organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-2,6-di­phenyl­pyridine

aCollege of Life Sciences and Chemistry, TianShui Normal University, TianShui 741000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: hxqqxh2008@163.com

(Received 22 November 2007; accepted 29 November 2007; online 6 December 2007)

In the title compound, C23H16ClN, the crystal packing exhibits no significantly short inter­molecular contacts. The benzene rings show a disrotatory arrangement and the angles between them and the pyridine ring range from 20.80 (3) to 37.56 (4)°. The Cl atom deviates by 0.01 (3) Å from the plane of the benzene ring to which it is attached.

Related literature

For the structure of 2,4,6-triphenyl­pyridine, see: Ondracek et al. (1994[Ondrácek, J., Novotný, J., Petru, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809-1811.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16ClN

  • Mr = 341.82

  • Monoclinic, P 21 /c

  • a = 9.3995 (11) Å

  • b = 20.621 (2) Å

  • c = 9.5362 (12) Å

  • β = 108.146 (2)°

  • V = 1756.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.42 × 0.37 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.968

  • 8674 measured reflections

  • 3078 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.02

  • 3078 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this paper,we present a new crystal, 4-(4'-chlorophenyl)-2,6-diphenylpyridine, (I). In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in reported the compound (Ondracek et al., 1994).

The three phenyl rings display a disrotatory conformation and form different angles with the pyridine ring. The phenyl ring attached at C1 forms the smallest angle with the heterocycle, 20.8°, because there is only the free electron pair of the N atom and one H atom in the ortho positions. The angle formed by the phenyl ring attached at C5 is slightly larger - 22.39°. The remaining phenyl ring forms the largest angle with the heterocycle, 37.56°. Meanwhile,the crystal packing demonstrates no significantly short intermolecular contacts.

Related literature top

In 2,4,6-triphenylpyridine (Ondracek et al., 1994), the C—N distance is similar to that in the title compound.

Experimental top

4-chlorobenzaldehyde (0.3 mmol) and acetophenone (0.6 mmol) under boron trifluoride ether (0.1 mmol) as a catalyst, the mixture was mixed in 50 ml flask. After irradiating for 3 min at 375 W, the mixture was cooled slowly to room temperature and the title compound was then recrystallized from ethanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C23H16ClN: C 80.81, H 4.72, N 4.10%; found: C 80.68, H 4.75, N 4.14%.

Refinement top

All H atoms were positioned geometrically, with C—H=0.93- 0.98 Å, and refined as riding, with Uiso(H)=1.2Ueq(C).

Structure description top

In this paper,we present a new crystal, 4-(4'-chlorophenyl)-2,6-diphenylpyridine, (I). In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in reported the compound (Ondracek et al., 1994).

The three phenyl rings display a disrotatory conformation and form different angles with the pyridine ring. The phenyl ring attached at C1 forms the smallest angle with the heterocycle, 20.8°, because there is only the free electron pair of the N atom and one H atom in the ortho positions. The angle formed by the phenyl ring attached at C5 is slightly larger - 22.39°. The remaining phenyl ring forms the largest angle with the heterocycle, 37.56°. Meanwhile,the crystal packing demonstrates no significantly short intermolecular contacts.

In 2,4,6-triphenylpyridine (Ondracek et al., 1994), the C—N distance is similar to that in the title compound.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SMART (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with atom numbering scheme and thermal ellipsoids at 30% probability level.
4-(4-Chlorophenyl)-2,6-diphenylpyridine top
Crystal data top
C23H16ClNF(000) = 712
Mr = 341.82Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3995 (11) ÅCell parameters from 1970 reflections
b = 20.621 (2) Åθ = 2.3–25.2°
c = 9.5362 (12) ŵ = 0.22 mm1
β = 108.146 (2)°T = 298 K
V = 1756.4 (3) Å3Block, colourless
Z = 40.42 × 0.37 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3078 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 711
Tmin = 0.913, Tmax = 0.968k = 2424
8674 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.2473P]
where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C23H16ClNV = 1756.4 (3) Å3
Mr = 341.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3995 (11) ŵ = 0.22 mm1
b = 20.621 (2) ÅT = 298 K
c = 9.5362 (12) Å0.42 × 0.37 × 0.15 mm
β = 108.146 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3078 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1752 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.968Rint = 0.045
8674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
3078 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16106 (10)0.55491 (4)0.64505 (11)0.0785 (4)
N10.5484 (2)0.17758 (10)0.9845 (2)0.0446 (6)
C10.4223 (3)0.18225 (12)0.8698 (3)0.0416 (7)
C20.3630 (3)0.24170 (13)0.8142 (3)0.0448 (7)
H20.27640.24340.73370.054*
C30.4310 (3)0.29874 (12)0.8770 (3)0.0431 (7)
C40.5590 (3)0.29302 (13)0.9955 (3)0.0480 (7)
H40.60780.33011.04170.058*
C50.6160 (3)0.23244 (13)1.0465 (3)0.0438 (7)
C60.3495 (3)0.12018 (13)0.8094 (3)0.0438 (7)
C70.4301 (3)0.06274 (13)0.8358 (3)0.0527 (8)
H70.53110.06350.89060.063*
C80.3629 (4)0.00434 (15)0.7821 (4)0.0632 (9)
H80.41840.03380.80060.076*
C90.2147 (4)0.00284 (16)0.7020 (4)0.0645 (9)
H90.16950.03640.66560.077*
C100.1321 (3)0.05869 (16)0.6747 (3)0.0624 (9)
H100.03120.05730.62000.075*
C110.1988 (3)0.11723 (14)0.7284 (3)0.0526 (8)
H110.14200.15500.71000.063*
C120.3669 (3)0.36252 (12)0.8200 (3)0.0427 (7)
C130.3699 (3)0.41388 (13)0.9151 (3)0.0508 (8)
H130.41520.40851.01600.061*
C140.3061 (3)0.47293 (14)0.8612 (4)0.0546 (8)
H140.30760.50700.92560.066*
C150.2407 (3)0.48093 (13)0.7123 (4)0.0500 (8)
C160.2377 (3)0.43147 (14)0.6161 (3)0.0532 (8)
H160.19390.43760.51520.064*
C170.3001 (3)0.37246 (13)0.6697 (3)0.0491 (8)
H170.29730.33870.60420.059*
C180.7568 (3)0.22443 (13)1.1695 (3)0.0441 (7)
C190.8387 (3)0.16759 (14)1.1839 (3)0.0563 (8)
H190.80180.13361.11870.068*
C200.9737 (3)0.16067 (15)1.2933 (4)0.0633 (9)
H201.02710.12211.30160.076*
C211.0291 (3)0.21002 (16)1.3893 (4)0.0622 (9)
H211.12170.20571.46140.075*
C220.9486 (4)0.26599 (16)1.3800 (4)0.0684 (10)
H220.98510.29931.44720.082*
C230.8133 (3)0.27280 (15)1.2707 (4)0.0651 (9)
H230.75910.31091.26520.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0786 (6)0.0582 (5)0.1004 (8)0.0210 (4)0.0301 (5)0.0221 (5)
N10.0400 (14)0.0478 (14)0.0423 (14)0.0003 (11)0.0075 (11)0.0008 (11)
C10.0391 (17)0.0479 (17)0.0373 (17)0.0008 (13)0.0112 (13)0.0030 (13)
C20.0404 (17)0.0510 (17)0.0380 (17)0.0031 (13)0.0050 (13)0.0015 (13)
C30.0408 (17)0.0454 (17)0.0411 (18)0.0035 (13)0.0098 (14)0.0015 (13)
C40.0449 (18)0.0458 (17)0.0489 (19)0.0022 (13)0.0080 (15)0.0029 (13)
C50.0387 (17)0.0480 (17)0.0432 (18)0.0008 (13)0.0106 (13)0.0014 (14)
C60.0407 (17)0.0517 (17)0.0369 (17)0.0026 (13)0.0091 (13)0.0008 (13)
C70.0480 (18)0.0540 (19)0.051 (2)0.0004 (15)0.0078 (14)0.0045 (15)
C80.072 (2)0.0497 (19)0.066 (2)0.0011 (16)0.0181 (19)0.0051 (16)
C90.074 (3)0.056 (2)0.057 (2)0.0182 (18)0.0115 (18)0.0064 (16)
C100.0508 (19)0.075 (2)0.052 (2)0.0160 (18)0.0023 (15)0.0003 (17)
C110.0493 (19)0.0562 (19)0.0466 (19)0.0013 (15)0.0069 (15)0.0036 (14)
C120.0371 (16)0.0458 (16)0.0428 (18)0.0012 (12)0.0090 (13)0.0042 (13)
C130.0524 (19)0.0510 (18)0.0454 (19)0.0024 (14)0.0100 (15)0.0012 (14)
C140.058 (2)0.0468 (18)0.061 (2)0.0002 (14)0.0202 (17)0.0057 (15)
C150.0457 (18)0.0511 (18)0.057 (2)0.0067 (13)0.0215 (16)0.0108 (15)
C160.0532 (19)0.063 (2)0.0435 (19)0.0119 (15)0.0147 (15)0.0077 (15)
C170.0497 (18)0.0534 (18)0.0438 (19)0.0077 (14)0.0140 (14)0.0008 (14)
C180.0391 (17)0.0496 (17)0.0411 (18)0.0013 (13)0.0087 (13)0.0008 (13)
C190.051 (2)0.0526 (19)0.057 (2)0.0014 (14)0.0049 (16)0.0033 (15)
C200.047 (2)0.062 (2)0.070 (2)0.0055 (15)0.0033 (17)0.0071 (18)
C210.0426 (19)0.078 (2)0.055 (2)0.0050 (17)0.0003 (15)0.0055 (18)
C220.060 (2)0.074 (2)0.058 (2)0.0034 (18)0.0004 (17)0.0150 (18)
C230.056 (2)0.062 (2)0.064 (2)0.0083 (16)0.0000 (17)0.0129 (17)
Geometric parameters (Å, º) top
Cl1—C151.732 (3)C11—H110.9300
N1—C51.341 (3)C12—C171.389 (4)
N1—C11.343 (3)C12—C131.389 (4)
C1—C21.382 (3)C13—C141.384 (4)
C1—C61.481 (4)C13—H130.9300
C2—C31.382 (4)C14—C151.370 (4)
C2—H20.9300C14—H140.9300
C3—C41.375 (4)C15—C161.366 (4)
C3—C121.478 (3)C16—C171.378 (4)
C4—C51.386 (3)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C181.479 (4)C18—C231.374 (4)
C6—C71.386 (4)C18—C191.385 (4)
C6—C111.387 (3)C19—C201.376 (4)
C7—C81.382 (4)C19—H190.9300
C7—H70.9300C20—C211.359 (4)
C8—C91.365 (4)C20—H200.9300
C8—H80.9300C21—C221.368 (4)
C9—C101.368 (4)C21—H210.9300
C9—H90.9300C22—C231.378 (4)
C10—C111.383 (4)C22—H220.9300
C10—H100.9300C23—H230.9300
C5—N1—C1118.4 (2)C17—C12—C3120.8 (2)
N1—C1—C2121.6 (2)C13—C12—C3121.0 (3)
N1—C1—C6116.0 (2)C14—C13—C12120.7 (3)
C2—C1—C6122.4 (2)C14—C13—H13119.7
C1—C2—C3120.8 (3)C12—C13—H13119.7
C1—C2—H2119.6C15—C14—C13119.6 (3)
C3—C2—H2119.6C15—C14—H14120.2
C4—C3—C2116.8 (2)C13—C14—H14120.2
C4—C3—C12122.0 (2)C16—C15—C14121.0 (3)
C2—C3—C12121.2 (2)C16—C15—Cl1119.5 (2)
C3—C4—C5120.6 (3)C14—C15—Cl1119.5 (2)
C3—C4—H4119.7C15—C16—C17119.5 (3)
C5—C4—H4119.7C15—C16—H16120.3
N1—C5—C4121.8 (3)C17—C16—H16120.3
N1—C5—C18116.1 (2)C16—C17—C12121.1 (3)
C4—C5—C18122.1 (2)C16—C17—H17119.4
C7—C6—C11118.0 (2)C12—C17—H17119.4
C7—C6—C1120.5 (2)C23—C18—C19117.6 (3)
C11—C6—C1121.5 (2)C23—C18—C5122.0 (3)
C8—C7—C6121.1 (3)C19—C18—C5120.4 (2)
C8—C7—H7119.5C20—C19—C18121.0 (3)
C6—C7—H7119.5C20—C19—H19119.5
C9—C8—C7119.8 (3)C18—C19—H19119.5
C9—C8—H8120.1C21—C20—C19120.1 (3)
C7—C8—H8120.1C21—C20—H20119.9
C8—C9—C10120.5 (3)C19—C20—H20119.9
C8—C9—H9119.8C20—C21—C22120.0 (3)
C10—C9—H9119.8C20—C21—H21120.0
C9—C10—C11120.0 (3)C22—C21—H21120.0
C9—C10—H10120.0C21—C22—C23119.8 (3)
C11—C10—H10120.0C21—C22—H22120.1
C10—C11—C6120.7 (3)C23—C22—H22120.1
C10—C11—H11119.6C18—C23—C22121.4 (3)
C6—C11—H11119.6C18—C23—H23119.3
C17—C12—C13118.1 (2)C22—C23—H23119.3

Experimental details

Crystal data
Chemical formulaC23H16ClN
Mr341.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.3995 (11), 20.621 (2), 9.5362 (12)
β (°) 108.146 (2)
V3)1756.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.42 × 0.37 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
8674, 3078, 1752
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.02
No. of reflections3078
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: SMART (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (No. X051040).

References

First citationOndrácek, J., Novotný, J., Petru, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds