metal-organic compounds
Chlorido(1,10-phenanthroline)[1,1,1-trifluoro-3-(2-thenoyl)acetonato]copper(II)
aInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: zgzhang@sxu.edu.cn
In the title compound, [Cu(C8H4F3O2S)Cl(C12H8N2)], the CuII ion exhibits a distorted square-pyramidal geometry. The coordination environment of the cation comprises two N atoms from 1,10-phenanthroline and two O atoms from thenoyltrifluoroacetone in the basal plane and one Cl− anion at the apical site. There are weak intermolecular C—H⋯Cl bonds.
Related literature
For related literature, see: Lenaerts et al. (2005); Li et al. (2005); Perkins et al. (2005, 2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807064203/bg2136sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807064203/bg2136Isup2.hkl
All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification.
The title compound was synthesized by modified procedures already reportred in the literature (Li, et al., 2005). When an ethanol solution (10 ml) of 1,10-phenanthroline (0.196 g) was slowly added to an aqueous solution (10 ml) of CuCl2.2H2O (0.171 g), a great amount of precipitate appeared after refluxing. Then an ethanol solution (15 ml) of 2-thenoyltrifluoroactone (0.222 g) was added, and the reaction mixture was kept refluxing until the precipitate was completely dissolved. After filtering, the solution was evaporated slowly at room temperature, and green crystals suitable for X-ray analysis were collected.
H atoms attached to C atoms were placed in geometrically idealized positions,with Csp2—H = 0.930 Å, constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Metal complexes of 2-thenoyltrifluoroacetone are attractive due to their potential applications in new material design (Lenaerts, et al., 2005; Perkins, et al., 2005, 2007). In this paper, we report a novel Cu complex of 2-thenoyltrifluoroacetone.
A displacement ellipsoid drawing of (I) is shown in Fig. 1. Selected bond lengths are listed in Table 1. The CuII ion exhibits a distorted square pyramidal geometry. The coordination environment of the cation is comprised of two N atoms from 1,10-phenanthroline and two O atoms from 2-thenoyltrifluoroacetone at the basal positions, and one Cl anion at the apical site (Cu1—Cl1: 2.467 (2) Å. There are weak intermolecular bonds (C18—H18···Cl1i; i: 3/2 - x, -1/2 + y, 3/2 - z) linking adjacent molecules (Table 2 and Fig. 2).
For related literature, see: Lenaerts et al. (2005); Li et al. (2005); Perkins et al. (2005, 2007).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).Fig. 1. The structure of the title compound in 30% probability ellipsoids. | |
Fig. 2. A packing diagram viewed down the a axis. H atoms not taking part in H-bonding not shown. |
[Cu(C8H4F3O2S)Cl(C12H8N2)] | F(000) = 1004 |
Mr = 500.37 | Dx = 1.729 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2yn | Cell parameters from 814 reflections |
a = 12.461 (9) Å | θ = 2.3–18.8° |
b = 13.238 (9) Å | µ = 1.43 mm−1 |
c = 12.932 (8) Å | T = 298 K |
β = 115.689 (10)° | Block, green |
V = 1922 (2) Å3 | 0.4 × 0.1 × 0.04 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 3376 independent reflections |
Radiation source: fine-focus sealed tube | 2081 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
φ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick,1996) | h = −7→14 |
Tmin = 0.60, Tmax = 0.94 | k = −14→15 |
9166 measured reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3 |
3376 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Cu(C8H4F3O2S)Cl(C12H8N2)] | V = 1922 (2) Å3 |
Mr = 500.37 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.461 (9) Å | µ = 1.43 mm−1 |
b = 13.238 (9) Å | T = 298 K |
c = 12.932 (8) Å | 0.4 × 0.1 × 0.04 mm |
β = 115.689 (10)° |
Bruker SMART CCD area-detector diffractometer | 3376 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick,1996) | 2081 reflections with I > 2σ(I) |
Tmin = 0.60, Tmax = 0.94 | Rint = 0.068 |
9166 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.67 e Å−3 |
3376 reflections | Δρmin = −0.31 e Å−3 |
271 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.71468 (6) | 0.01669 (5) | 0.57227 (6) | 0.0501 (3) | |
N1 | 0.6585 (4) | 0.1601 (3) | 0.5616 (4) | 0.0478 (11) | |
N2 | 0.7777 (4) | 0.0686 (3) | 0.4629 (4) | 0.0494 (12) | |
O1 | 0.6154 (3) | −0.0264 (3) | 0.6471 (3) | 0.0544 (10) | |
O2 | 0.7311 (3) | −0.1210 (3) | 0.5297 (3) | 0.0590 (11) | |
Cl1 | 0.90480 (13) | 0.03410 (10) | 0.74564 (12) | 0.0541 (4) | |
C1 | 0.6010 (5) | 0.2048 (4) | 0.6148 (5) | 0.0535 (15) | |
H1 | 0.5748 | 0.1654 | 0.6589 | 0.064* | |
C2 | 0.5784 (5) | 0.3075 (4) | 0.6072 (5) | 0.0606 (17) | |
H2 | 0.5386 | 0.3360 | 0.6465 | 0.073* | |
C3 | 0.6144 (5) | 0.3664 (4) | 0.5425 (5) | 0.0642 (19) | |
H3 | 0.5996 | 0.4355 | 0.5377 | 0.077* | |
C4 | 0.6738 (5) | 0.3234 (4) | 0.4829 (5) | 0.0548 (16) | |
C5 | 0.7162 (6) | 0.3764 (5) | 0.4130 (6) | 0.0684 (19) | |
H5 | 0.7002 | 0.4452 | 0.4008 | 0.082* | |
C6 | 0.7791 (6) | 0.3311 (5) | 0.3632 (6) | 0.0720 (19) | |
H6 | 0.8067 | 0.3691 | 0.3192 | 0.086* | |
C7 | 0.8040 (5) | 0.2238 (5) | 0.3778 (5) | 0.0542 (15) | |
C8 | 0.8706 (5) | 0.1718 (5) | 0.3331 (5) | 0.0641 (17) | |
H8 | 0.9029 | 0.2059 | 0.2904 | 0.077* | |
C9 | 0.8890 (5) | 0.0690 (5) | 0.3517 (5) | 0.0664 (18) | |
H9 | 0.9325 | 0.0327 | 0.3213 | 0.080* | |
C10 | 0.8400 (5) | 0.0217 (5) | 0.4178 (5) | 0.0571 (16) | |
H10 | 0.8523 | −0.0474 | 0.4307 | 0.069* | |
C11 | 0.7609 (4) | 0.1693 (4) | 0.4442 (4) | 0.0466 (14) | |
C12 | 0.6948 (5) | 0.2193 (4) | 0.4964 (4) | 0.0475 (14) | |
C13 | 0.7552 (6) | −0.2949 (4) | 0.5483 (6) | 0.0580 (16) | |
C14 | 0.7086 (5) | −0.1973 (4) | 0.5779 (5) | 0.0453 (14) | |
C15 | 0.6530 (4) | −0.2017 (4) | 0.6474 (4) | 0.0445 (13) | |
H15 | 0.6439 | −0.2644 | 0.6752 | 0.053* | |
C16 | 0.6080 (4) | −0.1150 (4) | 0.6796 (4) | 0.0429 (13) | |
C17 | 0.5462 (5) | −0.1259 (4) | 0.7522 (4) | 0.0449 (13) | |
C18 | 0.5205 (4) | −0.2110 (4) | 0.7965 (4) | 0.0466 (14) | |
H18 | 0.5408 | −0.2757 | 0.7833 | 0.056* | |
C19 | 0.4607 (5) | −0.1909 (4) | 0.8637 (5) | 0.0557 (15) | |
H19 | 0.4366 | −0.2408 | 0.8997 | 0.067* | |
C20 | 0.4413 (5) | −0.0913 (5) | 0.8711 (5) | 0.0644 (17) | |
H20 | 0.4027 | −0.0649 | 0.9125 | 0.077* | |
F1 | 0.7280 (4) | −0.3772 (2) | 0.5884 (4) | 0.0920 (13) | |
F2 | 0.8728 (3) | −0.2922 (3) | 0.5907 (3) | 0.0871 (12) | |
F3 | 0.7167 (4) | −0.3060 (3) | 0.4371 (3) | 0.0939 (13) | |
S1 | 0.49607 (15) | −0.02018 (11) | 0.79536 (15) | 0.0645 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0606 (5) | 0.0418 (4) | 0.0591 (5) | 0.0045 (3) | 0.0365 (4) | 0.0020 (3) |
N1 | 0.047 (3) | 0.048 (3) | 0.049 (3) | 0.001 (2) | 0.022 (2) | −0.003 (2) |
N2 | 0.050 (3) | 0.048 (3) | 0.054 (3) | −0.001 (2) | 0.027 (3) | −0.002 (2) |
O1 | 0.066 (3) | 0.042 (2) | 0.071 (3) | 0.0025 (19) | 0.044 (2) | −0.0024 (19) |
O2 | 0.079 (3) | 0.042 (2) | 0.076 (3) | 0.001 (2) | 0.052 (2) | −0.0025 (19) |
Cl1 | 0.0571 (9) | 0.0510 (9) | 0.0583 (9) | 0.0043 (7) | 0.0288 (8) | 0.0062 (7) |
C1 | 0.054 (4) | 0.050 (4) | 0.057 (4) | 0.006 (3) | 0.025 (3) | −0.006 (3) |
C2 | 0.064 (4) | 0.048 (4) | 0.062 (4) | 0.008 (3) | 0.019 (4) | −0.013 (3) |
C3 | 0.059 (4) | 0.044 (4) | 0.068 (4) | 0.005 (3) | 0.008 (4) | −0.009 (3) |
C4 | 0.048 (4) | 0.043 (3) | 0.059 (4) | −0.003 (3) | 0.009 (3) | 0.000 (3) |
C5 | 0.066 (5) | 0.046 (4) | 0.076 (5) | −0.005 (3) | 0.016 (4) | 0.015 (3) |
C6 | 0.072 (5) | 0.070 (5) | 0.071 (5) | −0.019 (4) | 0.028 (4) | 0.017 (4) |
C7 | 0.044 (4) | 0.067 (4) | 0.045 (3) | −0.003 (3) | 0.012 (3) | 0.008 (3) |
C8 | 0.059 (4) | 0.092 (5) | 0.043 (4) | −0.015 (4) | 0.023 (3) | 0.007 (3) |
C9 | 0.048 (4) | 0.101 (5) | 0.057 (4) | −0.006 (4) | 0.030 (3) | −0.007 (4) |
C10 | 0.057 (4) | 0.063 (4) | 0.060 (4) | 0.009 (3) | 0.034 (3) | −0.004 (3) |
C11 | 0.039 (3) | 0.054 (4) | 0.041 (3) | −0.008 (3) | 0.012 (3) | −0.002 (3) |
C12 | 0.038 (3) | 0.050 (3) | 0.039 (3) | −0.004 (3) | 0.002 (3) | −0.001 (3) |
C13 | 0.058 (4) | 0.049 (4) | 0.075 (5) | 0.004 (3) | 0.036 (4) | −0.009 (3) |
C14 | 0.045 (3) | 0.037 (3) | 0.048 (3) | 0.003 (3) | 0.014 (3) | −0.002 (3) |
C15 | 0.049 (4) | 0.038 (3) | 0.051 (3) | 0.003 (3) | 0.026 (3) | −0.001 (2) |
C16 | 0.034 (3) | 0.049 (3) | 0.043 (3) | −0.004 (3) | 0.014 (3) | −0.005 (3) |
C17 | 0.047 (3) | 0.047 (3) | 0.041 (3) | 0.001 (3) | 0.018 (3) | −0.003 (3) |
C18 | 0.043 (3) | 0.046 (3) | 0.051 (4) | 0.003 (3) | 0.021 (3) | −0.004 (3) |
C19 | 0.056 (4) | 0.061 (4) | 0.061 (4) | −0.007 (3) | 0.036 (3) | 0.000 (3) |
C20 | 0.058 (4) | 0.074 (4) | 0.075 (4) | −0.002 (3) | 0.042 (4) | −0.011 (3) |
F1 | 0.135 (4) | 0.040 (2) | 0.151 (4) | 0.002 (2) | 0.109 (3) | −0.001 (2) |
F2 | 0.066 (3) | 0.074 (2) | 0.127 (3) | 0.013 (2) | 0.048 (3) | −0.007 (2) |
F3 | 0.125 (3) | 0.089 (3) | 0.075 (3) | 0.017 (2) | 0.051 (3) | −0.024 (2) |
S1 | 0.0722 (11) | 0.0507 (9) | 0.0895 (12) | −0.0013 (8) | 0.0529 (10) | −0.0125 (8) |
Cu1—O2 | 1.941 (4) | C7—C11 | 1.396 (8) |
Cu1—O1 | 1.956 (4) | C8—C9 | 1.383 (8) |
Cu1—N1 | 2.007 (4) | C8—H8 | 0.9300 |
Cu1—N2 | 2.013 (5) | C9—C10 | 1.395 (8) |
Cu1—Cl1 | 2.467 (2) | C9—H9 | 0.9300 |
N1—C1 | 1.328 (7) | C10—H10 | 0.9300 |
N1—C12 | 1.364 (7) | C11—C12 | 1.434 (8) |
N2—C10 | 1.312 (7) | C13—F3 | 1.312 (7) |
N2—C11 | 1.355 (6) | C13—F1 | 1.313 (7) |
O1—C16 | 1.263 (6) | C13—F2 | 1.324 (6) |
O2—C14 | 1.280 (6) | C13—C14 | 1.533 (7) |
C1—C2 | 1.383 (7) | C14—C15 | 1.353 (7) |
C1—H1 | 0.9300 | C15—C16 | 1.417 (7) |
C2—C3 | 1.355 (8) | C15—H15 | 0.9300 |
C2—H2 | 0.9300 | C16—C17 | 1.458 (7) |
C3—C4 | 1.400 (8) | C17—C18 | 1.363 (7) |
C3—H3 | 0.9300 | C17—S1 | 1.721 (5) |
C4—C12 | 1.399 (7) | C18—C19 | 1.394 (7) |
C4—C5 | 1.416 (9) | C18—H18 | 0.9300 |
C5—C6 | 1.352 (9) | C19—C20 | 1.350 (7) |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—C7 | 1.448 (8) | C20—S1 | 1.700 (6) |
C6—H6 | 0.9300 | C20—H20 | 0.9300 |
C7—C8 | 1.383 (8) | ||
O2—Cu1—O1 | 91.93 (16) | C9—C8—H8 | 120.0 |
O2—Cu1—N1 | 161.00 (17) | C8—C9—C10 | 117.7 (6) |
O1—Cu1—N1 | 91.92 (18) | C8—C9—H9 | 121.1 |
O2—Cu1—N2 | 89.98 (18) | C10—C9—H9 | 121.1 |
O1—Cu1—N2 | 165.85 (17) | N2—C10—C9 | 124.0 (6) |
N1—Cu1—N2 | 81.94 (19) | N2—C10—H10 | 118.0 |
O2—Cu1—Cl1 | 99.65 (12) | C9—C10—H10 | 118.0 |
O1—Cu1—Cl1 | 98.15 (14) | N2—C11—C7 | 123.2 (5) |
N1—Cu1—Cl1 | 98.21 (13) | N2—C11—C12 | 116.5 (5) |
N2—Cu1—Cl1 | 95.34 (14) | C7—C11—C12 | 120.2 (5) |
C1—N1—C12 | 117.5 (5) | N1—C12—C4 | 123.3 (6) |
C1—N1—Cu1 | 129.5 (4) | N1—C12—C11 | 115.9 (5) |
C12—N1—Cu1 | 112.8 (4) | C4—C12—C11 | 120.7 (6) |
C10—N2—C11 | 117.5 (5) | F3—C13—F1 | 107.8 (5) |
C10—N2—Cu1 | 129.6 (4) | F3—C13—F2 | 105.7 (5) |
C11—N2—Cu1 | 112.6 (4) | F1—C13—F2 | 106.7 (5) |
C16—O1—Cu1 | 126.1 (3) | F3—C13—C14 | 111.7 (5) |
C14—O2—Cu1 | 122.0 (4) | F1—C13—C14 | 114.2 (5) |
N1—C1—C2 | 122.7 (6) | F2—C13—C14 | 110.2 (5) |
N1—C1—H1 | 118.6 | O2—C14—C15 | 129.9 (5) |
C2—C1—H1 | 118.6 | O2—C14—C13 | 110.8 (5) |
C3—C2—C1 | 119.8 (6) | C15—C14—C13 | 119.2 (5) |
C3—C2—H2 | 120.1 | C14—C15—C16 | 122.8 (5) |
C1—C2—H2 | 120.1 | C14—C15—H15 | 118.6 |
C2—C3—C4 | 120.1 (6) | C16—C15—H15 | 118.6 |
C2—C3—H3 | 119.9 | O1—C16—C15 | 124.0 (5) |
C4—C3—H3 | 119.9 | O1—C16—C17 | 116.3 (5) |
C12—C4—C3 | 116.5 (6) | C15—C16—C17 | 119.7 (5) |
C12—C4—C5 | 117.8 (6) | C18—C17—C16 | 129.7 (5) |
C3—C4—C5 | 125.7 (6) | C18—C17—S1 | 110.6 (4) |
C6—C5—C4 | 122.5 (6) | C16—C17—S1 | 119.7 (4) |
C6—C5—H5 | 118.7 | C17—C18—C19 | 113.0 (5) |
C4—C5—H5 | 118.7 | C17—C18—H18 | 123.5 |
C5—C6—C7 | 120.6 (6) | C19—C18—H18 | 123.5 |
C5—C6—H6 | 119.7 | C20—C19—C18 | 113.0 (5) |
C7—C6—H6 | 119.7 | C20—C19—H19 | 123.5 |
C8—C7—C11 | 117.4 (6) | C18—C19—H19 | 123.5 |
C8—C7—C6 | 124.6 (6) | C19—C20—S1 | 111.8 (5) |
C11—C7—C6 | 118.0 (6) | C19—C20—H20 | 124.1 |
C7—C8—C9 | 120.1 (6) | S1—C20—H20 | 124.1 |
C7—C8—H8 | 120.0 | C20—S1—C17 | 91.6 (3) |
O2—Cu1—N1—C1 | 116.2 (6) | C10—N2—C11—C12 | −178.6 (5) |
O1—Cu1—N1—C1 | 14.6 (5) | Cu1—N2—C11—C12 | −4.6 (6) |
N2—Cu1—N1—C1 | −178.1 (5) | C8—C7—C11—N2 | −2.3 (8) |
Cl1—Cu1—N1—C1 | −83.9 (5) | C6—C7—C11—N2 | 179.4 (5) |
O2—Cu1—N1—C12 | −69.4 (7) | C8—C7—C11—C12 | 177.8 (5) |
O1—Cu1—N1—C12 | −171.0 (3) | C6—C7—C11—C12 | −0.5 (8) |
N2—Cu1—N1—C12 | −3.8 (3) | C1—N1—C12—C4 | −0.4 (7) |
Cl1—Cu1—N1—C12 | 90.5 (3) | Cu1—N1—C12—C4 | −175.4 (4) |
O2—Cu1—N2—C10 | −19.5 (5) | C1—N1—C12—C11 | 177.5 (4) |
O1—Cu1—N2—C10 | −117.4 (7) | Cu1—N1—C12—C11 | 2.5 (5) |
N1—Cu1—N2—C10 | 177.7 (5) | C3—C4—C12—N1 | 1.3 (8) |
Cl1—Cu1—N2—C10 | 80.1 (5) | C5—C4—C12—N1 | 179.9 (5) |
O2—Cu1—N2—C11 | 167.3 (4) | C3—C4—C12—C11 | −176.5 (5) |
O1—Cu1—N2—C11 | 69.5 (8) | C5—C4—C12—C11 | 2.1 (8) |
N1—Cu1—N2—C11 | 4.6 (3) | N2—C11—C12—N1 | 1.5 (7) |
Cl1—Cu1—N2—C11 | −93.0 (3) | C7—C11—C12—N1 | −178.7 (4) |
O2—Cu1—O1—C16 | 18.6 (4) | N2—C11—C12—C4 | 179.4 (5) |
N1—Cu1—O1—C16 | 180.0 (4) | C7—C11—C12—C4 | −0.7 (8) |
N2—Cu1—O1—C16 | 116.2 (7) | Cu1—O2—C14—C15 | 12.5 (8) |
Cl1—Cu1—O1—C16 | −81.5 (4) | Cu1—O2—C14—C13 | −167.2 (3) |
O1—Cu1—O2—C14 | −17.6 (4) | F3—C13—C14—O2 | −52.9 (7) |
N1—Cu1—O2—C14 | −119.2 (6) | F1—C13—C14—O2 | −175.5 (5) |
N2—Cu1—O2—C14 | 176.4 (4) | F2—C13—C14—O2 | 64.3 (7) |
Cl1—Cu1—O2—C14 | 81.0 (4) | F3—C13—C14—C15 | 127.4 (6) |
C12—N1—C1—C2 | −0.7 (8) | F1—C13—C14—C15 | 4.8 (8) |
Cu1—N1—C1—C2 | 173.4 (4) | F2—C13—C14—C15 | −115.3 (6) |
N1—C1—C2—C3 | 0.7 (9) | O2—C14—C15—C16 | −0.1 (9) |
C1—C2—C3—C4 | 0.3 (9) | C13—C14—C15—C16 | 179.6 (5) |
C2—C3—C4—C12 | −1.3 (8) | Cu1—O1—C16—C15 | −12.7 (7) |
C2—C3—C4—C5 | −179.7 (6) | Cu1—O1—C16—C17 | 168.8 (3) |
C12—C4—C5—C6 | −2.4 (9) | C14—C15—C16—O1 | −0.1 (8) |
C3—C4—C5—C6 | 176.0 (6) | C14—C15—C16—C17 | 178.3 (5) |
C4—C5—C6—C7 | 1.3 (10) | O1—C16—C17—C18 | 177.3 (5) |
C5—C6—C7—C8 | −178.0 (6) | C15—C16—C17—C18 | −1.2 (8) |
C5—C6—C7—C11 | 0.2 (9) | O1—C16—C17—S1 | −3.7 (6) |
C11—C7—C8—C9 | 2.0 (8) | C15—C16—C17—S1 | 177.8 (4) |
C6—C7—C8—C9 | −179.8 (5) | C16—C17—C18—C19 | 179.4 (5) |
C7—C8—C9—C10 | −1.0 (9) | S1—C17—C18—C19 | 0.3 (6) |
C11—N2—C10—C9 | −0.3 (8) | C17—C18—C19—C20 | −0.3 (7) |
Cu1—N2—C10—C9 | −173.2 (4) | C18—C19—C20—S1 | 0.1 (7) |
C8—C9—C10—N2 | 0.1 (9) | C19—C20—S1—C17 | 0.1 (5) |
C10—N2—C11—C7 | 1.5 (8) | C18—C17—S1—C20 | −0.2 (4) |
Cu1—N2—C11—C7 | 175.5 (4) | C16—C17—S1—C20 | −179.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cl1i | 0.93 | 2.68 | 3.604 (6) | 177 |
Symmetry code: (i) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8H4F3O2S)Cl(C12H8N2)] |
Mr | 500.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 12.461 (9), 13.238 (9), 12.932 (8) |
β (°) | 115.689 (10) |
V (Å3) | 1922 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.43 |
Crystal size (mm) | 0.4 × 0.1 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick,1996) |
Tmin, Tmax | 0.60, 0.94 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9166, 3376, 2081 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.142, 1.00 |
No. of reflections | 3376 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.31 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).
Cu1—O2 | 1.941 (4) | Cu1—N2 | 2.013 (5) |
Cu1—O1 | 1.956 (4) | Cu1—Cl1 | 2.467 (2) |
Cu1—N1 | 2.007 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cl1i | 0.93 | 2.68 | 3.604 (6) | 176.7 |
Symmetry code: (i) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
The authors are grateful to the Natural Science Foundation of Shanxi Province for financial support (grant No. 20041012).
References
Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Lenaerts, P., Storms, A., Mullens, J., D'Haen, J., Goerller-Walrand, C., Binnemans, K. & Driesen, K. (2005). Chem. Mater. 17, 5194–5201. Web of Science CrossRef CAS Google Scholar
Li, Z., Xu, D., Wu, J. & Chiang, M. (2005). J. Chem. Crystallogr. 45, 615–619. Web of Science CSD CrossRef Google Scholar
Perkins, W. J., Maxwell, T., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2005). Acta Cryst. E61, m2047–m2049. Web of Science CSD CrossRef IUCr Journals Google Scholar
Perkins, W. J., Maxwell, T., Williams, K. B., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2007). Acta Cryst. E63, m423–m425. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal complexes of 2-thenoyltrifluoroacetone are attractive due to their potential applications in new material design (Lenaerts, et al., 2005; Perkins, et al., 2005, 2007). In this paper, we report a novel Cu complex of 2-thenoyltrifluoroacetone.
A displacement ellipsoid drawing of (I) is shown in Fig. 1. Selected bond lengths are listed in Table 1. The CuII ion exhibits a distorted square pyramidal geometry. The coordination environment of the cation is comprised of two N atoms from 1,10-phenanthroline and two O atoms from 2-thenoyltrifluoroacetone at the basal positions, and one Cl anion at the apical site (Cu1—Cl1: 2.467 (2) Å. There are weak intermolecular bonds (C18—H18···Cl1i; i: 3/2 - x, -1/2 + y, 3/2 - z) linking adjacent molecules (Table 2 and Fig. 2).