organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(Di­methyl­amino)benzyl­­idene]-4-eth­oxy­aniline

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: wdq4899@163.com

(Received 20 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title compound, C17H20N2O, the mol­ecular core is planar, with a central C—N=C—C torsion angle of −179.3 (3)°. However, the overall geometry is not planar, with a dihedral angle of 61.96 (1)° between the two benzene rings, which adopt a trans configuration with respect to the C=N bond [1.269 (4) Å]. The bond lengths and angles are within normal ranges

Related literature

For biological activities, see: Yang et al. (2000[Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599-2604.]). For related synthesis, see: Mondal et al. (2001[Mondal, N., Mitra, S., Gramilich, V., Ghodsi, S. O. & Abdul Malik, K. M. (2001). Polyhedron, 20, 135-141.]); Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O

  • Mr = 268.35

  • Monoclinic, P 21 /c

  • a = 9.586 (3) Å

  • b = 16.678 (7) Å

  • c = 9.722 (3) Å

  • β = 109.319 (4)°

  • V = 1466.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.34 × 0.27 × 0.19 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.97, Tmax = 0.99

  • 7422 measured reflections

  • 2589 independent reflections

  • 1323 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.164

  • S = 1.02

  • 2589 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been intensively investigated recently owing to their strong coordination capability and diverse biological activities, such as antibacterial, antitumor activities etc. (Yang et al., 2000; Mondal et al., 2001; Tarafder et al., 2002). We report here the synthesis and crystal structure of the title new Schiff base C17H20N2O, (I).

The molecular structure of (I) is shown in Fig. 1. The molecular core is planar, with a central C—N?C—C torsion angle of -179.3 (3)°. The overall geometry instead, is not, with a dihedral angle of 61.96 (1)° between the two benzene rings, which adopt a trans configuration with respect to the C?N bond [1.269 (4) Å]. The bond lengths and angles are within normal ranges.

Related literature top

For biological activities, see: Yang et al. (2000). For related synthesis, see: Mondal et al. (2001); Tarafder et al. (2002).

Experimental top

P-dimethylamino benzaldehyde (5 mmol, 746.0 mg) in absolute ethanol (15 ml) was added dropwise to a absolute ethanol solution (5 ml) of p-ethoxyaniline (5 mmol, 685.9 mg). The mixture was heated under reflux with stirring for 3 h and then filtered. The resulting clear solution was kept at room temperature for 10 days, after which large pale-yellow block-shaped crystals of the title compound suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methyl), 0.97(methylene), 0.93 Å (methenyl), 0.93 Å (aromatic), and Uiso(H) = 1.2Ueq(C,N).

Structure description top

Schiff bases have been intensively investigated recently owing to their strong coordination capability and diverse biological activities, such as antibacterial, antitumor activities etc. (Yang et al., 2000; Mondal et al., 2001; Tarafder et al., 2002). We report here the synthesis and crystal structure of the title new Schiff base C17H20N2O, (I).

The molecular structure of (I) is shown in Fig. 1. The molecular core is planar, with a central C—N?C—C torsion angle of -179.3 (3)°. The overall geometry instead, is not, with a dihedral angle of 61.96 (1)° between the two benzene rings, which adopt a trans configuration with respect to the C?N bond [1.269 (4) Å]. The bond lengths and angles are within normal ranges.

For biological activities, see: Yang et al. (2000). For related synthesis, see: Mondal et al. (2001); Tarafder et al. (2002).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. A molecular view of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N-[4-(Dimethylamino)benzylidene]-4-ethoxyaniline top
Crystal data top
C17H20N2OF(000) = 576
Mr = 268.35Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1506 reflections
a = 9.586 (3) Åθ = 2.3–23.3°
b = 16.678 (7) ŵ = 0.08 mm1
c = 9.722 (3) ÅT = 298 K
β = 109.319 (4)°Block, light yellow
V = 1466.7 (9) Å30.34 × 0.27 × 0.19 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2589 independent reflections
Radiation source: fine-focus sealed tube1323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.97, Tmax = 0.99k = 1915
7422 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.7834P]
where P = (Fo2 + 2Fc2)/3
2589 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C17H20N2OV = 1466.7 (9) Å3
Mr = 268.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.586 (3) ŵ = 0.08 mm1
b = 16.678 (7) ÅT = 298 K
c = 9.722 (3) Å0.34 × 0.27 × 0.19 mm
β = 109.319 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2589 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1323 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.036
7422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
2589 reflectionsΔρmin = 0.14 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5988 (3)0.11288 (15)0.4352 (3)0.0543 (7)
N20.2098 (3)0.13050 (17)0.2456 (3)0.0614 (8)
O10.8309 (2)0.13646 (13)1.0402 (2)0.0614 (6)
C10.4827 (3)0.15105 (18)0.3643 (4)0.0521 (8)
H10.43840.18320.41630.063*
C20.4153 (3)0.14752 (18)0.2077 (3)0.0479 (8)
C30.2738 (3)0.17601 (19)0.1395 (4)0.0567 (9)
H30.22370.19990.19600.068*
C40.2044 (3)0.17042 (19)0.0081 (4)0.0566 (9)
H40.10820.18930.04880.068*
C50.2761 (3)0.13677 (18)0.0982 (4)0.0493 (8)
C60.4203 (3)0.10872 (19)0.0297 (4)0.0547 (8)
H60.47230.08630.08580.066*
C70.4858 (3)0.11380 (19)0.1179 (4)0.0559 (9)
H70.58110.09390.15980.067*
C80.0542 (4)0.1494 (2)0.3144 (4)0.0716 (11)
H8A0.00360.11850.26960.107*
H8B0.02480.13680.41630.107*
H8C0.03860.20550.30260.107*
C90.2890 (4)0.1011 (2)0.3392 (4)0.0782 (11)
H9A0.38370.12690.31370.117*
H9B0.23320.11270.43900.117*
H9C0.30260.04420.32680.117*
C100.6552 (3)0.11975 (18)0.5892 (3)0.0475 (8)
C110.6938 (3)0.05080 (19)0.6712 (4)0.0509 (8)
H110.68180.00130.62450.061*
C120.7501 (3)0.05387 (19)0.8218 (4)0.0515 (8)
H120.77240.00660.87550.062*
C130.7731 (3)0.12667 (18)0.8921 (3)0.0485 (8)
C140.7365 (3)0.19622 (19)0.8103 (4)0.0542 (8)
H140.75190.24570.85700.065*
C150.6778 (3)0.19303 (19)0.6611 (4)0.0554 (9)
H150.65310.24030.60770.066*
C160.8842 (4)0.0675 (2)1.1264 (3)0.0629 (9)
H16A0.96200.04251.09810.075*
H16B0.80490.02901.11240.075*
C170.9428 (4)0.0927 (2)1.2824 (4)0.0781 (11)
H17A1.01810.13251.29440.117*
H17B0.98410.04701.34210.117*
H17C0.86390.11461.31090.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0525 (16)0.0502 (17)0.0639 (18)0.0000 (14)0.0244 (14)0.0015 (14)
N20.0514 (16)0.075 (2)0.0631 (18)0.0029 (14)0.0266 (14)0.0008 (16)
O10.0751 (15)0.0487 (14)0.0638 (15)0.0040 (11)0.0275 (12)0.0021 (12)
C10.0502 (19)0.0427 (19)0.070 (2)0.0031 (15)0.0294 (17)0.0041 (16)
C20.0479 (18)0.0387 (18)0.061 (2)0.0032 (14)0.0239 (16)0.0009 (15)
C30.052 (2)0.054 (2)0.071 (2)0.0082 (16)0.0306 (18)0.0053 (17)
C40.0463 (18)0.055 (2)0.073 (2)0.0083 (16)0.0253 (17)0.0002 (18)
C50.0455 (18)0.0440 (19)0.066 (2)0.0046 (14)0.0281 (16)0.0000 (16)
C60.0495 (19)0.055 (2)0.069 (2)0.0002 (15)0.0317 (17)0.0051 (17)
C70.0392 (17)0.053 (2)0.079 (3)0.0021 (15)0.0237 (17)0.0010 (18)
C80.056 (2)0.087 (3)0.072 (2)0.0053 (19)0.0212 (18)0.000 (2)
C90.075 (2)0.097 (3)0.074 (2)0.009 (2)0.039 (2)0.001 (2)
C100.0418 (17)0.047 (2)0.060 (2)0.0020 (14)0.0245 (15)0.0031 (17)
C110.0505 (19)0.0389 (19)0.066 (2)0.0018 (14)0.0235 (16)0.0057 (16)
C120.0498 (19)0.0391 (19)0.069 (2)0.0011 (14)0.0250 (17)0.0032 (17)
C130.0462 (18)0.045 (2)0.061 (2)0.0013 (15)0.0273 (15)0.0017 (17)
C140.063 (2)0.0372 (19)0.071 (2)0.0010 (15)0.0330 (18)0.0045 (17)
C150.062 (2)0.042 (2)0.071 (2)0.0049 (15)0.0325 (18)0.0033 (17)
C160.066 (2)0.061 (2)0.063 (2)0.0080 (18)0.0234 (18)0.0030 (19)
C170.085 (3)0.082 (3)0.063 (2)0.004 (2)0.018 (2)0.000 (2)
Geometric parameters (Å, º) top
N1—C11.269 (4)C8—H8C0.9600
N1—C101.418 (4)C9—H9A0.9600
N2—C51.366 (4)C9—H9B0.9600
N2—C91.450 (4)C9—H9C0.9600
N2—C81.453 (4)C10—C111.378 (4)
O1—C131.370 (4)C10—C151.389 (4)
O1—C161.415 (4)C11—C121.384 (4)
C1—C21.445 (4)C11—H110.9300
C1—H10.9300C12—C131.375 (4)
C2—C31.383 (4)C12—H120.9300
C2—C71.387 (4)C13—C141.385 (4)
C3—C41.370 (4)C14—C151.372 (4)
C3—H30.9300C14—H140.9300
C4—C51.398 (4)C15—H150.9300
C4—H40.9300C16—C171.492 (4)
C5—C61.402 (4)C16—H16A0.9700
C6—C71.366 (4)C16—H16B0.9700
C6—H60.9300C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—H8A0.9600C17—H17C0.9600
C8—H8B0.9600
C1—N1—C10119.5 (3)H9A—C9—H9B109.5
C5—N2—C9121.7 (3)N2—C9—H9C109.5
C5—N2—C8121.1 (3)H9A—C9—H9C109.5
C9—N2—C8117.1 (3)H9B—C9—H9C109.5
C13—O1—C16117.8 (2)C11—C10—C15118.4 (3)
N1—C1—C2123.9 (3)C11—C10—N1118.6 (3)
N1—C1—H1118.0C15—C10—N1122.9 (3)
C2—C1—H1118.0C10—C11—C12121.2 (3)
C3—C2—C7116.2 (3)C10—C11—H11119.4
C3—C2—C1121.1 (3)C12—C11—H11119.4
C7—C2—C1122.6 (3)C13—C12—C11120.1 (3)
C4—C3—C2122.6 (3)C13—C12—H12120.0
C4—C3—H3118.7C11—C12—H12120.0
C2—C3—H3118.7O1—C13—C12124.8 (3)
C3—C4—C5121.0 (3)O1—C13—C14116.2 (3)
C3—C4—H4119.5C12—C13—C14119.0 (3)
C5—C4—H4119.5C15—C14—C13120.8 (3)
N2—C5—C4122.3 (3)C15—C14—H14119.6
N2—C5—C6121.1 (3)C13—C14—H14119.6
C4—C5—C6116.7 (3)C14—C15—C10120.5 (3)
C7—C6—C5121.1 (3)C14—C15—H15119.8
C7—C6—H6119.4C10—C15—H15119.8
C5—C6—H6119.4O1—C16—C17108.3 (3)
C6—C7—C2122.4 (3)O1—C16—H16A110.0
C6—C7—H7118.8C17—C16—H16A110.0
C2—C7—H7118.8O1—C16—H16B110.0
N2—C8—H8A109.5C17—C16—H16B110.0
N2—C8—H8B109.5H16A—C16—H16B108.4
H8A—C8—H8B109.5C16—C17—H17A109.5
N2—C8—H8C109.5C16—C17—H17B109.5
H8A—C8—H8C109.5H17A—C17—H17B109.5
H8B—C8—H8C109.5C16—C17—H17C109.5
N2—C9—H9A109.5H17A—C17—H17C109.5
N2—C9—H9B109.5H17B—C17—H17C109.5
C10—N1—C1—C2179.3 (3)C1—C2—C7—C6178.3 (3)
N1—C1—C2—C3166.0 (3)C1—N1—C10—C11132.5 (3)
N1—C1—C2—C712.1 (5)C1—N1—C10—C1549.7 (4)
C7—C2—C3—C41.2 (5)C15—C10—C11—C121.7 (4)
C1—C2—C3—C4177.1 (3)N1—C10—C11—C12179.7 (3)
C2—C3—C4—C51.5 (5)C10—C11—C12—C132.2 (4)
C9—N2—C5—C4175.3 (3)C16—O1—C13—C126.5 (4)
C8—N2—C5—C47.8 (5)C16—O1—C13—C14173.4 (3)
C9—N2—C5—C65.3 (5)C11—C12—C13—O1178.6 (3)
C8—N2—C5—C6171.6 (3)C11—C12—C13—C141.2 (4)
C3—C4—C5—N2179.9 (3)O1—C13—C14—C15180.0 (3)
C3—C4—C5—C60.7 (5)C12—C13—C14—C150.1 (4)
N2—C5—C6—C7178.9 (3)C13—C14—C15—C100.6 (4)
C4—C5—C6—C70.5 (5)C11—C10—C15—C140.4 (4)
C5—C6—C7—C20.9 (5)N1—C10—C15—C14178.2 (3)
C3—C2—C7—C60.0 (5)C13—O1—C16—C17179.4 (3)

Experimental details

Crystal data
Chemical formulaC17H20N2O
Mr268.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.586 (3), 16.678 (7), 9.722 (3)
β (°) 109.319 (4)
V3)1466.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.27 × 0.19
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
7422, 2589, 1323
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.164, 1.02
No. of reflections2589
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

 

Acknowledgements

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

First citationMondal, N., Mitra, S., Gramilich, V., Ghodsi, S. O. & Abdul Malik, K. M. (2001). Polyhedron, 20, 135–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds