organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(4-fluoro­phen­yl)-6-methyl-4-oxo-2-(1-cyclo­hexylamino)-3,4-di­hydro­furo[2,3-d]pyrimidine-5-carboxyl­ate

aYunyang Teachers College, Danjiangkou 442700, People's Republic of China, bDepartment of Chemistry and Life Science, Hubei University of Education, Wuhan 430205, People's Republic of China, cKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China, and d Department of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: suny6135@126.com

(Received 4 December 2007; accepted 13 December 2007; online 21 December 2007)

In the crystal structure of the title compound, C22H24FN3O4, the two fused rings of furo[2,3-d]pyrimidine form a dihedral angle of 0.88 (13)°. The attached benzene ring is twisted with respect to the heterocyclic pyrimidinone ring, making a dihedral angle of 75.07 (12)°. The cyclo­hexyl ring shows a distorted chair conformation. The mol­ecular structure is stabilized by intra­molecular C—H⋯O and C—H⋯N hydrogen-bonding inter­actions. The crystal packing is mainly stabilized by C—H⋯π hydrogen-bond inter­actions. Further stability is provided by C—F⋯π and C—O⋯π stacking inter­actions.

Related literature

The preparation and biological activity are described by Miyazaki et al. (2007[Miyazaki, Y., Tang, J., Maeda, Y., Nakano, M., Wang, L., Nolte, R. T., Sato, H., Sugai, M., Okamoto, Y., Truesdale, A. T., Daniel, F., Hassler, D. F., Nartey, E. N., Patrick, D. R., Hoc, M. L. & Ozawa, K. (2007). Bioorg. Med. Chem. Lett. 17, 1773-1778.]), Gangjee et al. (2006[Gangjee, A., Yang, J., McGuire, J. & Kisliuk, R. L. (2006). Bioorg. Med. Chem. 14, 8590-8598.]) and Lagu et al. (2000[Lagu, B., Tian, D., Chiu, G., Nagarathnam, D., Fang, J., Shen, Q., Forray, C., Ransom, R. W., Chang, R., Vyas, K., Zhang, K. & Gluchowski, C. (2000). Bioorg. Med. Chem. Lett. 10, 175-178.]). For related literature, see: Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]). For the crystal structure of another fused pyrimidinone derivative, see: Hu et al. (2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24FN3O4

  • Mr = 413.44

  • Triclinic, [P \overline 1]

  • a = 9.2051 (8) Å

  • b = 10.7957 (9) Å

  • c = 11.6601 (10) Å

  • α = 106.681 (1)°

  • β = 100.417 (2)°

  • γ = 101.550 (2)°

  • V = 1051.85 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.981

  • 10785 measured reflections

  • 4505 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.182

  • S = 1.09

  • 4505 reflections

  • 276 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond and C—F⋯π and C—O⋯π interactions (Å, °)

Cg2 and Cg3 are the centroids of the N1/C9/C7/C8/N2/C10 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N2 0.98 2.41 2.813 (3) 104
C6—H6A⋯O2 0.96 2.45 3.039 (3) 120
C20—H20BCg3i 0.97 2.97 3.820 (4) 147
C14—F1⋯Cg3ii 1.36 (1) 3.36 (1) 3.732 (3) 95
C3—O2⋯Cg2iii 1.21 (1) 3.31 (1) 3.409 (3) 84

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Fused pyrimidine compounds are valued not only for their rich and varied chemistry, but also for many important biological properties. Among them, the furopyrimidine ring system, because of a formal isoelectronic relationship with purine, is of special biological interest (Miyazaki et al., 2007; Gangjee et al. 2006; Lagu et al., 2000). Recently, we have focused on the synthesis of the heterocycle systems containing fused furopyrimidine via aza-Wittig reaction at room temperature (Hu, et al., 2007). Herein, we present X-ray crystallographic analysis of the compound (I) in this paper,(Fig. 1), which may be used as a new precursor for obtaining bioactive molecules.

In the molecule (I), the bond lengths and angles are unexceptional. The two fused rings of furo[2,3-d]pyrimidine form a dihedral angle of 0.88 (13)°. The C11—C16 phenyl ring is twisted with respect to pyrimidinone ring, with a dihedral angle of 75.07 (1)°. The cyclohexyl ring in (I) shows a distored chair conformation [φ =30.0 (3)° and θ = 2.5 (3)°, puckering amplitude = 0.557 (3) Å]. The molecular structure is stabilized by intramolecular C—H···O and C—H···N hydrogen bonds interactions (Table 1). The crystal packing is mainly stabilized by C—H···π hydrogen bonding interactions. Further stability is provided by C—F···π and C—O···π stacking interactions.

Related literature top

The preparation and biological activity are described by Miyazaki et al. (2007), Gangjee et al. (2006) and Lagu et al. (2000). For related literature, see: Ding et al. (2004). For the crystal structure of another fused pyrimidinone derivative, see: Hu et al. (2007).

Experimental top

To a solution of the diethyl 2-((4-fluorophenylimino)methyleneamino)-5-methylfuran- 3,4-dicarboxylate (3 mmol) in dichloromethane (5 ml) was added cyclohexanamine (3 mmol). After stirring the reaction mixture for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 3 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 84%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

All H atoms were located in difference maps and treated as riding atoms, with N—H = 0.86 Å and C—H = 0.93 - 0.98 Å, and Uiso = 1.2 or 1.5Ueq (C,N).

Structure description top

Fused pyrimidine compounds are valued not only for their rich and varied chemistry, but also for many important biological properties. Among them, the furopyrimidine ring system, because of a formal isoelectronic relationship with purine, is of special biological interest (Miyazaki et al., 2007; Gangjee et al. 2006; Lagu et al., 2000). Recently, we have focused on the synthesis of the heterocycle systems containing fused furopyrimidine via aza-Wittig reaction at room temperature (Hu, et al., 2007). Herein, we present X-ray crystallographic analysis of the compound (I) in this paper,(Fig. 1), which may be used as a new precursor for obtaining bioactive molecules.

In the molecule (I), the bond lengths and angles are unexceptional. The two fused rings of furo[2,3-d]pyrimidine form a dihedral angle of 0.88 (13)°. The C11—C16 phenyl ring is twisted with respect to pyrimidinone ring, with a dihedral angle of 75.07 (1)°. The cyclohexyl ring in (I) shows a distored chair conformation [φ =30.0 (3)° and θ = 2.5 (3)°, puckering amplitude = 0.557 (3) Å]. The molecular structure is stabilized by intramolecular C—H···O and C—H···N hydrogen bonds interactions (Table 1). The crystal packing is mainly stabilized by C—H···π hydrogen bonding interactions. Further stability is provided by C—F···π and C—O···π stacking interactions.

The preparation and biological activity are described by Miyazaki et al. (2007), Gangjee et al. (2006) and Lagu et al. (2000). For related literature, see: Ding et al. (2004). For the crystal structure of another fused pyrimidinone derivative, see: Hu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the intramolecular C—H···O and C—H···N hydrogen bonds is shown as dashed lines.
[Figure 2] Fig. 2. A view of the packing and hydrogen bonding interactions of (I).
Ethyl 3-(4-fluorophenyl)-6-methyl-4-oxo- 2-(1-cyclohexylamino)-3,4-dihydrofuro[2,3-d]pyrimidine-5-carboxylate top
Crystal data top
C22H24FN3O4Z = 2
Mr = 413.44F(000) = 436
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2051 (8) ÅCell parameters from 1930 reflections
b = 10.7957 (9) Åθ = 2.3–22.7°
c = 11.6601 (10) ŵ = 0.10 mm1
α = 106.681 (1)°T = 291 K
β = 100.417 (2)°Block, colourless
γ = 101.550 (2)°0.30 × 0.30 × 0.20 mm
V = 1051.85 (16) Å3
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4505 independent reflections
Radiation source: fine-focus sealed tube2941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.972, Tmax = 0.981k = 1313
10785 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.084P)2 + 0.0618P]
where P = (Fo2 + 2Fc2)/3
4505 reflections(Δ/σ)max = 0.001
276 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H24FN3O4γ = 101.550 (2)°
Mr = 413.44V = 1051.85 (16) Å3
Triclinic, P1Z = 2
a = 9.2051 (8) ÅMo Kα radiation
b = 10.7957 (9) ŵ = 0.10 mm1
c = 11.6601 (10) ÅT = 291 K
α = 106.681 (1)°0.30 × 0.30 × 0.20 mm
β = 100.417 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4505 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2941 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.036
10785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.27 e Å3
4505 reflectionsΔρmin = 0.21 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3069 (4)1.3641 (3)0.4580 (4)0.0893 (11)
H1A0.20111.32430.45050.134*
H1B0.31601.44510.43790.134*
H1C0.36511.38460.54130.134*
C20.3654 (4)1.2701 (3)0.3728 (3)0.0611 (8)
H2A0.30831.24980.28810.073*
H2B0.47261.30910.38000.073*
C30.3773 (3)1.0444 (2)0.3310 (2)0.0405 (6)
C40.3423 (3)0.9266 (2)0.37091 (19)0.0382 (5)
C50.3652 (3)0.8068 (3)0.3117 (2)0.0436 (6)
C60.4214 (4)0.7543 (3)0.2014 (2)0.0621 (8)
H6A0.41010.80810.14940.093*
H6B0.36310.66320.15630.093*
H6C0.52760.75730.22690.093*
C70.2826 (2)0.9094 (2)0.47482 (18)0.0346 (5)
C80.2770 (3)0.7808 (2)0.46902 (19)0.0388 (5)
C90.2328 (3)0.9897 (2)0.5730 (2)0.0404 (6)
C100.1892 (3)0.7846 (2)0.6342 (2)0.0402 (6)
C110.1584 (3)0.9935 (2)0.76523 (19)0.0372 (5)
C120.0208 (3)1.0263 (2)0.7601 (2)0.0433 (6)
H120.05141.00000.68470.052*
C130.0090 (3)1.0983 (3)0.8672 (2)0.0486 (6)
H130.10131.12130.86530.058*
C140.0991 (3)1.1353 (2)0.9765 (2)0.0480 (6)
C150.2366 (3)1.1045 (3)0.9847 (2)0.0512 (7)
H150.30801.13111.06050.061*
C160.2661 (3)1.0329 (2)0.8772 (2)0.0442 (6)
H160.35911.01100.87980.053*
C170.1711 (3)0.6040 (2)0.7262 (2)0.0482 (6)
H170.18610.55170.64750.058*
C180.0384 (3)0.5200 (3)0.7535 (3)0.0711 (9)
H18A0.05250.49560.68620.085*
H18B0.01750.57190.82860.085*
C190.0750 (4)0.3927 (3)0.7692 (3)0.0855 (11)
H19A0.00890.34310.79180.103*
H19B0.08430.33620.69100.103*
C220.3165 (3)0.6368 (3)0.8250 (3)0.0721 (9)
H22A0.30630.69370.90270.087*
H22B0.40090.68630.80280.087*
C210.3524 (4)0.5105 (4)0.8417 (4)0.0887 (11)
H21A0.37570.45940.76750.106*
H21B0.44230.53560.91000.106*
F10.0682 (2)1.20612 (17)1.08220 (14)0.0762 (5)
N10.1902 (2)0.91680 (18)0.65370 (16)0.0378 (5)
N20.2326 (2)0.71226 (19)0.54199 (17)0.0446 (5)
N30.1374 (3)0.7269 (2)0.71300 (19)0.0498 (6)
H30.117 (3)0.781 (3)0.774 (2)0.060*
O10.3480 (2)1.14890 (17)0.40502 (15)0.0509 (5)
O20.4260 (2)1.04606 (19)0.24179 (15)0.0588 (5)
O30.32637 (19)0.71581 (16)0.37123 (14)0.0467 (4)
O40.2239 (2)1.10393 (18)0.59732 (17)0.0639 (6)
C200.2211 (4)0.4244 (3)0.8669 (3)0.0785 (10)
H20A0.20730.47050.94720.094*
H20B0.24470.34140.86940.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.116 (3)0.060 (2)0.113 (3)0.040 (2)0.051 (2)0.036 (2)
C20.078 (2)0.0520 (18)0.0698 (18)0.0230 (15)0.0288 (15)0.0349 (15)
C30.0412 (13)0.0461 (15)0.0371 (12)0.0116 (11)0.0116 (10)0.0170 (11)
C40.0408 (13)0.0407 (14)0.0353 (11)0.0116 (11)0.0115 (10)0.0144 (10)
C50.0492 (15)0.0439 (15)0.0394 (12)0.0130 (12)0.0139 (11)0.0143 (11)
C60.087 (2)0.0552 (18)0.0517 (15)0.0236 (16)0.0370 (15)0.0135 (13)
C70.0377 (12)0.0329 (13)0.0336 (11)0.0083 (10)0.0088 (9)0.0128 (9)
C80.0445 (13)0.0371 (13)0.0334 (11)0.0116 (11)0.0092 (10)0.0095 (10)
C90.0524 (15)0.0373 (14)0.0413 (12)0.0160 (11)0.0189 (11)0.0208 (11)
C100.0493 (14)0.0361 (14)0.0413 (12)0.0132 (11)0.0141 (11)0.0191 (11)
C110.0491 (14)0.0311 (13)0.0392 (12)0.0116 (11)0.0180 (10)0.0187 (10)
C120.0499 (15)0.0432 (14)0.0465 (13)0.0154 (12)0.0194 (11)0.0233 (11)
C130.0530 (16)0.0496 (16)0.0607 (16)0.0240 (13)0.0294 (13)0.0286 (13)
C140.0699 (18)0.0384 (14)0.0444 (13)0.0172 (13)0.0284 (12)0.0167 (11)
C150.0608 (17)0.0560 (17)0.0397 (13)0.0137 (14)0.0151 (12)0.0201 (12)
C160.0469 (14)0.0488 (15)0.0457 (13)0.0179 (12)0.0162 (11)0.0225 (12)
C170.0732 (18)0.0363 (14)0.0472 (13)0.0219 (13)0.0229 (12)0.0224 (11)
C180.066 (2)0.0461 (17)0.107 (2)0.0083 (14)0.0117 (17)0.0453 (18)
C190.094 (3)0.0490 (19)0.118 (3)0.0104 (17)0.013 (2)0.049 (2)
C220.064 (2)0.067 (2)0.094 (2)0.0068 (16)0.0143 (17)0.0515 (18)
C210.083 (2)0.095 (3)0.114 (3)0.033 (2)0.017 (2)0.072 (2)
F10.1084 (14)0.0745 (12)0.0571 (9)0.0383 (10)0.0431 (9)0.0164 (8)
N10.0501 (12)0.0334 (11)0.0378 (9)0.0148 (9)0.0169 (8)0.0176 (8)
N20.0613 (13)0.0339 (11)0.0444 (11)0.0145 (10)0.0197 (10)0.0164 (9)
N30.0759 (16)0.0355 (13)0.0520 (12)0.0212 (11)0.0302 (11)0.0228 (10)
O10.0728 (12)0.0399 (10)0.0524 (10)0.0168 (9)0.0321 (9)0.0228 (8)
O20.0806 (14)0.0645 (13)0.0517 (10)0.0286 (10)0.0368 (10)0.0311 (9)
O30.0627 (11)0.0374 (10)0.0440 (9)0.0158 (8)0.0218 (8)0.0128 (8)
O40.1135 (16)0.0423 (11)0.0695 (12)0.0402 (11)0.0578 (11)0.0346 (9)
C200.104 (3)0.070 (2)0.086 (2)0.032 (2)0.0246 (19)0.0550 (19)
Geometric parameters (Å, º) top
C1—C21.463 (4)C12—C131.375 (3)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.365 (4)
C1—H1C0.9600C13—H130.9300
C2—O11.449 (3)C14—F11.363 (3)
C2—H2A0.9700C14—C151.365 (4)
C2—H2B0.9700C15—C161.377 (3)
C3—O21.208 (3)C15—H150.9300
C3—O11.318 (3)C16—H160.9300
C3—C41.472 (3)C17—N31.464 (3)
C4—C51.357 (3)C17—C221.505 (4)
C4—C71.461 (3)C17—C181.509 (4)
C5—O31.384 (3)C17—H170.9800
C5—C61.478 (3)C18—C191.531 (4)
C6—H6A0.9600C18—H18A0.9700
C6—H6B0.9600C18—H18B0.9700
C6—H6C0.9600C19—C201.504 (4)
C7—C81.361 (3)C19—H19A0.9700
C7—C91.432 (3)C19—H19B0.9700
C8—N21.343 (3)C22—C211.522 (4)
C8—O31.362 (3)C22—H22A0.9700
C9—O41.207 (3)C22—H22B0.9700
C9—N11.446 (3)C21—C201.498 (5)
C10—N21.313 (3)C21—H21A0.9700
C10—N31.352 (3)C21—H21B0.9700
C10—N11.377 (3)N3—H30.86 (3)
C11—C121.378 (3)C20—H20A0.9700
C11—C161.383 (3)C20—H20B0.9700
C11—N11.442 (3)
C2—C1—H1A109.5C14—C15—C16117.9 (2)
C2—C1—H1B109.5C14—C15—H15121.1
H1A—C1—H1B109.5C16—C15—H15121.1
C2—C1—H1C109.5C15—C16—C11120.4 (2)
H1A—C1—H1C109.5C15—C16—H16119.8
H1B—C1—H1C109.5C11—C16—H16119.8
O1—C2—C1107.8 (2)N3—C17—C22110.7 (2)
O1—C2—H2A110.1N3—C17—C18110.7 (2)
C1—C2—H2A110.1C22—C17—C18111.0 (2)
O1—C2—H2B110.1N3—C17—H17108.1
C1—C2—H2B110.1C22—C17—H17108.1
H2A—C2—H2B108.5C18—C17—H17108.1
O2—C3—O1123.8 (2)C17—C18—C19110.6 (3)
O2—C3—C4124.9 (2)C17—C18—H18A109.5
O1—C3—C4111.31 (19)C19—C18—H18A109.5
C5—C4—C7106.1 (2)C17—C18—H18B109.5
C5—C4—C3123.0 (2)C19—C18—H18B109.5
C7—C4—C3130.9 (2)H18A—C18—H18B108.1
C4—C5—O3110.5 (2)C20—C19—C18111.8 (3)
C4—C5—C6134.8 (2)C20—C19—H19A109.2
O3—C5—C6114.8 (2)C18—C19—H19A109.2
C5—C6—H6A109.5C20—C19—H19B109.2
C5—C6—H6B109.5C18—C19—H19B109.2
H6A—C6—H6B109.5H19A—C19—H19B107.9
C5—C6—H6C109.5C17—C22—C21111.6 (3)
H6A—C6—H6C109.5C17—C22—H22A109.3
H6B—C6—H6C109.5C21—C22—H22A109.3
C8—C7—C9117.43 (19)C17—C22—H22B109.3
C8—C7—C4105.55 (19)C21—C22—H22B109.3
C9—C7—C4137.0 (2)H22A—C22—H22B108.0
N2—C8—C7130.9 (2)C20—C21—C22111.9 (3)
N2—C8—O3117.8 (2)C20—C21—H21A109.2
C7—C8—O3111.33 (19)C22—C21—H21A109.2
O4—C9—C7130.5 (2)C20—C21—H21B109.2
O4—C9—N1118.1 (2)C22—C21—H21B109.2
C7—C9—N1111.35 (19)H21A—C21—H21B107.9
N2—C10—N3119.0 (2)C10—N1—C11119.56 (17)
N2—C10—N1123.2 (2)C10—N1—C9124.19 (19)
N3—C10—N1117.7 (2)C11—N1—C9116.10 (17)
C12—C11—C16120.3 (2)C10—N2—C8112.82 (19)
C12—C11—N1120.03 (19)C10—N3—C17122.8 (2)
C16—C11—N1119.7 (2)C10—N3—H3114.2 (19)
C13—C12—C11119.5 (2)C17—N3—H3118.7 (18)
C13—C12—H12120.2C3—O1—C2118.03 (18)
C11—C12—H12120.2C8—O3—C5106.58 (18)
C14—C13—C12118.9 (2)C21—C20—C19111.4 (2)
C14—C13—H13120.5C21—C20—H20A109.3
C12—C13—H13120.5C19—C20—H20A109.3
F1—C14—C13118.4 (2)C21—C20—H20B109.3
F1—C14—C15118.5 (2)C19—C20—H20B109.3
C13—C14—C15123.0 (2)H20A—C20—H20B108.0
O2—C3—C4—C51.6 (4)N3—C17—C22—C21179.1 (2)
O1—C3—C4—C5178.7 (2)C18—C17—C22—C2155.7 (4)
O2—C3—C4—C7179.5 (2)C17—C22—C21—C2054.7 (4)
O1—C3—C4—C70.2 (3)N2—C10—N1—C11172.6 (2)
C7—C4—C5—O30.8 (3)N3—C10—N1—C118.9 (3)
C3—C4—C5—O3178.38 (19)N2—C10—N1—C92.7 (4)
C7—C4—C5—C6179.5 (3)N3—C10—N1—C9175.9 (2)
C3—C4—C5—C61.3 (4)C12—C11—N1—C10107.4 (2)
C5—C4—C7—C80.7 (2)C16—C11—N1—C1072.2 (3)
C3—C4—C7—C8178.3 (2)C12—C11—N1—C977.0 (3)
C5—C4—C7—C9179.3 (3)C16—C11—N1—C9103.4 (2)
C3—C4—C7—C91.6 (4)O4—C9—N1—C10177.3 (2)
C9—C7—C8—N20.6 (4)C7—C9—N1—C103.6 (3)
C4—C7—C8—N2179.4 (2)O4—C9—N1—C117.3 (3)
C9—C7—C8—O3179.58 (18)C7—C9—N1—C11171.78 (18)
C4—C7—C8—O30.4 (2)N3—C10—N2—C8178.2 (2)
C8—C7—C9—O4178.6 (3)N1—C10—N2—C80.3 (3)
C4—C7—C9—O41.4 (5)C7—C8—N2—C100.7 (4)
C8—C7—C9—N12.5 (3)O3—C8—N2—C10179.16 (19)
C4—C7—C9—N1177.5 (2)N2—C10—N3—C1719.9 (4)
C16—C11—C12—C130.2 (3)N1—C10—N3—C17161.5 (2)
N1—C11—C12—C13179.3 (2)C22—C17—N3—C1090.1 (3)
C11—C12—C13—C140.1 (3)C18—C17—N3—C10146.4 (3)
C12—C13—C14—F1179.7 (2)O2—C3—O1—C24.3 (3)
C12—C13—C14—C150.2 (4)C4—C3—O1—C2175.4 (2)
F1—C14—C15—C16180.0 (2)C1—C2—O1—C3172.4 (2)
C13—C14—C15—C160.1 (4)N2—C8—O3—C5179.9 (2)
C14—C15—C16—C110.4 (4)C7—C8—O3—C50.0 (2)
C12—C11—C16—C150.5 (3)C4—C5—O3—C80.5 (3)
N1—C11—C16—C15179.1 (2)C6—C5—O3—C8179.7 (2)
N3—C17—C18—C19179.1 (2)C22—C21—C20—C1953.8 (4)
C22—C17—C18—C1955.8 (4)C18—C19—C20—C2154.4 (4)
C17—C18—C19—C2055.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N20.982.412.813 (3)104
C6—H6A···O20.962.453.039 (3)120
C20—H20B···Cg3i0.972.973.820 (4)147
C14—F···Cg3ii1.36 (1)3.36 (1)3.732 (3)95
C3—O2···Cg2iii1.21 (1)3.31 (1)3.409 (3)84
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+2; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H24FN3O4
Mr413.44
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.2051 (8), 10.7957 (9), 11.6601 (10)
α, β, γ (°)106.681 (1), 100.417 (2), 101.550 (2)
V3)1051.85 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10785, 4505, 2941
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.182, 1.09
No. of reflections4505
No. of parameters276
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N20.982.412.813 (3)103.9
C6—H6A···O20.962.453.039 (3)119.7
C20—H20B···Cg3i0.972.973.820 (4)147
C14—F···Cg3ii1.363 (3)3.358 (2)3.732 (3)95
C3—O2···Cg2iii1.208 (3)3.309 (2)3.409 (3)84
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+2; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001) and the Key Science Research Project of Hubei Provincial Department of Education (grant No. D200724001).

References

First citationBruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGangjee, A., Yang, J., McGuire, J. & Kisliuk, R. L. (2006). Bioorg. Med. Chem. 14, 8590–8598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLagu, B., Tian, D., Chiu, G., Nagarathnam, D., Fang, J., Shen, Q., Forray, C., Ransom, R. W., Chang, R., Vyas, K., Zhang, K. & Gluchowski, C. (2000). Bioorg. Med. Chem. Lett. 10, 175–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiyazaki, Y., Tang, J., Maeda, Y., Nakano, M., Wang, L., Nolte, R. T., Sato, H., Sugai, M., Okamoto, Y., Truesdale, A. T., Daniel, F., Hassler, D. F., Nartey, E. N., Patrick, D. R., Hoc, M. L. & Ozawa, K. (2007). Bioorg. Med. Chem. Lett. 17, 1773–1778.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds