organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nicotinohydrazide

aChemistry Department, `Sapienza' University of Rome, P. le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 30 October 2007; accepted 11 December 2007; online 18 December 2007)

In the title compound (alternative name: pyridine-3-carbo­hydrazide, C6H7N3O), the asymmetric unit contains a single mol­ecule. In contrast with nicotinic acid and nicotinamide, the C=O bond is found to be oriented cis with respect to the Cipso C N fragment in the pyridine ring. The pyridine ring and the hydrazide group make a dihedral angle of 34.0 (2)°. In the crystal structure, mol­ecules are associated into a three-dimensional framework by a combination of N—H⋯N and three-centre N—H⋯O hydrogen bonds.

Related literature

The structure of the same compound has been determined independently and is reported in the preceding paper (Priebe et al., 2008[Priebe, J. P., Mello, R. S., Nome, F. & Bortoluzzi, A. J. (2008). Acta Cryst. E64, o302-o303.]). For related literature, see: Bhat et al. (1974[Bhat, T. N., Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 2921-2922.]); Kutoglu & Scheringer (1983[Kutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232-234.]); Miwa et al. (1999[Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78-84.]); Portalone (2007[Portalone, G. (2007). Acta Cryst. E63, o3232.]); Portalone & Colapietro (2007[Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655-o658.]). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N3O

  • Mr = 137.15

  • Orthorhombic, P 21 21 21

  • a = 3.8727 (10) Å

  • b = 10.481 (2) Å

  • c = 15.855 (2) Å

  • V = 643.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.15 × 0.05 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: none

  • 3076 measured reflections

  • 1139 independent reflections

  • 695 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.131

  • S = 1.19

  • 1139 reflections

  • 93 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯N1i 0.89 (4) 2.09 (4) 2.964 (4) 168 (4)
N3—H31⋯O1ii 0.84 (5) 2.57 (5) 3.146 (4) 127 (4)
N3—H32⋯O1iii 1.00 (5) 2.08 (5) 3.027 (4) 157 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of a more general study of multiple-hydrogen-bonding N -heterocyclic systems as potential supramolecular reagents (Portalone, 2007; Portalone & Colapietro, 2007), we report here the structure of the title compound (I, Fig. 1). The asymmetric unit of (I) comprises one independent molecule, and the angle between the mean planes of the acid hydrazine group and the pyridine ring is 34.0 (2)°. Noteworthy, in contrast to nicotinic acid (Kutoglu & Scheringer, 1983) and nicotinamide (Miwa et al., 1999), the C?O bond is oriented cis with respect to the C2—C3 bond.

Analysis of the crystal packing of (I) shows that, at variance with isonicotinohydrazide (Bhat et al., 1974), for which the crystal structure is stabilized by a network of N—H···N hydrogen bonds, in compound (I) two of the three independent N—H bonds act as donor in three-centre N—H···O systems (Table 1, entries 2 and 3), and the third is involved in a N—H···N interaction (Table 1, entry 1). These hydrogen bonds delineate patterns in which rings are the most prominent features (Fig. 2). Two small rings with descriptor R22(10) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) are then formed by NH2 functionalities and two symmetry-related carbonyl O atoms [O1ii and O1iii, symmetry codes: (ii) x + 1/2, -y + 1/2, -z; (iii) x - 1/2, -y + 1/2, -z]. The formation of the N—H···N hydrogen bonds between the N—H groups and the pyridyl N atoms [N1i, symmetry code: (i) -x + 1, y + 1/2, -z + 1/2] leads to the formation of larger R66(30) rings.

Related literature top

The structure of the same compound has been determined independently and is reported in the preceding paper (Priebe al., 2008). For related literature, see: Bhat et al. (1974); Kutoglu & Scheringer (1983); Miwa et al. (1999); Portalone (2007); Portalone & Colapietro (2007). For computation of ring patterns formed by hydrogen bonds in the crystal structure, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Experimental top

1 mmol of the title compound (purchased from Sigma-Aldrich at 97% purity) was dissolved in a mixture benzene/ethanol (8:1, 50 ml) and refluxed for 1 h. After cooling the solution to ambient temperature, a colorless precipitate was formed, which was collected by filtration and washed with benzene/ethanol (8:1). Crystals suitable for single-crystal X-ray diffraction were grown from a benzene solution, by slow evaporation of the solvent.

Refinement top

Diffraction from the very small crystals was weak; nevertheless, these data gave good structural results, albeit with a lower data/parameter ratio than usual. All H atoms were detected in a difference map, after the first cycles of the isotropic refinement. The final full-matrix least-squares refinement was carried out on F2 with anisotropic non-H atoms and isotropic H atoms. C-bonded H atoms were positioned with idealized geometry and refined using a riding model, with C—H bond lengths fixed to 0.95 Å and Uiso(H) = 1.2Ueq(carrier C). H atoms bonded to N atoms were refined freely with Uiso(H) = 1.2Ueq(carrier N). In the absence of significant anomalous scattering in this light-atom study, measured Friedel pairs were merged.

Structure description top

As a part of a more general study of multiple-hydrogen-bonding N -heterocyclic systems as potential supramolecular reagents (Portalone, 2007; Portalone & Colapietro, 2007), we report here the structure of the title compound (I, Fig. 1). The asymmetric unit of (I) comprises one independent molecule, and the angle between the mean planes of the acid hydrazine group and the pyridine ring is 34.0 (2)°. Noteworthy, in contrast to nicotinic acid (Kutoglu & Scheringer, 1983) and nicotinamide (Miwa et al., 1999), the C?O bond is oriented cis with respect to the C2—C3 bond.

Analysis of the crystal packing of (I) shows that, at variance with isonicotinohydrazide (Bhat et al., 1974), for which the crystal structure is stabilized by a network of N—H···N hydrogen bonds, in compound (I) two of the three independent N—H bonds act as donor in three-centre N—H···O systems (Table 1, entries 2 and 3), and the third is involved in a N—H···N interaction (Table 1, entry 1). These hydrogen bonds delineate patterns in which rings are the most prominent features (Fig. 2). Two small rings with descriptor R22(10) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) are then formed by NH2 functionalities and two symmetry-related carbonyl O atoms [O1ii and O1iii, symmetry codes: (ii) x + 1/2, -y + 1/2, -z; (iii) x - 1/2, -y + 1/2, -z]. The formation of the N—H···N hydrogen bonds between the N—H groups and the pyridyl N atoms [N1i, symmetry code: (i) -x + 1, y + 1/2, -z + 1/2] leads to the formation of larger R66(30) rings.

The structure of the same compound has been determined independently and is reported in the preceding paper (Priebe al., 2008). For related literature, see: Bhat et al. (1974); Kutoglu & Scheringer (1983); Miwa et al. (1999); Portalone (2007); Portalone & Colapietro (2007). For computation of ring patterns formed by hydrogen bonds in the crystal structure, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for (I) viewed down [100]. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.
pyridine-3-carbohydrazide top
Crystal data top
C6H7N3OF(000) = 288
Mr = 137.15Dx = 1.415 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 6060 reflections
a = 3.8727 (10) Åθ = 2.3–30.0°
b = 10.481 (2) ŵ = 0.10 mm1
c = 15.855 (2) ÅT = 298 K
V = 643.6 (2) Å3Plate, colourless
Z = 40.15 × 0.05 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
695 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray sourceRint = 0.019
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
Detector resolution: 16.0696 pixels mm-1h = 55
ω and φ scansk = 1414
3076 measured reflectionsl = 2222
1139 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.022P)2 + 0.3733P]
where P = (Fo2 + 2Fc2)/3
1139 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H7N3OV = 643.6 (2) Å3
Mr = 137.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8727 (10) ŵ = 0.10 mm1
b = 10.481 (2) ÅT = 298 K
c = 15.855 (2) Å0.15 × 0.05 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
695 reflections with I > 2σ(I)
3076 measured reflectionsRint = 0.019
1139 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.22 e Å3
1139 reflectionsΔρmin = 0.22 e Å3
93 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0228 (9)0.1920 (2)0.10123 (15)0.0690 (8)
N10.4952 (10)0.1249 (3)0.32513 (17)0.0622 (8)
N20.8838 (10)0.4009 (3)0.10818 (16)0.0613 (9)
H210.777 (5)0.464 (3)0.1359 (12)0.074*
N30.9984 (11)0.4321 (3)0.02617 (17)0.0670 (9)
H311.210 (6)0.4151 (6)0.0228 (2)0.080*
H320.889 (3)0.3722 (18)0.0149 (13)0.080*
C20.6160 (10)0.1529 (3)0.2485 (2)0.0565 (9)
H20.59440.09020.20560.068*
C30.7709 (10)0.2678 (3)0.22785 (19)0.0517 (8)
C40.7961 (10)0.3597 (3)0.2905 (2)0.0574 (9)
H40.89540.44060.27860.069*
C50.6755 (12)0.3321 (3)0.3700 (2)0.0648 (11)
H50.69310.39320.41400.078*
C60.5291 (13)0.2149 (4)0.3845 (2)0.0673 (10)
H60.44740.19660.43970.081*
C70.9030 (11)0.2833 (3)0.14019 (19)0.0545 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.089 (2)0.0590 (14)0.0593 (13)0.0139 (16)0.0077 (16)0.0061 (11)
N10.075 (2)0.0528 (15)0.0586 (15)0.0012 (19)0.0015 (17)0.0083 (13)
N20.083 (2)0.0536 (15)0.0468 (13)0.0037 (17)0.0062 (16)0.0023 (12)
N30.083 (2)0.0649 (17)0.0526 (14)0.004 (2)0.0038 (18)0.0066 (13)
C20.071 (2)0.0457 (15)0.0528 (16)0.0009 (18)0.0027 (18)0.0009 (13)
C30.062 (2)0.0440 (14)0.0496 (15)0.0019 (17)0.0038 (16)0.0007 (13)
C40.071 (2)0.0475 (16)0.0535 (16)0.0034 (19)0.0040 (18)0.0040 (14)
C50.089 (3)0.0574 (18)0.0480 (16)0.004 (2)0.004 (2)0.0041 (14)
C60.083 (3)0.066 (2)0.0526 (17)0.005 (2)0.002 (2)0.0060 (16)
C70.063 (2)0.0497 (15)0.0505 (15)0.0023 (18)0.0032 (17)0.0014 (14)
Geometric parameters (Å, º) top
O1—C71.230 (4)C2—H20.9500
N1—C21.334 (4)C3—C41.387 (4)
N1—C61.340 (4)C3—C71.490 (4)
N2—C71.335 (4)C4—C51.375 (4)
N2—N31.412 (4)C4—H40.9500
N2—H210.89 (4)C5—C61.373 (5)
N3—H310.84 (5)C5—H50.9500
N3—H321.00 (5)C6—H60.9500
C2—C31.385 (4)
C2—N1—C6116.8 (3)C5—C4—C3119.1 (3)
C7—N2—N3123.1 (3)C5—C4—H4120.5
C7—N2—H21121.2C3—C4—H4120.5
N3—N2—H21115.4C6—C5—C4118.9 (3)
N2—N3—H31108.4C6—C5—H5120.6
N2—N3—H32108.7C4—C5—H5120.6
H31—N3—H32103.9N1—C6—C5123.5 (3)
N1—C2—C3124.0 (3)N1—C6—H6118.2
N1—C2—H2118.0C5—C6—H6118.2
C3—C2—H2118.0O1—C7—N2123.2 (3)
C2—C3—C4117.7 (3)O1—C7—C3120.9 (3)
C2—C3—C7117.6 (3)N2—C7—C3115.8 (3)
C4—C3—C7124.6 (3)
C6—N1—C2—C30.0 (6)C4—C5—C6—N10.3 (7)
N1—C2—C3—C41.1 (6)N3—N2—C7—O10.2 (7)
N1—C2—C3—C7178.1 (4)N3—N2—C7—C3179.8 (4)
C2—C3—C4—C51.5 (6)C2—C3—C7—O133.7 (6)
C7—C3—C4—C5177.6 (4)C4—C3—C7—O1145.5 (4)
C3—C4—C5—C60.9 (6)C2—C3—C7—N2146.7 (4)
C2—N1—C6—C50.7 (7)C4—C3—C7—N234.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···N1i0.89 (4)2.09 (4)2.964 (4)168 (4)
N3—H31···O1ii0.84 (5)2.57 (5)3.146 (4)127 (4)
N3—H32···O1iii1.00 (5)2.08 (5)3.027 (4)157 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H7N3O
Mr137.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)3.8727 (10), 10.481 (2), 15.855 (2)
V3)643.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.05 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3076, 1139, 695
Rint0.019
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.131, 1.19
No. of reflections1139
No. of parameters93
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···N1i0.89 (4)2.09 (4)2.964 (4)168 (4)
N3—H31···O1ii0.84 (5)2.57 (5)3.146 (4)127 (4)
N3—H32···O1iii1.00 (5)2.08 (5)3.027 (4)157 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z.
 

Acknowledgements

We thank MIUR (Rome) for 2006 financial support of the project `X-ray diffractometry and spectrometry'.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, T. N., Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 2921–2922.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232–234.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMiwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPortalone, G. (2007). Acta Cryst. E63, o3232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPriebe, J. P., Mello, R. S., Nome, F. & Bortoluzzi, A. J. (2008). Acta Cryst. E64, o302–o303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds