metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Deca­aqua­dioxidobis[μ3-N-(phospho­n­atometh­yl)imino­di­acetato]­dizinc(II)­divanadium(IV) dihydrate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: filipe.paz@ua.pt

(Received 20 November 2007; accepted 22 November 2007; online 6 December 2007)

The title compound, [Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O, contains a [V2O2(pmida)2]4− dimeric anionic unit [where H4pmida is N-(phosphono­meth­yl)imino­diacetic acid] lying on a centre of symmetry which is exo-coordinated via the two deprotonated phospho­nate groups to two Zn2+ cations, with the coordination environment of Zn completed by five water mol­ecules. The crystal packing is mediated by an extensive network of strong and highly directional O—H⋯O hydrogen bonds involving the water mol­ecules (coordinated and uncoordinated) and the functional groups of pmida4−, leading to a three-dimensional supra­molecular network.

Related literature

For related literature, see: Cunha-Silva, Mafra et al. (2007[Cunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527-3538.]); Cunha-Silva, Shi et al. (2007[Cunha-Silva, L., Shi, F.-N., Klinowski, J., Trindade, T., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m372-m375.]); Shi et al. (2007[Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2007). J. Am. Chem. Soc. doi: 10.1021/ja074119k.]); Mafra et al. (2006[Mafra, L., Paz, F. A. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2006). Chem. Eur. J. 12, 363-375.]); Shi, Paz, Girginova, Amaral et al. (2006[Shi, F.-N., Paz, F. A. A., Girginova, P. I., Amaral, V. S., Rocha, J., Klinowski, J. & Trindade, T. (2006). Inorg. Chim. Acta, 359, 1147-1158.]); Shi, Paz, Girginova, Rocha et al. (2006[Shi, F.-N., Paz, F. A. A., Girginova, P. I., Rocha, J., Amaral, V. S., Klinowski, J. & Trindade, T. (2006). J. Mol. Struct. 789, 200-208.]); Shi, Almeida Paz, Trindade & Rocha (2006[Shi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335-m338.]); Paz, Rocha, Klinowski et al. (2005[Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125.]); Almeida Paz, Shi, Mafra et al. (2005[Almeida Paz, F. A., Shi, F.-N., Mafra, L., Makal, A., Wozniak, K., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m1628-m1632.]); Almeida Paz, Shi, Trindade et al. (2005[Almeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247-m2250.]); Shi et al. (2005[Shi, F.-N., Paz, F. A. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Makal, A., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 754, 51-60.]); Paz et al. (2004[Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O

  • Mr = 926.97

  • Monoclinic, P 21 /c

  • a = 10.0161 (5) Å

  • b = 14.8811 (7) Å

  • c = 10.8298 (5) Å

  • β = 111.147 (2)°

  • V = 1505.48 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 293 (2) K

  • 0.22 × 0.14 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Version 2.01. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.621, Tmax = 0.796

  • 95509 measured reflections

  • 4040 independent reflections

  • 3765 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.04

  • 4040 reflections

  • 238 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O7 2.0133 (14)
Zn1—O3W 2.0609 (16)
Zn1—O1W 2.0860 (17)
Zn1—O4W 2.0974 (16)
Zn1—O5W 2.1440 (18)
Zn1—O2W 2.1660 (15)
V1—O8 1.6086 (16)
V1—O6i 1.9890 (14)
V1—O5 1.9932 (14)
V1—O2 2.0312 (15)
V1—O4 2.0321 (14)
V1—N1 2.3590 (16)
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1ii 0.90 (2) 1.88 (2) 2.770 (2) 169 (3)
O1W—H2W⋯O2Wii 0.90 (2) 1.95 (2) 2.828 (2) 164 (3)
O2W—H3W⋯O3iii 0.88 (2) 1.85 (2) 2.725 (2) 172 (3)
O2W—H4W⋯O5ii 0.87 (2) 1.93 (2) 2.795 (2) 173 (3)
O3W—H6W⋯O2ii 0.88 (2) 1.87 (2) 2.733 (2) 171 (3)
O3W—H5W⋯O4iv 0.89 (2) 1.86 (2) 2.726 (2) 164 (4)
O4W—H7W⋯O3iv 0.86 (2) 1.98 (2) 2.837 (2) 174 (3)
O4W—H8W⋯O1v 0.88 (2) 1.94 (2) 2.799 (2) 167 (3)
O5W—H9W⋯O6 0.90 (2) 1.98 (3) 2.805 (2) 150 (4)
O5W—H10W⋯O6W 0.86 (2) 1.84 (3) 2.656 (6) 159 (4)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z-1; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Version 2.1-RC13. Bruker AXS, Delft, The Netherlands.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research on highly crystalline organic–inorganic hybrids, in particular those belonging to the family of coordination polymers, has received a considerable attention over the last two decades. Such occurs as a direct consequence of the fascinating structural architectures achieved by assembling organic ligands and metal centres which, in many cases, can be allied with interesting potential applications (e.g. gas storage, separation, catalysis, guest exchange, magnetic or optical sensors). Following our ongoing research toward the hydrothermal synthesis and structural characterization of this type of materials, we recently focused our attention on the use of multifunctional ligands such as N-(phosphonomethyl)iminodiacetic acid (H4pmida) (Cunha-Silva, Shi et al., 2007; Mafra et al., 2006; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004), 1-hydroxyethylidene-1,1-diphosphonic acid (H5hedp) (Shi et al., 2007), and nitrilotris(methylenephosphonic acid) (H6nmp) (Cunha-Silva, Mafra et al., 2007), we report here the structural details of the title compound, [Zn2V2O2(pmida)2(H2O)10].2H2O (I) [where pmida4– stands for C5H6NO7P4-].

The structure of (I) contains two crystallographically unique metal centres, Zn1 and V1, both exhibiting octahedral coordination geometries, {ZnO6} and {VO5N} (see table of selected geometric parameters and Fig. 1). Zn1 is coordinated by five O atoms of five crystalographically independent water molecules and one O atom from the µ3-bridging phosphonate group of pmida4- (Fig. 1), with the overall coordination geometry resembling a slightly distorted octahedron [Zn—O bond lengths found in the 2.0133 (14)–2.1660 (15) Å range; cis and trans O—Zn—O octahedral angles ranging from 87.09 (8) to 91.64 (6)° and from 177.27 (7) to 178.11 (7)°, respectively; see table of selected geometric parameters].

The two symmetry-related Zn2+ cations of the neutral tetranuclear [Zn2V2O2(pmida)2(H2O)10] molecule depicted in Fig. 1 are connected through the phosphonate groups belonging to the central centrosymmetric dimeric anionic [V2O2(pmida)2]4- unit, with intermetallic Zn1···Zn1i, Zn1···V1 and V1···V1i distances of 10.0170 (5), 3.2447 (5) and 3.8773 (5) Å, respectively [symmetry code: (i) 2 - x, 1 - y, 1 - z]. It is of considerable importance to emphasize that the geometrical aspects of this dimeric anionic unit are typical and in good agreement with those described in detail in our previous publications (Shi et al., 2007; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004). V1 is connected to one oxo group and to two pmida4- ligands, with the geometry of the first coordination sphere resembling a highly distorted octahedron, which is composed by one short V—O bond [1.6088 (16) Å], four intermediate V—O bonds [1.9890 (12)–2.0321 (14) Å] and a long V—N bond [2.3590 (16) Å]; the cis and trans internal octahedral angles range from 86.67 (6) to 103.84 (8)°, and from 154.45 (6) to 169.79 (8)°, respectively. Noteworthy is the structural evidence of the notable trans effect of the oxo group over the long V—N distance (see Table of selected geometric parameters).

Individual [Zn2V2O2(pmida)2(H2O)10] molecular units close pack with the water molecules of crystallization in a typical brick-wall-like fashion in the bc plane of the unit cell (Fig. 2), mediated by an extensive network of strong and highly directional O—H···O hydrogen bonding interactions (see Table summarizing the geometrical aspects of the hydrogen bonds).

Related literature top

For related literature, see: Cunha-Silva, Mafra et al. (2007); Cunha-Silva, Shi et al. (2007); Shi et al. (2007); Mafra et al. (2006); Shi, Paz, Girginova, Amaral et al. (2006); Shi, Paz, Girginova, Rocha et al. (2006); Shi, Almeida Paz, Trindade & Rocha (2006); Paz, Rocha, Klinowski et al. (2005); Almeida Paz, Shi, Mafra et al. (2005); Almeida Paz, Shi, Trindade et al. (2005); Shi et al. (2005); Paz et al. (2004).

Experimental top

Starting materials were purchased from commercial sources and were used as received without further purification: N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, C5H10NO7P, 97%, Fluka), potassium metavanadate (KVO3, 98%, Aldrich), zinc oxide (ZnO, 98%, Panreac), imidazole (C3H4N2, 99.0%, Panreac) and adipic acid (HOOC(CH2)4COOH, 99%, Aldrich).

A mixture containing 0.26 g of KVO3, 0.15 g of ZnO, 0.42 g of H4pmida, 0.13 g of imidazole and 0.27 g of adipic acid in ca 9 g of distilled water, was stirred thoroughly at ambient temperature for 30 minutes, yielding a suspension with a molar composition of ca 1:1:1:1:1:270, respectively, which was transferred to a PTFE-lined stainless steel reaction vessel (total volume ca 40 ml). The reaction vessel was placed inside a preheated oven at 473 K for one day, after which the temperature was decreased to 373 K allowing the reaction to proceed for another four days. After reacting, under autogeneous pressure and static conditions, the vessel was removed from the oven and left to cool to ambient temperature before opening. Small amounts of green and/or blue mixed powders of unknown phases were readily separated from the mother liquor by vacuum filtering. Large single crystals of the title compound were isolated by slow evaporation (in open air) of the mother liquor over the period of one week. It is of considerable importance to emphasize that similar reactions where imidazole and adipic acid were not included in the starting reactive mixture failed in the isolation of the title material.

Refinement top

H atoms bound to carbon were placed at idealized positions and allowed to ride on their parent atoms with Uiso fixed at 1.2×Ueq(C). H atoms associated with the five coordinated water molecules were markedly visible in difference Fourier maps and were included in the structural model for subsequent least-squares refinement cycles with the O—H and H···H distances restrained to 0.90 (3) and 1.47 (3) Å, respectively, in order to ensure a chemically reasonable geometry for these chemical moieties. These H atoms were allowed to ride on their parent atoms with Uiso fixed at 1.5×Ueq(O).

The crystallographically unique O6W water molecule of crystallization was directly located from difference Fourier maps and refined assuming a full site occupancy and a thermal anisotropic displacement behaviour. The H atoms associated with this chemical moiety could not be unequivocally located from difference Fourier maps. Additionally, attempts to place the two H atoms in calculated positions did not produce a chemically reasonable structural model, in particular concerning the geometry of the resulting hydrogen bonding interactions. Therefore, these H atoms were omitted from the final structural model but were included in the empirical chemical formula.

Structure description top

Research on highly crystalline organic–inorganic hybrids, in particular those belonging to the family of coordination polymers, has received a considerable attention over the last two decades. Such occurs as a direct consequence of the fascinating structural architectures achieved by assembling organic ligands and metal centres which, in many cases, can be allied with interesting potential applications (e.g. gas storage, separation, catalysis, guest exchange, magnetic or optical sensors). Following our ongoing research toward the hydrothermal synthesis and structural characterization of this type of materials, we recently focused our attention on the use of multifunctional ligands such as N-(phosphonomethyl)iminodiacetic acid (H4pmida) (Cunha-Silva, Shi et al., 2007; Mafra et al., 2006; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004), 1-hydroxyethylidene-1,1-diphosphonic acid (H5hedp) (Shi et al., 2007), and nitrilotris(methylenephosphonic acid) (H6nmp) (Cunha-Silva, Mafra et al., 2007), we report here the structural details of the title compound, [Zn2V2O2(pmida)2(H2O)10].2H2O (I) [where pmida4– stands for C5H6NO7P4-].

The structure of (I) contains two crystallographically unique metal centres, Zn1 and V1, both exhibiting octahedral coordination geometries, {ZnO6} and {VO5N} (see table of selected geometric parameters and Fig. 1). Zn1 is coordinated by five O atoms of five crystalographically independent water molecules and one O atom from the µ3-bridging phosphonate group of pmida4- (Fig. 1), with the overall coordination geometry resembling a slightly distorted octahedron [Zn—O bond lengths found in the 2.0133 (14)–2.1660 (15) Å range; cis and trans O—Zn—O octahedral angles ranging from 87.09 (8) to 91.64 (6)° and from 177.27 (7) to 178.11 (7)°, respectively; see table of selected geometric parameters].

The two symmetry-related Zn2+ cations of the neutral tetranuclear [Zn2V2O2(pmida)2(H2O)10] molecule depicted in Fig. 1 are connected through the phosphonate groups belonging to the central centrosymmetric dimeric anionic [V2O2(pmida)2]4- unit, with intermetallic Zn1···Zn1i, Zn1···V1 and V1···V1i distances of 10.0170 (5), 3.2447 (5) and 3.8773 (5) Å, respectively [symmetry code: (i) 2 - x, 1 - y, 1 - z]. It is of considerable importance to emphasize that the geometrical aspects of this dimeric anionic unit are typical and in good agreement with those described in detail in our previous publications (Shi et al., 2007; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004). V1 is connected to one oxo group and to two pmida4- ligands, with the geometry of the first coordination sphere resembling a highly distorted octahedron, which is composed by one short V—O bond [1.6088 (16) Å], four intermediate V—O bonds [1.9890 (12)–2.0321 (14) Å] and a long V—N bond [2.3590 (16) Å]; the cis and trans internal octahedral angles range from 86.67 (6) to 103.84 (8)°, and from 154.45 (6) to 169.79 (8)°, respectively. Noteworthy is the structural evidence of the notable trans effect of the oxo group over the long V—N distance (see Table of selected geometric parameters).

Individual [Zn2V2O2(pmida)2(H2O)10] molecular units close pack with the water molecules of crystallization in a typical brick-wall-like fashion in the bc plane of the unit cell (Fig. 2), mediated by an extensive network of strong and highly directional O—H···O hydrogen bonding interactions (see Table summarizing the geometrical aspects of the hydrogen bonds).

For related literature, see: Cunha-Silva, Mafra et al. (2007); Cunha-Silva, Shi et al. (2007); Shi et al. (2007); Mafra et al. (2006); Shi, Paz, Girginova, Amaral et al. (2006); Shi, Paz, Girginova, Rocha et al. (2006); Shi, Almeida Paz, Trindade & Rocha (2006); Paz, Rocha, Klinowski et al. (2005); Almeida Paz, Shi, Mafra et al. (2005); Almeida Paz, Shi, Trindade et al. (2005); Shi et al. (2005); Paz et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Bruker 2001).

Figures top
[Figure 1] Fig. 1. Schematic representation of the tetranuclear centrosymmetric [Zn2V2O2(pmida)2(H2O)10] molecular unit, showing the labelling scheme for all non-H atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres with arbitrary radii. The water molecule of crystallization O6W was omitted for clarity. Symmetry transformation used to generate equivalent atoms (in grey): 2 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the (a) [001], (b) [100] and (c) [010] directions of the unit cell. Hydrogen bonds are represented as orange dashed lines.
Decaaquadioxidobis[µ3-N– (phosphonatomethyl)iminodiacetato]dizinc(II)divanadium(IV) dihydrate top
Crystal data top
[Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2OF(000) = 940
Mr = 926.97Dx = 2.045 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9009 reflections
a = 10.0161 (5) Åθ = 2.6–37.6°
b = 14.8811 (7) ŵ = 2.40 mm1
c = 10.8298 (5) ÅT = 293 K
β = 111.147 (2)°Prism, blue
V = 1505.48 (12) Å30.22 × 0.14 × 0.10 mm
Z = 2
Data collection top
Bruker X8 APEXII Kappa CCD
diffractometer
4040 independent reflections
Radiation source: fine-focus sealed tube3765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Thin–slice ω and φ scansθmax = 29.1°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1313
Tmin = 0.621, Tmax = 0.796k = 2020
95509 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.038P)2 + 2.056P]
where P = (Fo2 + 2Fc2)/3
4040 reflections(Δ/σ)max = 0.002
238 parametersΔρmax = 1.06 e Å3
15 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2OV = 1505.48 (12) Å3
Mr = 926.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.0161 (5) ŵ = 2.40 mm1
b = 14.8811 (7) ÅT = 293 K
c = 10.8298 (5) Å0.22 × 0.14 × 0.10 mm
β = 111.147 (2)°
Data collection top
Bruker X8 APEXII Kappa CCD
diffractometer
4040 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3765 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.796Rint = 0.028
95509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02715 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.06 e Å3
4040 reflectionsΔρmin = 0.87 e Å3
238 parameters
Special details top

Experimental. See dedicated section in the main paper

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.47946 (2)0.566124 (16)0.26276 (2)0.02202 (7)
V11.01192 (3)0.52639 (2)0.74230 (3)0.01679 (8)
P10.81721 (5)0.55866 (3)0.44467 (5)0.01775 (10)
N10.98913 (17)0.66771 (11)0.63798 (15)0.0188 (3)
O50.85567 (14)0.49988 (10)0.57024 (13)0.0223 (3)
O70.66854 (14)0.59666 (10)0.40459 (14)0.0242 (3)
O41.16206 (16)0.60558 (10)0.87361 (13)0.0252 (3)
C50.9481 (2)0.65025 (13)0.49415 (17)0.0199 (3)
H5A1.03230.63400.47470.024*
H5B0.90720.70410.44460.024*
O60.83989 (15)0.50552 (10)0.33263 (14)0.0249 (3)
O20.86146 (16)0.59104 (10)0.79428 (16)0.0275 (3)
C41.1990 (2)0.68247 (13)0.84317 (19)0.0229 (4)
C10.8075 (2)0.66657 (14)0.7474 (2)0.0239 (4)
O81.0159 (2)0.43890 (11)0.83081 (18)0.0348 (4)
C31.1313 (2)0.71027 (15)0.69835 (19)0.0263 (4)
H3A1.12130.77510.69220.032*
H3B1.19240.69200.65090.032*
C20.8762 (2)0.71885 (14)0.6657 (2)0.0266 (4)
H2A0.80270.73590.58240.032*
H2B0.91760.77360.71250.032*
O31.28796 (19)0.73187 (12)0.92367 (16)0.0371 (4)
O10.70218 (18)0.69941 (11)0.76509 (19)0.0360 (4)
O1W0.5041 (2)0.43314 (11)0.32805 (19)0.0392 (4)
H1W0.440 (3)0.390 (2)0.288 (3)0.059*
H2W0.528 (4)0.419 (2)0.414 (2)0.059*
O2W0.36824 (16)0.59655 (11)0.39610 (15)0.0266 (3)
H3W0.348 (3)0.6535 (14)0.402 (3)0.040*
H4W0.298 (3)0.5638 (17)0.401 (3)0.040*
O3W0.28954 (18)0.52927 (14)0.11685 (17)0.0409 (4)
H5W0.238 (4)0.560 (2)0.045 (3)0.061*
H6W0.234 (4)0.491 (2)0.136 (3)0.061*
O4W0.45023 (17)0.69926 (11)0.19464 (16)0.0304 (3)
H7W0.397 (3)0.706 (2)0.113 (2)0.046*
H8W0.531 (3)0.727 (2)0.205 (3)0.046*
O5W0.58091 (19)0.53840 (17)0.12317 (18)0.0446 (5)
H9W0.666 (3)0.513 (2)0.170 (3)0.067*
H10W0.598 (4)0.574 (2)0.068 (3)0.067*
O6W0.5884 (6)0.6734 (4)0.0345 (5)0.1474 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01727 (12)0.02490 (13)0.01985 (12)0.00060 (8)0.00183 (8)0.00210 (8)
V10.01574 (14)0.01789 (15)0.01586 (14)0.00001 (10)0.00464 (11)0.00076 (10)
P10.01270 (19)0.0220 (2)0.0165 (2)0.00024 (16)0.00279 (16)0.00184 (16)
N10.0182 (7)0.0201 (7)0.0165 (7)0.0029 (6)0.0045 (5)0.0002 (5)
O50.0185 (6)0.0238 (6)0.0206 (6)0.0037 (5)0.0023 (5)0.0009 (5)
O70.0142 (6)0.0304 (7)0.0239 (6)0.0025 (5)0.0018 (5)0.0048 (6)
O40.0279 (7)0.0252 (7)0.0171 (6)0.0049 (6)0.0017 (5)0.0016 (5)
C50.0195 (8)0.0232 (8)0.0152 (7)0.0024 (7)0.0041 (6)0.0014 (6)
O60.0177 (6)0.0331 (7)0.0233 (6)0.0002 (5)0.0067 (5)0.0079 (6)
O20.0287 (7)0.0247 (7)0.0357 (8)0.0029 (6)0.0196 (6)0.0039 (6)
C40.0210 (8)0.0251 (9)0.0190 (8)0.0035 (7)0.0026 (7)0.0003 (7)
C10.0227 (9)0.0225 (9)0.0270 (9)0.0022 (7)0.0094 (7)0.0053 (7)
O80.0410 (9)0.0272 (8)0.0383 (9)0.0017 (7)0.0169 (7)0.0086 (7)
C30.0248 (9)0.0288 (10)0.0202 (8)0.0110 (8)0.0021 (7)0.0036 (7)
C20.0337 (10)0.0189 (8)0.0299 (10)0.0036 (8)0.0148 (8)0.0009 (7)
O30.0405 (9)0.0334 (8)0.0242 (7)0.0151 (7)0.0043 (7)0.0007 (6)
O10.0305 (8)0.0297 (8)0.0538 (10)0.0047 (6)0.0226 (8)0.0033 (7)
O1W0.0428 (10)0.0270 (8)0.0340 (9)0.0057 (7)0.0029 (7)0.0044 (7)
O2W0.0235 (7)0.0261 (7)0.0316 (7)0.0003 (6)0.0117 (6)0.0027 (6)
O3W0.0269 (8)0.0578 (12)0.0266 (8)0.0179 (8)0.0040 (6)0.0167 (8)
O4W0.0274 (7)0.0287 (8)0.0303 (8)0.0041 (6)0.0046 (6)0.0066 (6)
O5W0.0281 (8)0.0761 (14)0.0268 (8)0.0078 (9)0.0064 (7)0.0058 (9)
O6W0.163 (4)0.159 (5)0.143 (4)0.009 (4)0.083 (4)0.009 (3)
Geometric parameters (Å, º) top
Zn1—O72.0133 (14)C5—H5B0.9700
Zn1—O3W2.0609 (16)O6—V1i1.9890 (14)
Zn1—O1W2.0860 (17)O2—C11.271 (3)
Zn1—O4W2.0974 (16)C4—O31.238 (2)
Zn1—O5W2.1440 (18)C4—C31.524 (3)
Zn1—O2W2.1660 (15)C1—O11.239 (3)
V1—O81.6086 (16)C1—C21.517 (3)
V1—O6i1.9890 (14)C3—H3A0.9700
V1—O51.9932 (14)C3—H3B0.9700
V1—O22.0312 (15)C2—H2A0.9700
V1—O42.0321 (14)C2—H2B0.9700
V1—N12.3590 (16)O1W—H1W0.90 (2)
P1—O71.5030 (14)O1W—H2W0.90 (2)
P1—O61.5324 (15)O2W—H3W0.88 (2)
P1—O51.5443 (14)O2W—H4W0.87 (2)
P1—C51.8323 (19)O3W—H5W0.89 (2)
N1—C31.478 (2)O3W—H6W0.88 (2)
N1—C21.481 (3)O4W—H7W0.86 (2)
N1—C51.484 (2)O4W—H8W0.88 (2)
O4—C41.282 (2)O5W—H9W0.90 (2)
C5—H5A0.9700O5W—H10W0.86 (2)
O7—Zn1—O3W177.43 (8)P1—O7—Zn1134.17 (9)
O7—Zn1—O1W89.53 (7)C4—O4—V1123.17 (12)
O3W—Zn1—O1W88.34 (7)N1—C5—P1109.58 (12)
O7—Zn1—O4W91.64 (6)N1—C5—H5A109.8
O3W—Zn1—O4W90.49 (7)P1—C5—H5A109.8
O1W—Zn1—O4W178.81 (7)N1—C5—H5B109.8
O7—Zn1—O5W91.53 (6)P1—C5—H5B109.8
O3W—Zn1—O5W87.09 (8)H5A—C5—H5B108.2
O1W—Zn1—O5W91.61 (9)P1—O6—V1i142.36 (9)
O4W—Zn1—O5W88.58 (8)C1—O2—V1123.99 (13)
O7—Zn1—O2W90.73 (6)O3—C4—O4123.37 (18)
O3W—Zn1—O2W90.71 (7)O3—C4—C3120.23 (18)
O1W—Zn1—O2W89.93 (7)O4—C4—C3116.37 (16)
O4W—Zn1—O2W89.83 (6)O1—C1—O2123.4 (2)
O5W—Zn1—O2W177.27 (7)O1—C1—C2118.61 (19)
O8—V1—O6i100.84 (8)O2—C1—C2118.02 (17)
O8—V1—O5103.84 (8)N1—C3—C4109.82 (15)
O6i—V1—O591.21 (6)N1—C3—H3A109.7
O8—V1—O294.57 (8)C4—C3—H3A109.7
O6i—V1—O2164.50 (7)N1—C3—H3B109.7
O5—V1—O286.67 (6)C4—C3—H3B109.7
O8—V1—O4101.49 (8)H3A—C3—H3B108.2
O6i—V1—O487.20 (6)N1—C2—C1113.27 (16)
O5—V1—O4154.45 (6)N1—C2—H2A108.9
O2—V1—O488.12 (6)C1—C2—H2A108.9
O8—V1—N1169.79 (8)N1—C2—H2B108.9
O6i—V1—N188.57 (6)C1—C2—H2B108.9
O5—V1—N179.69 (6)H2A—C2—H2B107.7
O2—V1—N175.95 (6)Zn1—O1W—H1W122 (2)
O4—V1—N174.78 (6)Zn1—O1W—H2W121 (2)
O7—P1—O6112.33 (8)H1W—O1W—H2W103 (3)
O7—P1—O5111.96 (8)Zn1—O2W—H3W115.9 (19)
O6—P1—O5110.11 (9)Zn1—O2W—H4W123 (2)
O7—P1—C5109.55 (9)H3W—O2W—H4W109 (2)
O6—P1—C5108.69 (8)Zn1—O3W—H5W128 (2)
O5—P1—C5103.82 (8)Zn1—O3W—H6W119 (2)
C3—N1—C2111.98 (16)H5W—O3W—H6W109 (3)
C3—N1—C5113.40 (15)Zn1—O4W—H7W115 (2)
C2—N1—C5111.14 (15)Zn1—O4W—H8W113 (2)
C3—N1—V1105.00 (11)H7W—O4W—H8W106 (3)
C2—N1—V1108.06 (11)Zn1—O5W—H9W106 (2)
C5—N1—V1106.80 (11)Zn1—O5W—H10W130 (3)
P1—O5—V1124.99 (8)H9W—O5W—H10W105 (3)
O8—V1—N1—C395.2 (5)O5—V1—O4—C410.3 (3)
O6i—V1—N1—C362.07 (12)O2—V1—O4—C488.53 (16)
O5—V1—N1—C3153.56 (13)N1—V1—O4—C412.59 (15)
O2—V1—N1—C3117.32 (13)C3—N1—C5—P1155.80 (14)
O4—V1—N1—C325.42 (12)C2—N1—C5—P177.01 (17)
O8—V1—N1—C224.5 (5)V1—N1—C5—P140.64 (13)
O6i—V1—N1—C2178.27 (13)O7—P1—C5—N189.70 (14)
O5—V1—N1—C286.78 (13)O6—P1—C5—N1147.23 (12)
O2—V1—N1—C22.35 (12)O5—P1—C5—N130.04 (15)
O4—V1—N1—C294.24 (13)O7—P1—O6—V1i147.90 (15)
O8—V1—N1—C5144.1 (4)O5—P1—O6—V1i86.60 (17)
O6i—V1—N1—C558.62 (11)C5—P1—O6—V1i26.51 (19)
O5—V1—N1—C532.88 (11)O8—V1—O2—C1176.55 (17)
O2—V1—N1—C5122.00 (12)O6i—V1—O2—C19.6 (4)
O4—V1—N1—C5146.11 (12)O5—V1—O2—C172.91 (17)
O7—P1—O5—V1116.85 (10)O4—V1—O2—C182.07 (17)
O6—P1—O5—V1117.44 (10)N1—V1—O2—C17.29 (16)
C5—P1—O5—V11.24 (12)V1—O4—C4—O3178.20 (17)
O8—V1—O5—P1173.68 (11)V1—O4—C4—C34.0 (3)
O6i—V1—O5—P172.20 (11)V1—O2—C1—O1169.44 (16)
O2—V1—O5—P192.43 (11)V1—O2—C1—C210.6 (3)
O4—V1—O5—P113.8 (2)C2—N1—C3—C483.0 (2)
N1—V1—O5—P116.12 (10)C5—N1—C3—C4150.29 (17)
O6—P1—O7—Zn121.40 (16)V1—N1—C3—C434.07 (19)
O5—P1—O7—Zn1103.09 (13)O3—C4—C3—N1153.7 (2)
C5—P1—O7—Zn1142.29 (12)O4—C4—C3—N128.5 (3)
O1W—Zn1—O7—P152.88 (14)C3—N1—C2—C1116.61 (19)
O4W—Zn1—O7—P1127.34 (14)C5—N1—C2—C1115.43 (18)
O5W—Zn1—O7—P138.72 (15)V1—N1—C2—C11.4 (2)
O2W—Zn1—O7—P1142.81 (13)O1—C1—C2—N1172.84 (19)
O8—V1—O4—C4177.18 (16)O2—C1—C2—N17.2 (3)
O6i—V1—O4—C476.69 (16)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1ii0.90 (2)1.88 (2)2.770 (2)169 (3)
O1W—H2W···O2Wii0.90 (2)1.95 (2)2.828 (2)164 (3)
O2W—H3W···O3iii0.88 (2)1.85 (2)2.725 (2)172 (3)
O2W—H4W···O5ii0.87 (2)1.93 (2)2.795 (2)173 (3)
O3W—H6W···O2ii0.88 (2)1.87 (2)2.733 (2)171 (3)
O3W—H5W···O4iv0.89 (2)1.86 (2)2.726 (2)164 (4)
O4W—H7W···O3iv0.86 (2)1.98 (2)2.837 (2)174 (3)
O4W—H8W···O1v0.88 (2)1.94 (2)2.799 (2)167 (3)
O5W—H9W···O60.90 (2)1.98 (3)2.805 (2)150 (4)
O5W—H10W···O6W0.86 (2)1.84 (3)2.656 (6)159 (4)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2; (iv) x1, y, z1; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O
Mr926.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0161 (5), 14.8811 (7), 10.8298 (5)
β (°) 111.147 (2)
V3)1505.48 (12)
Z2
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.22 × 0.14 × 0.10
Data collection
DiffractometerBruker X8 APEXII Kappa CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.621, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
95509, 4040, 3765
Rint0.028
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.04
No. of reflections4040
No. of parameters238
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 0.87

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXTL (Bruker 2001), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Zn1—O72.0133 (14)V1—O81.6086 (16)
Zn1—O3W2.0609 (16)V1—O6i1.9890 (14)
Zn1—O1W2.0860 (17)V1—O51.9932 (14)
Zn1—O4W2.0974 (16)V1—O22.0312 (15)
Zn1—O5W2.1440 (18)V1—O42.0321 (14)
Zn1—O2W2.1660 (15)V1—N12.3590 (16)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1ii0.90 (2)1.88 (2)2.770 (2)169 (3)
O1W—H2W···O2Wii0.90 (2)1.95 (2)2.828 (2)164 (3)
O2W—H3W···O3iii0.88 (2)1.85 (2)2.725 (2)172 (3)
O2W—H4W···O5ii0.87 (2)1.93 (2)2.795 (2)173 (3)
O3W—H6W···O2ii0.88 (2)1.87 (2)2.733 (2)171 (3)
O3W—H5W···O4iv0.89 (2)1.86 (2)2.726 (2)164 (4)
O4W—H7W···O3iv0.86 (2)1.98 (2)2.837 (2)174 (3)
O4W—H8W···O1v0.88 (2)1.94 (2)2.799 (2)167 (3)
O5W—H9W···O60.90 (2)1.98 (3)2.805 (2)150 (4)
O5W—H10W···O6W0.86 (2)1.84 (3)2.656 (6)159 (4)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2; (iv) x1, y, z1; (v) x, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (grant No. POCI-PPCDT/QUI/58377/2004 supported by FEDER), for specific funding toward the purchase of the single-crystal diffractometer, and also for Postdoctoral Research Grants SFRH/BPD/14410/2003 (to LCS) and SFRH/BPD/9309/2002 (to FNS).

References

First citationAlmeida Paz, F. A., Shi, F.-N., Mafra, L., Makal, A., Wozniak, K., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m1628–m1632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlmeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247–m2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Version 2.1-RC13. Bruker AXS, Delft, The Netherlands.  Google Scholar
First citationCunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527–3538.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunha-Silva, L., Shi, F.-N., Klinowski, J., Trindade, T., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m372–m375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMafra, L., Paz, F. A. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2006). Chem. Eur. J. 12, 363–375.  Web of Science CSD CrossRef Google Scholar
First citationPaz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125.  Web of Science CrossRef CAS Google Scholar
First citationPaz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Version 2.01. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationShi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335–m338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2007). J. Am. Chem. Soc. doi: 10.1021/ja074119k.  Google Scholar
First citationShi, F.-N., Paz, F. A. A., Girginova, P. I., Amaral, V. S., Rocha, J., Klinowski, J. & Trindade, T. (2006). Inorg. Chim. Acta, 359, 1147–1158.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, F.-N., Paz, F. A. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Makal, A., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 754, 51–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, F.-N., Paz, F. A. A., Girginova, P. I., Rocha, J., Amaral, V. S., Klinowski, J. & Trindade, T. (2006). J. Mol. Struct. 789, 200–208.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds