 24 h using dichloromethane as solvent. After the reaction was complete the solvent was distilled away and the crude title compound was gained. The pure compound was obtained by crystallizing from a mixture of ethanol (40 ml) and water (40 ml). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were placed geometrically, with the C—H distances in the range 0.93–0.98 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq(H) of the carrier atom.

Structure description top

Terpenes are convenient chiral precursors due to their availability and low cost, and among them, a-pinene (both enantiomers) and verbenone are prominent. For instance, pinene has been used as starting material for the production of some compounds of industrial interest (Mitra & Khanra, 1977). Chiral cyclobutane compound, pinonic acid, can be synthesized from a-pinene. Many derivatives of pinonic acid have interesting biological properties. So we synthesized several derivatives of pinonic acid. In our previous paper we have reported the crystal structure of 2-[(1S,3S)-3-acetyl-2,2-dimethylcyclobutyl]-N-(2,6-difluorophenyl) acetamide (Yin et al., 2007). Now we synthesized the title compound (I) and report here its crystal structure.

The molecular structure of (I) is shown in Fig. 1. A l l bond lengths and angles are normal. The crystal structure is stabilized by N—H···O and C—H···O hydrogen bonding interactions (Table 1).

For related literature, see: Mitra & Khanra (1977); Yin et al. (2007).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the packing and N—H···O hydrogen bondings (dash lines) of the title compound.
2-[(1S,3S)-3-Acetyl-2,2-dimethylcyclobutyl]-N-(m- tolyl)acetamide top
Crystal data top
C17H23NO2Dx = 1.136 Mg m3
Mr = 273.36Melting point: 367 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 12.513 (3) Åθ = 8–13°
b = 9.5190 (19) ŵ = 0.07 mm1
c = 26.844 (5) ÅT = 293 K
V = 3197.4 (11) Å3Quadrate, colourless
Z = 80.40 × 0.20 × 0.20 mm
F(000) = 1184
Data collection top
Enraf–Nonius CAD-4
diffractometer
1385 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 26.0°, θmin = 1.5°
ω/2θ scansh = 015
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.951, Tmax = 0.975l = 032
3150 measured reflections3 standard reflections every 200 reflections
3120 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C17H23NO2V = 3197.4 (11) Å3
Mr = 273.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.513 (3) ŵ = 0.07 mm1
b = 9.5190 (19) ÅT = 293 K
c = 26.844 (5) Å0.40 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1385 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.951, Tmax = 0.9753 standard reflections every 200 reflections
3150 measured reflections intensity decay: none
3120 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
3120 reflectionsΔρmin = 0.14 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.7095 (2)0.0658 (3)0.68825 (10)0.0721 (8)
H0A0.72770.01710.69770.087*
O10.6178 (2)0.0407 (3)0.92753 (10)0.1064 (9)
C10.4701 (3)0.1175 (5)0.93668 (16)0.1272 (16)
H1A0.44140.04490.95760.191*
H1B0.42270.13330.90910.191*
H1C0.47740.20260.95560.191*
O20.7021 (2)0.2940 (2)0.71316 (9)0.0883 (8)
C20.5782 (3)0.0728 (4)0.91735 (14)0.0830 (11)
C30.6333 (3)0.1758 (3)0.88408 (12)0.0684 (9)
H3A0.62700.27080.89780.082*
C40.5977 (3)0.1749 (3)0.82785 (11)0.0643 (9)
C50.7192 (2)0.1983 (3)0.81526 (11)0.0642 (8)
H5A0.73310.29930.81280.077*
C60.7475 (3)0.1488 (4)0.86728 (11)0.0777 (10)
H6A0.76820.05070.86880.093*
H6B0.79990.20770.88380.093*
C70.5230 (3)0.2938 (4)0.81276 (14)0.1015 (13)
H7A0.45100.26980.82160.152*
H7B0.52740.30810.77740.152*
H7C0.54350.37840.82970.152*
C80.5565 (3)0.0333 (3)0.81108 (12)0.0782 (10)
H8A0.48240.02460.81970.117*
H8B0.59660.03970.82720.117*
H8C0.56450.02490.77560.117*
C90.7689 (3)0.1250 (3)0.77045 (12)0.0771 (10)
H9A0.84520.14270.77050.092*
H9B0.75840.02450.77380.092*
C100.7236 (3)0.1716 (3)0.72154 (12)0.0662 (9)
C110.6677 (3)0.0789 (3)0.63926 (13)0.0650 (9)
C120.5888 (3)0.1753 (3)0.62739 (16)0.0855 (11)
H12A0.56020.23530.65130.103*
C130.5545 (3)0.1783 (4)0.57870 (19)0.1012 (13)
H13A0.50330.24430.56980.121*
C140.5914 (3)0.0904 (4)0.54333 (16)0.0931 (12)
H14A0.56570.09780.51090.112*
C150.6686 (3)0.0127 (4)0.55487 (14)0.0801 (10)
C160.7049 (3)0.0140 (3)0.60417 (13)0.0723 (9)
H16A0.75590.08000.61350.087*
C170.7134 (3)0.1128 (5)0.51691 (14)0.1146 (14)
H17A0.67880.09770.48540.172*
H17B0.70110.20770.52760.172*
H17C0.78880.09710.51340.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.088 (2)0.0515 (15)0.077 (2)0.0067 (14)0.0022 (16)0.0046 (15)
O10.115 (2)0.099 (2)0.105 (2)0.0141 (18)0.0003 (17)0.0199 (17)
C10.085 (3)0.175 (4)0.122 (4)0.020 (3)0.026 (3)0.006 (3)
O20.124 (2)0.0526 (14)0.0881 (17)0.0010 (13)0.0038 (15)0.0082 (12)
C20.102 (3)0.079 (2)0.068 (2)0.015 (2)0.003 (2)0.007 (2)
C30.078 (2)0.0583 (18)0.069 (2)0.0117 (18)0.0023 (18)0.0043 (17)
C40.074 (2)0.0616 (19)0.057 (2)0.0020 (17)0.0052 (17)0.0061 (16)
C50.063 (2)0.0605 (19)0.070 (2)0.0078 (16)0.0058 (17)0.0026 (17)
C60.067 (2)0.092 (2)0.074 (2)0.0174 (18)0.0040 (19)0.006 (2)
C70.097 (3)0.098 (3)0.110 (3)0.025 (2)0.002 (2)0.015 (2)
C80.077 (2)0.081 (2)0.077 (2)0.0201 (19)0.0042 (19)0.0009 (19)
C90.080 (2)0.072 (2)0.079 (2)0.0042 (18)0.008 (2)0.0053 (19)
C100.078 (2)0.0522 (19)0.069 (2)0.0044 (18)0.0147 (18)0.0129 (19)
C110.067 (2)0.0499 (18)0.079 (2)0.0047 (16)0.0074 (19)0.0102 (19)
C120.084 (3)0.059 (2)0.113 (3)0.013 (2)0.001 (2)0.003 (2)
C130.090 (3)0.096 (3)0.117 (4)0.002 (3)0.022 (3)0.011 (3)
C140.088 (3)0.090 (3)0.101 (3)0.015 (2)0.025 (2)0.014 (3)
C150.085 (3)0.085 (3)0.071 (3)0.012 (2)0.003 (2)0.000 (2)
C160.074 (2)0.068 (2)0.075 (2)0.0018 (19)0.012 (2)0.006 (2)
C170.109 (3)0.153 (4)0.081 (3)0.001 (3)0.017 (2)0.036 (3)
Geometric parameters (Å, º) top
N—C101.357 (4)C7—H7B0.9600
N—C111.421 (4)C7—H7C0.9600
N—H0A0.8600C8—H8A0.9600
O1—C21.219 (4)C8—H8B0.9600
C1—C21.510 (5)C8—H8C0.9600
C1—H1A0.9600C9—C101.497 (4)
C1—H1B0.9600C9—H9A0.9700
C1—H1C0.9600C9—H9B0.9700
O2—C101.217 (3)C11—C161.374 (4)
C2—C31.495 (4)C11—C121.384 (4)
C3—C61.521 (4)C12—C131.376 (5)
C3—C41.574 (4)C12—H12A0.9300
C3—H3A0.9800C13—C141.347 (5)
C4—C81.512 (4)C13—H13A0.9300
C4—C71.522 (4)C14—C151.411 (5)
C4—C51.573 (4)C14—H14A0.9300
C5—C61.516 (4)C15—C161.399 (4)
C5—C91.523 (4)C15—C171.504 (5)
C5—H5A0.9800C16—H16A0.9300
C6—H6A0.9700C17—H17A0.9600
C6—H6B0.9700C17—H17B0.9600
C7—H7A0.9600C17—H17C0.9600
C10—N—C11126.3 (3)H7B—C7—H7C109.5
C10—N—H0A116.9C4—C8—H8A109.5
C11—N—H0A116.9C4—C8—H8B109.5
C2—C1—H1A109.5H8A—C8—H8B109.5
C2—C1—H1B109.5C4—C8—H8C109.5
H1A—C1—H1B109.5H8A—C8—H8C109.5
C2—C1—H1C109.5H8B—C8—H8C109.5
H1A—C1—H1C109.5C10—C9—C5113.7 (3)
H1B—C1—H1C109.5C10—C9—H9A108.8
O1—C2—C3121.8 (4)C5—C9—H9A108.8
O1—C2—C1122.5 (4)C10—C9—H9B108.8
C3—C2—C1115.7 (4)C5—C9—H9B108.8
C2—C3—C6120.0 (3)H9A—C9—H9B107.7
C2—C3—C4116.1 (3)O2—C10—N124.0 (3)
C6—C3—C488.9 (2)O2—C10—C9121.9 (3)
C2—C3—H3A110.1N—C10—C9114.0 (3)
C6—C3—H3A110.1C16—C11—C12120.7 (4)
C4—C3—H3A110.1C16—C11—N116.9 (3)
C8—C4—C7112.0 (3)C12—C11—N122.3 (3)
C8—C4—C3112.7 (3)C13—C12—C11117.0 (4)
C7—C4—C3115.2 (3)C13—C12—H12A121.5
C8—C4—C5113.0 (3)C11—C12—H12A121.5
C7—C4—C5115.5 (3)C14—C13—C12123.4 (4)
C3—C4—C586.1 (2)C14—C13—H13A118.3
C6—C5—C9119.3 (3)C12—C13—H13A118.3
C6—C5—C489.1 (2)C13—C14—C15120.8 (4)
C9—C5—C4120.0 (3)C13—C14—H14A119.6
C6—C5—H5A108.9C15—C14—H14A119.6
C9—C5—H5A108.9C16—C15—C14115.9 (3)
C4—C5—H5A108.9C16—C15—C17120.9 (4)
C3—C6—C590.0 (2)C14—C15—C17123.2 (4)
C3—C6—H6A113.6C11—C16—C15122.2 (3)
C5—C6—H6A113.6C11—C16—H16A118.9
C3—C6—H6B113.6C15—C16—H16A118.9
C5—C6—H6B113.6C15—C17—H17A109.5
H6A—C6—H6B110.9C15—C17—H17B109.5
C4—C7—H7A109.5H17A—C17—H17B109.5
C4—C7—H7B109.5C15—C17—H17C109.5
H7A—C7—H7B109.5H17A—C17—H17C109.5
C4—C7—H7C109.5H17B—C17—H17C109.5
H7A—C7—H7C109.5
O1—C2—C3—C67.8 (5)C4—C5—C6—C318.5 (2)
C1—C2—C3—C6173.1 (3)C6—C5—C9—C10172.5 (3)
O1—C2—C3—C497.1 (4)C4—C5—C9—C1064.8 (4)
C1—C2—C3—C482.0 (4)C11—N—C10—O20.5 (5)
C2—C3—C4—C827.7 (4)C11—N—C10—C9179.7 (3)
C6—C3—C4—C895.5 (3)C5—C9—C10—O240.0 (5)
C2—C3—C4—C7102.6 (4)C5—C9—C10—N140.2 (3)
C6—C3—C4—C7134.3 (3)C10—N—C11—C16149.2 (3)
C2—C3—C4—C5141.0 (3)C10—N—C11—C1234.2 (5)
C6—C3—C4—C517.8 (2)C16—C11—C12—C133.5 (5)
C8—C4—C5—C695.2 (3)N—C11—C12—C13180.0 (3)
C7—C4—C5—C6134.0 (3)C11—C12—C13—C142.1 (6)
C3—C4—C5—C617.9 (2)C12—C13—C14—C150.5 (6)
C8—C4—C5—C928.6 (4)C13—C14—C15—C161.6 (5)
C7—C4—C5—C9102.2 (3)C13—C14—C15—C17179.5 (4)
C3—C4—C5—C9141.7 (3)C12—C11—C16—C152.5 (5)
C2—C3—C6—C5138.2 (3)N—C11—C16—C15179.1 (3)
C4—C3—C6—C518.5 (2)C14—C15—C16—C110.2 (5)
C9—C5—C6—C3142.9 (3)C17—C15—C16—C11178.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.042.892 (4)169
C12—H12A···O20.932.492.931 (5)109
C13—H13A···O1ii0.932.553.440 (5)161
Symmetry codes: (i) x+1, y3/2, z1/2; (ii) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H23NO2
Mr273.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.513 (3), 9.5190 (19), 26.844 (5)
V3)3197.4 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.951, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
3150, 3120, 1385
Rint0.032
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.170, 1.04
No. of reflections3120
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.042.892 (4)169
C12—H12A···O20.932.492.931 (5)109
C13—H13A···O1ii0.932.553.440 (5)161
Symmetry codes: (i) x+1, y3/2, z1/2; (ii) x+3/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Key Technology R&D Programme of China under grant No. 2006BAD06B10.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMitra, R. B. & Khanra, A. S. (1977). Synth. Commun. 7, 245–250.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, Y., Han, C., Song, Z. & Wang, Z. (2007). Acta Cryst. E63, o4048.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds